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What’s Next?

1. Black-box Optimization: Hierarchical Tree Search

2. Procrastinated Tree Search (PCTS)
2.1 Adapting to Delayed Feedback
2.2 Adapting to Noisy Feedback
2.3 Adapting to Multi-fidelity Feedback

3. Performance Evaluation: Global & Hyperparameter Optimization

4. The Curtain Call: What’s Here and What’s Next?
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Black-box Optimization
The Problem

Input

A function f : X → R with domainX ⊆ Rd

Target

The optimal point x∗ , arg maxx∈X f(x).

The Iterative Scheme
At every iteration t = 1, 2, . . .

1. Choose a point xt ∈ X depending on previous choices of {xi}t−1
i=1 and

evaluations {f(xi)}t−1
i=1

2. Evaluate the function at xt and observe f(xt)
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Black-box Optimization
The Hierarchical Tree Search Approach
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The Hierarchical Tree Search Framework
How to choose the next point?

Structure: A Tree Cover ofX
A tree T ⊆ ∪{(h, l)}H,2h

h,l=0,1 of depth H covers the domainX such that
diameter of nodes at level h is bounded by νρh for ρ < 1.

Construct an Upper Confidence Bound (UCB) to sequentially choose a set of
leaf nodes leading to the optimal point

(ht, lt) , arg max
(h,l)∈Tt

Bmin
(h,l)(t)

, arg max
(h,l)∈Tt

min{B(h,l)(t) + νρh, max
(h′ ,l′)∈Child(h,l)

Bmin
(h′ ,l′)(t)}.

B(h,l)(t) is the confidence interval constructed around (h, l) at time t.
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Theoretical Guarantees
Upper Bounds on Simple Regret: HOO [BMSS11]

Performance Metric: (Expected) Simple Regret

εT = E[rT] = E[f(x∗) − f(xT)]

Assumption: Weak Lipschitzness of f

f∗ − f(y) ≤ f∗ − f(x) +mx{f∗ − f(x), ℓ(x, y)}∀x, y ∈ X

HOO: Hierarchical Optimistic Optimization

εT = O
(︁
T
−1
d+2 (ln T)

1
d+2

)︁
d is the 4ν near-optimality dimension of f.
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What’s Next?

1. Black-box Optimization: Hierarchical Tree Search

2. Procrastinated Tree Search (PCTS)
2.1 Adapting to Delayed Feedback
2.2 Adapting to Noisy Feedback
2.3 Adapting to Multi-fidelity Feedback

3. Performance Evaluation: Global & Hyperparameter Optimization

4. The Curtain Call: What’s Here and What’s Next?
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Adapting to Delays
Delays with Bounded Expectations

Evaluation
xt−k xt−k+1 · · · xt xt+1

Feedback
without delayf(xt−k) f(xt−k+1) · · · f(xt) f(xt+1)
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Adapting to Delays
Delays with Bounded Expectations

Evaluation
xt−k xt−k+1 xt−k+2 xt−k+3 · · · xt xt+1

Feedback
with delay

f(xt−k−2) f(xt−k−1) f(xt−k) · · · f(xt−1) f(xt)

τt−k⏟ ⏞ 
Delay

τt⏟ ⏞ 
Delay

Assumption: Bounded Expectation of Delay

Delays τs are generated IID from a distribution D with expectation
τ , E[τs : s ≥ 0].
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Adapting to Delays
Adapting Confidence Bounds with Delayed Feedback

PCTS: Adapting to Feedback with Unknown Delays

Generalize upper confidence bound (UCB) of node i from Bi,t to Bi,s,t:

s = Si(t− 1),

number of evaluation feedbacks from node i observed by time t− 1.

For any node (h, i), the confidence bound at time t is

B(h,i),S(h,i)(t−1)(t) , μ̂(h,i),S(h,i)(t−1) +

√︃
2 log t

S(h,i)(t− 1)
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Theoretical Guarantees
Upper Bounds on Simple Regret

PCTS: Feedback with Unknown Stochastic and Constant Delays

εT = O
(︁
T
−1
d+2 (ln T + τ)

1
d+2

)︁

Wait-and-Act: Feedback with Known Constant Delay

εT = O
(︁
T
−1
d+2 (τconst ln T)

1
d+2

)︁
Adaptive strategy is significantly better than waiting (batching).
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Theoretical Guarantees
Implications of Theoretical Result

• Deeper Trees: The achieved depth of trees grown by PCTS is

H ≥
1

d+ 2

τ + ln T

ln(1/ρ)
= Ω(τ + ln T),

while for wait-and-act HOO H = Ω(ln(T/τ)).

• Benign Delays. If τ = O(ln T), simple regrets of PCTS and HOO are of
same order with respect to T.

• Adversarial Delays. If τ = O(T1−α) for α ∈ (0, 1), simple regret

εT = Õ(T
−α
d+2 ) = Õ(εHOOT T

1−α
d+2 ).

This echoes the impossibility result of [GVCV20] for finite-arm bandits.
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Adapting to Noise
Known and Unknown Noise Variance

f̃(Xt)

Noisy
Evaluation

= f(Xt)

True
Evaluation

+ εt

Noise
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Adapting to Noise
Setups: Known and Unknown Variance

f̃(Xt)

Noisy
Evaluation

= f(Xt)

True
Evaluation

+ εt

Noise

D (μ = 0, σ2)
Noise Distribution
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Adapting to Noise
Designing Confidence Bounds with Noisy Feedback

Settings Noise-oblivious Known Variance Unknown Variance

DUCB1 [JGS16] DUCB1σ

Bi,s(t) μ̂i,s +
√︁

2 log t
s μ̂i,s +

√︁
2σ2 log t

s

Solution: Use the variance σ2 to calibrate the UCB.
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Adapting to Noise
Designing Confidence Bounds with Noisy Feedback

Settings No Noise Known Variance Unknown Variance

DUCB1 [JGS16] DUCB1σ DUCBV

Bi,s(t) μ̂i,s +
√︁

2 log t
s μ̂i,s +

√︁
2σ2 log t

s μ̂i,s +

√︂
2σ̂2i,s log t

s + 3b log t
s

Solution: Use the empirical variance with delayed feedback σ̂2i,s and
the range of noise 2b to calibrate the UCB.
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Theoretical Guarantees
Upper Bounds on Simple Regret

PCTS+DUCB1: No Noise

εT = O
(︁
T−

1
d+2 (ln T + τ)

1
d+2

)︁
PCTS+DUCB1σ: Known Noise Variance

εT = O
(︂
T−

1
d+2

(︀
(σ/ν)2 ln T + τ

)︀ 1
d+2

)︂
PCTS+DUCBV: Unknown Noise Variance

εT = O
(︂
T−

1
d+2

(︀
((σ/ν)2 + 2b/ν) ln T + τ

)︀ 1
d+2

)︂
The ratios of the variance and the range of noise with respect to the
smoothness parameter are the cost of known and unknown noise.
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Adapting to Multi-fidelity
Bias and Cost Functions as Quantifiers of Fidelity

f̃(Xt)

Noisy
Evaluation

= f(Xt)

True
Evaluation

+ εt

Noise

D (μ = 0, σ2)
Noise Distribution

+ ζ(Zh)

Bias
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Adapting to Multi-fidelity
Bias and Cost Functions as Quantifiers of Fidelity

f̃(Xt)

Noisy
Evaluation

= f(Xt)

True
Evaluation

+ εt

Noise

D (μ = 0, σ2)
Noise Distribution

+ ζ(Zh)

Bias

Cost λ(Zh)

Cost increases with zh while bias decreases.
As more computational cost (time/resource) is paid, bias is lessened.
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Adapting to Multi-fidelity
Designing Confidence Bounds with Multi-fidelity Feedback

For any node (h, i), the confidence bound at time t is

B(h,i),S(h,i)(t−1)(t) , μ̂(h,i),S(h,i)(t−1) + ζ(Zh)⏟  ⏞  
empirical mean of biased evaluations

+ σ̂(h,i),S(h,i)(t−1)

√︃
2 log t

S(h,i)(t− 1)
+

3b log t

S(h,i)(t− 1)

Solution: Use the empirical mean and variance computed from the
biased evaluations to calibrate the UCB.
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Theoretical Guarantees
Upper Bounds on Simple Regret

PCTS+DUCBV: Unbiased Evaluation

εT = O
(︂
T−

1
d+2

(︀
((σ/ν)2 + 2b/ν) ln T + τ

)︀ 1
d+2

)︂

PCTS+DUCBV: Biased Evaluation

εΛ = O
(︂
(H(Λ))−

1
d+2

(︀
((σ/ν1)2 + 2b/ν1) lnH(Λ) + τ

)︀ 1
d+2

)︂
.

Depth till which the budget of evaluation does not burn out:
H(Λ) ,mx{H :

∑︀H
h=1 λ(Zh) ≤ Λ}

The reduced depth of the tree is the cost of multi-fidelity feedback.
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What’s Next?

1. Black-box Optimization: Hierarchical Tree Search

2. Procrastinated Tree Search (PCTS)
2.1 Adapting to Delayed Feedback
2.2 Adapting to Noisy Feedback
2.3 Adapting to Multi-fidelity Feedback

3. Performance Evaluation: Global & Hyperparameter Optimization

4. The Curtain Call: What’s Here and What’s Next?
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Global Optimization
Benchmark Synthetic Functions
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Hyperparameter Optimization
SVM, Random Forest, and Neural Networks
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Summary of Contribution
What’s in the Paper?

1. Algorithmic: Extending the hierarchical tree search (HOO) framework
to PCTS for handling delayed, noisy, and multi-fidelity feedback.

2. Theoretical: Incrementally designing upper confidence intervals B
that can adapt to delay, noise, and multi-fidelity feedback.

3. Theoretical: Developing a unified analysis of regret of PCTS under
different feedback settings leading to tighter regret guarantees.

4. Experimental: Implementing variants of PCTS on global and
hyperparameter optimization benchmarks where PCTS empirically
outperforms existing black-box optimizers.
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Future Avenues
What’s Next?

1. PCTS achieves tighter upper bound than the existing algorithms and
the bounds are comparable with the best known upper bounds
[CBGMM16] for finite-armed bandits with delays.
Derive lower bounds for continuum-armed bandits with delayed
feedback to understand the fundamental limitations due to delays
and tightness of our proposed bounds.

2. In PCTS, we assume to know which delayed feedback corresponds to
which evaluation query.
Extend the framework to anonymously, aggregated delay framework.

3. PCTS solves the continuum-armed bandit problem with delayed,
noisy, and multi-fidelity feedback.
Extend the proposed techniques to solve Markov decision processes
with similar feedback.
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