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What's Next?

1. Black-box Optimization: Hierarchical Tree Search
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Black-box Optimization
The Problem

Input
A function f :  — R with domain & C R?

Target

The optimal point x* £ arg max,cq f(x).
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Black-box Optimization
The Problem

Input

A function f :  — R with domain & C R?

Target

The optimal point x* £ arg max,cq f(x).

The Iterative Scheme

At every iterationt=1,2, ...
1. Choose a point x; € Z depending on previous choices of {x,~}’:11 and
evaluations {f(x,-)}f;1
2. Evaluate the function at x; and observe f(x;)
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Black-box Optimization
The Hierarchical Tree Search Approach

3/18



Black-box Optimization
The Hierarchical Tree Search Approach

O,

3/18
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The Hierarchical Tree Search Framework
How to choose the next point?

Structure: A Tree Cover of

Atree 7 C U{(h, I)}h i of depth H covers the domain & such that
diameter of nodes at level h is bounded by vp" for p < 1.

Construct an Upper Confidence Bound (UCB) to sequentially choose a set of
leaf nodes leading to the optimal point

(hs, It) £ argmax B?;ig(t)
(h.NeZ '
A . mln
= B t)+ v
a(I‘EI)I;l;XmIH{ () + vo', T B 1y (D)}

Bn, 1 (t) is the confidence interval constructed around (h, I) at time t.
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Theoretical Guarantees
Upper Bounds on Simple Regret: HOO [BMSS11]

Performance Metric: (Expected) Simple Regret

er =E[rr] = E[f(x*) — f(x7)]

Assumption: Weak Lipschitzness of f

f*—f(y) £f* —f(x) + max{f* —f(x), L(x,y)}Vx,y € &

HOO: Hierarchical Optimistic Optimization
er=0 (7 (InT)#: )
d is the 4v near-optimality dimension of f.
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What's Next?

2. Procrastinated Tree Search ( )
2.1 Adapting to Delayed Feedback
2.2 Adapting to Noisy Feedback
2.3 Adapting to Multi-fidelity Feedback

6/18



Adapting to Delays

Delays with Bounded Expectations

Xt—k Xt—k+1 000 Xt Xe+1
P Evaluation
Feedback

f(xt—k) f(Xt—k+1) o f(xt) F(xee1) without delay
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Adapting to Delays

Delays with Bounded Expectations

Xt—k Xt—k+1 Xt—k+2 Xt—k+3 Xt Xt+1
P Evaluation
FOxe—k—2) Fxe—k=1)  flxe—k) fxe—1)  flxe) > Feedback
with delay
» »
Tt—k Tt
~— ~

Delay

Delay

Assumption: Bounded Expectation of Delay

Delays 75 are generated IID from a distribution D with expectation

T2E[1,:5>0].

7/18



Adapting to Delays
Adapting Confidence Bounds with Delayed Feedback

PCTS: Adapting to Feedback with Unknown Delays

Generalize upper confidence bound (UCB) of node i from B;¢ to B s +:
s=Si(t—1),

number of evaluation feedbacks from node i observed by time t — 1.

For any node (h, i), the confidence bound at time t is

2logt
Bt ), sy (=0 (1) = A suyt=0) + ) ——
‘ ‘ Sthiy(t—1)
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Theoretical Guarantees
Upper Bounds on Simple Regret

PCTS: Feedback with Unknown Stochastic and Constant Delays

=7 1
eT=o(Tm(|nT+ T)m)

Wait-and-Act: Feedback with Known Constant Delay
€T = O (Tﬁ (Tconst In T)d+2 )

Adaptive strategy is significantly better than waiting (batching).
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Theoretical Guarantees
Implications of Theoretical Result

e Deeper Trees: The achieved depth of trees grown by is

1 7+InT
H> ——
d+ 2 In(1/p)

=Q(t+1InT),

while for wait-and-act HOO H = Q(In(T/1)).

e Benign Delays. If T = O(In T), simple regrets of and HOO are of
same order with respect to T.

e Adversarial Delays. If T = O(T"=%) for a € (0, 1), simple regret
er = O(T#1) = O("°°T ).

This echoes the impossibility result of [GVCV20] for finite-arm bandits.
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Adapting to Noise

Known and Unknown Noise Variance

fx) | = | ) | + | e

Noisy True

. . Noise
Evaluation Evaluation
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Adapting to Noise

Setups: Known and Unknown Variance

fx) | =] fX) | + | et

Noisy True

. . Noise
Evaluation Evaluation g

2(u=0,0%)
Noise Distribution
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Adapting to Noise
Designing Confidence Bounds with Noisy Feedback

Settings ‘ Noise-oblivious ‘ Known Variance ‘ Unknown Variance

A 2
fis + /20 Isogt ‘

| [Gs16] |

Bi,s(t) ‘ I:\li,s+ @

Solution: Use the variance o2 to calibrate the UCB.
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Adapting to Noise
Designing Confidence Bounds with Noisy Feedback

Settings ‘ No Noise ‘ Known Variance ‘ Unknown Variance
| [Gs16] | |
A 2logt | 20%logt | 267 logt  3plogt
Bis(t) | fis+ . His+\/ =% |MHis+t\/ —5—+——

Solution: Use the empirical variance with delayed feedback 6,.25 and

the range of noise 2b to calibrate the UCB.
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Theoretical Guarantees
Upper Bounds on Simple Regret

PCTS+DUCB1: No Noise

1 1
er=0 (rm (nT+ T)m)

PCTS+DUCB10: Known Noise Variance

RN
er=0 (T‘ﬁ ((o/v)*INT + 1) @2 )

PCTS+DUCBV: Unknown Noise Variance

1
er=0 (T‘ﬁ (((orv)* + 2b/v)INT + 1) #2 )

The ratios of the variance and the range of noise with respect to the
smoothness parameter are the cost of known and unknown noise.
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Adapting to Multi-fidelity

Bias and Cost Functions as Quantifiers of Fidelity

2(u=0,0°%)
Noise Distribution

v
fx) | =| fX) | +| e | +|¢(zn)

Noisy True

. . Noise Bias
Evaluation Evaluation
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Adapting to Multi-fidelity

Bias and Cost Functions as Quantifiers of Fidelity

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

9 (u=0,0%)
Noise Distribution

v

fx) | = | f(Xo)

¢(zn)

Cost increases with z,, while bias decreases.

As more computational cost (time/resource) is paid, bias is lessened.
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Adapting to Multi-fidelity
Designing Confidence Bounds with Multi-fidelity Feedback

For any node (h, i), the confidence bound at time t is

B(h,i), sy (= (1) = A(hi),snn(t=1) + $(Zn)

empirical mean of biased evaluations
. 2logt 3blogt
+ O(h,i), 50 (t=1) +
*) Sthiy(t—1)  Sp(t—1)

Solution: Use the empirical mean and variance computed from the

biased evaluations to calibrate the UCB.
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Theoretical Guarantees
Upper Bounds on Simple Regret

PCTS+DUCBV: Unbiased Evaluation

1
€r=0 (T‘ﬁ (((orv)* + 2b/v)INT + 1) #2 )

PCTS+DUCBYV: Biased Evaluation

en=0 ((H(/\))_dJTZ (((a7vi)* + 2b/vi) INH(N) + -r)ﬁ ) ;

Depth till which the budget of evaluation does not burn out:
H(A) £ max{H: Y, A(Z,) <A}
The reduced depth of the tree is the cost of multi-fidelity feedback.
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What's Next?

3. Performance Evaluation: Global & Hyperparameter Optimization
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Global Optimization

Benchmark Synthetic Functions
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Hyperparameter Optimization
SVM, Random Forest, and Neural Networks
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What's Next?

4. The Curtain Call: What's Here and What's Next?
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Summary of Contribution
What’s in the Paper?

1. Algorithmic: Extending the hierarchical tree search (HOO) framework
to for handling delayed, noisy, and multi-fidelity feedback.

2. Theoretical: Incrementally designing upper confidence intervals B
that can adapt to delay, noise, and multi-fidelity feedback.

3. Theoretical: Developing a unified analysis of regret of under
different feedback settings leading to tighter regret guarantees.

4. Experimental: Implementing variants of on global and
hyperparameter optimization benchmarks where empirically
outperforms existing black-box optimizers.
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Future Avenues
What’s Next?

1.

achieves tighter upper bound than the existing algorithms and
the bounds are comparable with the best known upper bounds
[CBGMM16] for finite-armed bandits with delays.
Derive lower bounds for continuum-armed bandits with delayed
feedback to understand the fundamental limitations due to delays
and tightness of our proposed bounds.

. In , we assume to know which delayed feedback corresponds to

which evaluation query.
Extend the framework to anonymously, aggregated delay framework.

solves the continuum-armed bandit problem with delayed,
noisy, and multi-fidelity feedback.
Extend the proposed techniques to solve Markov decision processes
with similar feedback.
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