Lecturer: Michael Kapralov
Scribes: Junxiong Wang, Michael Kapralov

$1 \Omega(n)$ communication lower bound for GAPHAM

So far, we have seen how to prove the memory lower bound for INDEX problem and reduce GAPHAM to F_{0}. However to obtain $\Omega\left(\frac{1}{\epsilon^{2}}\right)$ space lower bound for F_{0}, one missing part is to show the reduction from INDEX to GAPHAM, implying an $\Omega(n)$ lower bound for GAPHAM. The following proof is due to [2].

Recall the INDEX problem, Alice has a vector $u \in\{0,1\}^{n}$ and Bob is given a index $i \in[n]$. The goal is to computer u_{i} on Bob's side after receiving a single message m from Alice. For simplifying the proof, we modify Alice's vector to $u \in\{-1,+1\}^{n}$. Also $G A P H A M$ problem is defined as, given two vector $x, y \in\{-1,+1\}^{n}$, we want to distinguish whether $\Delta(x, y) \leq \frac{n}{2}-C \sqrt{n}$ or $\Delta(x, y) \geq \frac{n}{2}+C \sqrt{n}$, where $\Delta(x, y)$ is the hamming distance between x and y. Now we show how to derive a algorithm for Index problem given a protocol for GAPHAM problem. Our plan is described as fellows,
(1) Pick N i.i.d. vector $r^{1}, r^{2}, \ldots, r^{N}$ where for all $k \in[N], r^{k} \sim \operatorname{UNIF}\left(\{-1,+1\}^{n}\right)$
(2) For each $k=1 \ldots N$, let $x_{k}=\operatorname{sgn}\left(\left\langle u, r^{k}\right\rangle\right)$ and $y_{k}=\operatorname{sgn}\left(\left\langle e_{i}, r^{k}\right\rangle\right)$, where e_{i} is the standard 0-1 basis vector corresponding to Bob's input.
(3) Feed vector $x, y \in\{-1,+1\}^{N}$ into GAPHAM solver. Output $u_{i}=-1$ if the GAPHAM solver recognizes that $\Delta(x, y) \geq \frac{n}{2}+C \sqrt{n}$, otherwise output $u_{i}=+1$ if $\Delta(x, y) \leq \frac{n}{2}-C \sqrt{n}$

Note that,

$$
\Delta(x, y)=\left|\left\{k \in[n]: \operatorname{sgn}\left(\left\langle u, r^{k}\right\rangle\right) \neq \operatorname{sgn}\left(\left\langle e_{i}, r^{k}\right\rangle\right)\right\}\right|
$$

The sketch of this method is to produce a random bit for Alice and Bob without interaction and guarantee that if u_{j} is -1 , the bit will differ with probability at least $\frac{1}{2}+\frac{c}{\sqrt{n}}$ and if u_{j} is 1 , the bit will differ with probability at most $\frac{1}{2}-\frac{c}{\sqrt{n}}$. Then repeat this procedure N times (N will be specified latter) to make sure that hamming distance either at least $\frac{n}{2}+C \sqrt{n}$ or at most $\frac{n}{2}-C \sqrt{n}$ with high probability, which can be proved by Chernoff Bound. We formalize the proof,

Claim 1 If $r \sim \operatorname{UNIF}\left(\{-1,+1\}^{n}\right)$, then

$$
\operatorname{Pr}\left[\operatorname{sgn}(\langle u, r\rangle) \neq \operatorname{sgn}\left(\left\langle e_{i}, r\right\rangle\right)\right]= \begin{cases}\geq \frac{1}{2}+\frac{c}{\sqrt{n}}, & \text { if } u_{i}=-1 \\ \leq \frac{1}{2}-\frac{c}{\sqrt{n}}, & \text { if } u_{i}=1\end{cases}
$$

where c is a positive constant.
Proof Assume without loss of generality that n is odd. $\langle u, r\rangle=\sum_{j=1}^{n} u_{j} r_{j}=u_{i} r_{i}+\sum_{j \neq i}^{n} u_{j} r_{j}$. Denote $w=\sum_{j \neq i}^{n} u_{j} r_{j}$, there are two cases to consider when $u_{i}=-1$

- Case $1 w \neq 0$, then $|w| \geq 2$ for $|w|$ is even. Then we can obtain $\operatorname{sgn}(\langle u, r\rangle)=\operatorname{sgn}(w)$, which implies that $\operatorname{Pr}[\operatorname{sgn}(\langle u, r\rangle)=-1]=\operatorname{Pr}[\operatorname{sgn}(\langle u, r\rangle)=1]=\frac{1}{2}$. Thus $\operatorname{Pr}\left[\operatorname{sgn}(\langle u, r\rangle) \neq \operatorname{sgn}\left(\left\langle e_{i}, r\right\rangle\right)\right]=\frac{1}{2}$.
- Case $2 w=0$, then $\operatorname{sgn}(\langle u, r\rangle)=u_{i} r_{i}$. Thus $\operatorname{Pr}\left[\operatorname{sgn}(\langle u, r\rangle) \neq \operatorname{sgn}\left(\left\langle e_{i}, r\right\rangle\right)\right]=1$.

Note that w is the sum of $n-1$ even number uniformly distributed variables in $\{-1,+1\}$. By Stirling's formula, when n is large enough, for some constant $c^{\prime}>0, \operatorname{Pr}[w=0] \geq \frac{c^{\prime}}{\sqrt{n}}$ (Another proof is
that the distribution of w is coverage to a Gaussian distribution with variance \sqrt{n}, thus the pdf of this distribution between $-\sqrt{n}$ and \sqrt{n} is $\Omega(\sqrt{n}))$. Letting $c=\frac{c^{\prime}}{2}$, we can obtain the following result, when $u_{i}=-1, \operatorname{Pr}\left[\operatorname{sgn}(\langle u, r\rangle) \neq \operatorname{sgn}\left(\left\langle e_{i}, r\right\rangle\right)\right]=\operatorname{Pr}[w=0]+\frac{1}{2}(1-\operatorname{Pr}[w=0]) \geq \frac{1}{2}+\frac{c^{\prime}}{2 \sqrt{n}}=\frac{1}{2}+\frac{c}{\sqrt{n}}$.

To boost this probability, we pick N i.i.d vectors, and denote

$$
Z_{k}= \begin{cases}1, & \text { if } x_{k} \neq y_{k} \\ 0, & \text { if } x_{k}=y_{k}\end{cases}
$$

Then $\Delta(x, y)=\sum_{k=1}^{N} Z_{k}$ and $\mathbb{E}\left[Z_{k}\right] \geq \frac{1}{2}+\frac{c}{\sqrt{n}}$.
Claim 2 When $u_{i}=-1, \operatorname{Pr}\left[\sum_{k=1}^{N} Z_{k}<\frac{N}{2}+C \sqrt{N}\right]<0.1$
Proof By Chernoff's bound, we have

$$
\operatorname{Pr}\left[\sum_{k=1}^{N} Z_{k}<(1-\delta) \sum_{k=1}^{N} \mathbb{E}\left[Z_{k}\right]\right] \leq \exp \left(-N \mathbb{E}\left[Z_{k}\right] \delta^{2} / 3\right) \leq \exp \left(-N \delta^{2} / 6\right)
$$

where δ is chosen so that $(1-\delta) \sum_{k=1}^{N} \mathbb{E}\left[Z_{k}\right]=\frac{N}{2}+C \sqrt{N}$. We now lower bound δ. Since $\sum_{k=1}^{N} \mathbb{E}\left[Z_{k}\right] \geq$ $N /(1 / 2+c / \sqrt{n})$, we have

$$
\delta \geq 1-\frac{\frac{N}{2}+C \sqrt{N}}{N\left(\frac{1}{2}+\frac{c}{\sqrt{n}}\right)}=1-\frac{1+\frac{2 C}{\sqrt{n}}}{1+\frac{2 c}{\sqrt{n}}}=\frac{\frac{2 c}{\sqrt{n}}-\frac{2 C}{\sqrt{N}}}{1+\frac{2 c}{\sqrt{n}}} \geq \frac{\frac{2 c}{\sqrt{n}}-\frac{2 C}{\sqrt{N}}}{2}=\frac{c}{\sqrt{n}}-\frac{C}{\sqrt{N}}
$$

If we choose N so that $\frac{c}{\sqrt{n}} \geq \frac{3 C}{2 \sqrt{N}}$ (which can be achieved by choosing any $N \geq \frac{9 C^{2} n}{4 c^{2}}$) and also assume $C>100$ (this is without loss of generality, as $C>100$ corresponds to an easier GAPHAM problem), then $\delta \geq \frac{C}{2 \sqrt{N}} \geq \frac{50}{\sqrt{N}}$. Thus we can conclude that when $u_{i}=-1, \operatorname{Pr}\left[\sum_{k=1}^{N} Z_{k}<\frac{N}{2}+C \sqrt{N}\right] \leq \exp \left(-N \delta^{2} / 6\right) \leq$ $\exp \left(-\frac{50^{2}}{N} N / 6\right) \leq 0.1$ Similarly, we can also prove that when $u_{i}=+1, \operatorname{Pr}\left[\sum_{k=1}^{N} Z_{k}>\frac{N}{2}-C \sqrt{N}\right] \leq 0.1$

2 Lower bound for approximating maximum matchings in graph streams

We will prove
Theorem 3 Let $A L G$ be a single pass streaming algorithm that for some constant $\delta>0$ outputs a $(2 / 3+\delta)$-approximation to the maximum matching in an input graph $G=(V, E),|V|=n$ presented as a stream of edges and succeeds with some constant probability. Then ALG must use $n^{1+\Omega(1 / \log \log n)} \gg$ $n \log ^{O(1)} n$ bits of space.

We will use
Definition 4 A bipartite graph $G=(P, Q, E),|P|=|Q|=n$ is an (ϵ, k, n)-Ruzsa-Szemerédi graph if the edge set of G can be expressed as a union of k induced matchings of size ϵn, i.e. $E=\bigcup_{i=1}^{k} M_{i}$, where M_{i} is matching between subsets $A_{i} \subseteq P$ and $B_{i} \subseteq Q$ with $\left|A_{i}\right|=\left|B_{i}\right|=\epsilon n$, and the subgraph of G induced by $A_{i} \cup B_{i}$ is M_{i}.
and
Lemma 5 [1] For every $\delta \in(0,1)$ there exists an $\left(\frac{1}{2}-\delta, k, n\right)$-Ruzsa-Szemerédi graph $G=(P, Q, E), E=$ $\bigcup_{i=1}^{k} M_{i}$, with $k=n^{1+\Omega_{\delta}(1 / \log \log n)}$.

In what follows we prove the lower bound assuming Lemma 5 .

Construction of a hard instance. Let $G=(P, Q, E)$ be a $(1 / 2-\delta / 10)$-RS graph, where $\delta>0$ is the constant advantage over $2 / 3$ approximation that we would like to rule out. Let $M_{i}=\left(A_{i}, B_{i}, E_{i}\right)$ denote the matchings that form the edges of G. For each $i=1, \ldots, k$ let $X^{i} \in\{0,1\}^{M_{i}}$, and let $X=\bigcup_{i=1}^{k} X^{i}$. Let $X_{e}=1$ independently with probability $1-\delta / 10$ and 0 otherwise. Let G^{\prime} contain every edge $e \in E$ of G such that $X_{e}=1$, and let M_{i}^{\prime} denote the corresponding induced matchings. For every $i \in[k]$ let G_{i}^{\prime} denote the graph obtained from G_{i}^{\prime} by adding two new sets S and T together with a perfect matching from S to $P \backslash A_{i}$ and from T to $Q \backslash B_{i}$.

The following claim follows easily from Chernoff bounds:
Claim 6 The graph G_{i}^{\prime} contains a matching of size at least $(1-\delta / 5)(3 / 2) n$ for every $i \in[k], k \leq n$ with probability at least $1-e^{-\Omega_{\delta}(n)}$.

Denote the success event from Claim 6 by $\mathcal{E}_{\text {large-matching }}$. We also have
Claim 7 For every matching \widehat{M} in G_{i}^{\prime} one has

$$
|\widehat{M}| \leq\left|P \backslash A_{i}\right|+\left|Q \backslash B_{i}\right|+\left|\widehat{M} \cap M_{i}^{\prime}\right|
$$

Proof This follows by the max-flow/min-cut theorem after attaching a source s with a directed edge to every vertex in Q, and a sink t with a directed edge from every vertex in P, and directing all edges of G to go from Q to P. Indeed, consider the cut with $\{s\} \cup S \cup\left(P \backslash A_{i}\right) \cup B_{i}$ on one size and $\{t\} \cup T \cup\left(Q \backslash B_{i}\right) \cup A_{i}$ on the other side. There are $\left|P \backslash A_{i}\right|+\left|Q \backslash B_{i}\right|$ edges that cross the cut and are incident on either s or t (these are accounted for by the first two terms on the rhs), and the only edges of G that cross the cut are the edges that go from B_{i} to A_{i}. The latter set is exactly the set of edges of M_{i}^{\prime} by the induced property of matchings in Ruzsa-Szemerédi graphs, yielding the $\left|\widehat{M} \cap M_{i}^{\prime}\right|$ term.

We now proceed to prove Theorem 3. Let Π denote the state of the memory of a possibly randomized algorithm that on every input with probability at least $1 / 3$ outputs a matching \widehat{M} such that $\widehat{M} \subseteq E$ and $|\widehat{M}| \geq(2 / 3+\delta)\left|M_{O P T}\right|$, where $M_{O P T}$ is the maximum matching in the input graph.

By Claim 7 we have

$$
|\widehat{M}| \leq\left|P \backslash A_{i}\right|+\left|Q \backslash B_{i}\right|+\left|\widehat{M} \cap M_{i}^{\prime}\right| \leq\left(\frac{1}{2}+\delta / 10\right) 2 n+\left|\widehat{M} \cap M_{i}^{\prime}\right|
$$

Thus, since by Claim 6 the graph G_{i}^{\prime} contains a matching of size at least $(1-\delta / 5)(3 / 2) n$ with probability at least $9 / 10$ if n is large enough, it must be that

$$
(2 / 3+\delta)(1-\delta / 5)(3 / 2) n \leq\left(\frac{1}{2}+\delta / 10\right) 2 n+\left|\widehat{M} \cap M_{i}^{\prime}\right|
$$

This in particular implies that

$$
\begin{align*}
\left|\widehat{M} \cap M_{i}^{\prime}\right| & \geq(2 / 3+\delta)(1-\delta / 5)(3 / 2) n-\left(\frac{1}{2}+\delta / 10\right) 2 n \\
& \geq[(1+\delta)(1-\delta / 5)-(1+\delta / 10)] n \tag{1}\\
& \geq[(1+\delta-\delta / 5)-(1+\delta / 10)] n \\
& \geq(\delta / 2) n
\end{align*}
$$

Let E_{i} be a binary variable that equals 1 if the algorithm is not correct on the graph G_{i}^{\prime} or if the maximum matching size in G_{i}^{\prime} is below $(1-\delta / 5)(3 / 2) n$ and 0 otherwise. By Claim 6 and the assumption on correctness of ALG we have

$$
\begin{equation*}
\operatorname{Prob}\left[E_{i}=1\right] \leq 2 / 3+e^{-\Omega_{\delta}(n)} \leq 3 / 4 \tag{2}
\end{equation*}
$$

We have

$$
\begin{align*}
H(X \mid \Pi) & =\sum_{i=1}^{k} H\left(X_{i} \mid \Pi, X_{<i}\right) \\
& \leq \sum_{i=1}^{k} H\left(X_{i}, E_{i} \mid \Pi, X_{<i}\right) \\
& =\sum_{i=1}^{k} H\left(E_{i} \mid \Pi, X_{<i}\right)+H\left(X_{i} \mid \Pi, X_{<i}, E_{i}\right) \tag{3}\\
& =\sum_{i=1}^{k}\left(1+H\left(X_{i} \mid \Pi, X_{<i}, E_{i}\right)\right)
\end{align*}
$$

We now upper bound $H\left(X_{i} \mid \Pi, X_{<i}, E_{i}\right)$. Note that if $E_{i}=0$, then by (1) one has

$$
\begin{equation*}
\left|\widehat{M} \cap M_{i}^{\prime}\right| \geq(\delta / 2) n . \tag{4}
\end{equation*}
$$

For every $e \in M_{i}$ such that $e \in \widehat{M}$ we know that if $E_{i}=0$ (i.e. the algorithm is correct) then $X_{e}=1$ (the edge is present in the graph). We thus have

$$
\begin{aligned}
& H\left(X_{i} \mid \Pi, X_{<i}, E_{i}\right) \\
& =H\left(X_{i} \mid \Pi, X_{<i}, E_{i}=1\right) \operatorname{Prob}\left[E_{i}=1\right]+H\left(X_{i} \mid \Pi, X_{<i}, E_{i}=0\right) \operatorname{Prob}\left[E_{i}=0\right] \\
& =H\left(X^{i}\right) \operatorname{Prob}\left[E_{i}=1\right]+H\left(X^{i} \mid \Pi, X_{<i}, E_{i}=0\right) \operatorname{Prob}\left[E_{i}=0\right] \\
& \leq H\left(X^{i}\right) \operatorname{Prob}\left[E_{i}=1\right]+\sum_{e \in M_{i}} H\left(X_{e}^{i} \mid \Pi, X_{<i}, E_{i}=0\right) \operatorname{Prob}\left[E_{i}=0\right] \quad \text { (by subadditivity of entropy) } \\
& \left.\leq H\left(X^{i}\right) \operatorname{Prob}\left[E_{i}=1\right]+\sum_{e \in M_{i} \backslash \widehat{M}} H\left(X_{e}^{i} \mid \Pi, X_{<i}, E_{i}=0\right) \operatorname{Prob}\left[E_{i}=0\right] \quad \text { (since } X_{e}^{i}=1 \text { for all } e \in \widehat{M}\right) \\
& \leq H\left(X^{i}\right) \operatorname{Prob}\left[E_{i}=1\right]+\left(\left|M_{i}\right|-(\delta / 2) n\right) H\left(X_{e}^{i}\right) \operatorname{Prob}\left[E_{i}=0\right] \quad \text { (by (4) and since conditioning reduces entropy) } \\
& \leq H\left(X^{i}\right) \operatorname{Prob}\left[E_{i}=1\right]+(1-\Omega(1)) H\left(X^{i}\right) \operatorname{Prob}\left[E_{i}=0\right] \\
& \leq(1-\Omega(1)) H\left(X^{i}\right) \quad\left(\text { since } \operatorname{Prob}\left[E_{i}\right]\right. \text { is larger than a constant by (2)) }
\end{aligned}
$$

Putting this together with (5), we get

$$
\begin{align*}
H(X \mid \Pi) & \leq \sum_{i=1}^{k}\left(1+(1-\Omega(1)) H\left(X_{i}\right)\right) \\
& \leq \sum_{i=1}^{k}(1-\Omega(1)) H\left(X_{i}\right) \quad(\text { for sufficiently large } n) \tag{5}
\end{align*}
$$

Thus, we get that

$$
H(X \mid \Pi) \leq(1-\Omega(1)) H(X),
$$

implying that

$$
H(\Pi) \geq I(X ; \Pi)=H(X)-H(X \mid \Pi)=\Omega(1) H(X)
$$

and thus message length must be $n^{1+\Omega(1 / \log \log n)}$ bits for any constant $\delta>0$, as required.

References

[1] A. Goel, M. Kapralov, and S. Khanna. On the communication and streaming complexity of maximum bipartite matching. $S O D A, 2012$.
[2] Thathachar S Jayram, Ravi Kumar, and D Sivakumar. The one-way communication complexity of hamming distance. Theory of Computing, 4(1):129-135, 2008.

