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1 Q(n) communication lower bound for GAPHAM

So far, we have seen how to prove the memory lower bound for INDEX problem and reduce GAPHAM
to Fy. However to obtain Q(E%) space lower bound for Fj, one missing part is to show the reduction
from INDEX to GAPHAM, implying an Q(n) lower bound for GAPHAM. The following proof is due to
[2].

Recall the INDEX problem, Alice has a vector u € {0,1}" and Bob is given a index i € [n]. The
goal is to computer u; on Bob’s side after receiving a single message m from Alice. For simplifying the
proof, we modify Alice’s vector to u € {—1,+1}". Also GAPHAM problem is defined as, given two
vector x,y € {—1,+1}", we want to distinguish whether A(z,y) < § — Cy/n or A(z,y) > § + C/n,
where A(z,y) is the hamming distance between x and y. Now we show how to derive a algorithm for
Index problem given a protocol for GAPHAM problem. Our plan is described as fellows,

(1) Pick N i.i.d. vector r*,72 ... 7™ where for all k € [N], ¥ ~ UNIF({-1,+1}")

(2) For each k = 1...N, let 2 = sgn({u,r*)) and y; = sgn((e;,7*)), where ¢; is the standard 0-1
basis vector corresponding to Bob’s input.

(3) Feed vector z,y € {—1,+1}" into GAPHAM solver. Output u; = —1 if the GAPHAM solver
recognizes that A(z,y) > & + Cy/n, otherwise output u; = +1 if A(z,y) < § - Cyn

Note that,
Az, y) = [{k € [n] : sgu({u,*)) # sgn((ei, ™))}
The sketch of this method is to produce a random bit for Alice and Bob without interaction and
guarantee that if u; is -1, the bit will differ with probability at least % + ﬁ and if u; is 1, the bit will
differ with probability at most & — ﬁ Then repeat this procedure N times (N will be specified latter)

to make sure that hamming distance either at least § +C'/n or at most § — C'y/n with high probability,
which can be proved by Chernoff Bound. We formalize the proof,

Claim 1 Ifr ~ UNIF({—1,+1}"), then

>3+ fui=-1
Prisgn({u, 7)) # sgn((ei, )] = {< 1 Z:Z =1
=3 vn? v

where ¢ is a positive constant.

Proof Assume without loss of generality that n is odd. (u,r) = 2?21 u;T; = uiri—f—zyﬂ u;7;. Denote
w = Z?# u;T;, there are two cases to consider when u; = —1

e Case 1 w # 0, then |w| > 2 for |w| is even. Then we can obtain sgn({u,r)) = sgn(w), which implies
that Prsgn((u,r)) = —1] = Pr[sgn({u,r)) = 1] = % Thus Prsgn({u,r)) # sgn({e;,r))] = %

e Case 2 w = 0, then sgn((u, r)) = u;r;. Thus Pr[sgn({u,r)) # sgn({e;,7))] = 1.

Note that w is the sum of n — 1 even number uniformly distributed variables in {—1,+1}. By
Stirling’s formula, when n is large enough, for some constant ¢’ > 0, Pr[w = 0] > \j—% (Another proof is



that the distribution of w is coverage to a Gaussian distribution with variance y/n, thus the pdf of this
distribution between —y/n and v/n is Q(y/n)). Letting ¢ = &, we can obtain the followmg result, when
u; = —1, Prlsgn((u,r)) # sgn({e;, )] = Prlw = 0] + $(1 — Pr[w =0) >3+ |

zﬁ =3+ %
To boost this probability, we pick N i.i.d vectors, and denote
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Then A(x,y) = Eévzi Zy, and E[Z;] > § T
+

_|_
Claim 2 When u; = —1, Pr[Y_, Zk <¥+CcvN]<o1

Proof By Chernoft’s bound, we have
N N
P> Z < (1 - 6) 3 ElZ4]] < exp(— NE[Z,J6/3) < exp(—N3*/6),
k=1 k=1
where ¢ is chosen so that (1 — ) Zivzl E[Z] = ¥ + CVN. We now lower bound §. Since Zszl E[Z] >
N/(1/2+ ¢/+/n), we have
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If we choose IV so that ﬁ > 7 (which can be achieved by choosing any N > 9 ) and also assume

C' > 100 (this is without loss of generality, as C' > 100 corresponds to an easier GAPHAM problem), then

5> Q\CF > 39 Thus we can conclude that when u; = —1, PY[Zi\Ll Zi, < 5 +CVN] < exp(—N4§?/6) <

exp(— 51(\)[ N/6) < 0.1 Similarly, we can also prove that when u; = +1, Pr[zgzl Z, >4 -CcVNl<o01
]

2 Lower bound for approximating maximum matchings in graph
streams

We will prove

Theorem 3 Let ALG be a single pass streaming algorithm that for some constant § > 0 outputs a
(2/3 + 8)-approzimation to the mazimum matching in an input graph G = (V, E),|V| = n presented as
a stream of edges and succeeds with some constant probability. Then ALG must use n!+(1/loglogn) 5,
nlogo(l) n bits of space.

We will use
Definition 4 A bipartite graph G = (P,Q, E),|P| = |Q| = n is an (¢, k,n)-Ruzsa-Szemerédi graph if
the edge set of G can be expressed as a union of k induced matchings of size en, i.e. E = Ule M;,

where M; is matching between subsets A; C P and B; C Q with |A;| = |B;| = en, and the subgraph of G
induced by A; U B; is M.

and

Lemma 5 [1] For every § € (0,1) there exists an (3 —98, k, n)-Ruzsa-Szemerédi graph G = (P,Q, E),E =
Ui:l M“ with k = nl—&-Qa(l/loglogn).

In what follows we prove the lower bound assuming Lemma 5.



Construction of a hard instance. Let G = (P,Q, E) be a (1/2—4/10)-RS graph, where § > 0 is the
constant advantage over 2/3 approximation that we would like to rule out. Let M; = (A;, B;, E;) denote

the matchings that form the edges of G. For each i = 1,...,k let X € {0,1}Mi and let X = Ule Xt
Let X, = 1 independently with probability 1 — §/10 and 0 otherwise. Let G’ contain every edge e € E
of G such that X, =1, and let M/ denote the corresponding induced matchings. For every ¢ € [k] let G
denote the graph obtained from G} by adding two new sets S and T together with a perfect matching
from S to P\ A; and from T to Q \ B;.

The following claim follows easily from Chernoff bounds:

Claim 6 The graph G} contains a matching of size at least (1 —3§/5)(3/2)n for every i € [k], k < n with
probability at least 1 — e~ (")

Denote the success event from Claim 6 by £jarge—matching: We also have

Claim 7 For every matching M in G’ one has
M| < |P\ Al +1Q \ Bj| + M n M]|.

Proof This follows by the max-flow/min-cut theorem after attaching a source s with a directed edge to
every vertex in ), and a sink ¢ with a directed edge from every vertex in P, and directing all edges of G to
go from @ to P. Indeed, consider the cut with {s}USU(P\ A;)UB; on one size and {t}UTU(Q\ B;)UA;
on the other side. There are |P\ A;| + |Q \ B;| edges that cross the cut and are incident on either s
or ¢ (these are accounted for by the first two terms on the rhs), and the only edges of G that cross the
cut are the edges that go from B; to A;. The latter set is exactly the set of edges of M/ by the induced

property of matchings in Ruzsa-Szemerédi graphs, yielding the |Z\/4\ N M| term. W

We now proceed to prove Theorem 3. Let IT denote the state of the memory of a possibly randomized
algorithm that on every input with probability at least 1/3 outputs a matching M such that M C E

and \M\| > (2/3 +9)|Mopr|, where Mopr is the maximum matching in the input graph.
By Claim 7 we have

- - 1 _
1 P\ A +1Q\ Bl + (301 31] < (5 +6/10) 20+ | 0 0.

Thus, since by Claim 6 the graph G contains a matching of size at least (1 —4/5)(3/2)n with probability
at least 9/10 if n is large enough, it must be that

1 —
(2/346)(1—46/5)(3/2)n < (5 +6/10)2n + | M N M|
This in particular implies that

>(2/3+6)(1—46/5)(3/2)n — (1 +0/10)2n
>[(14+6)(1—-6/5)—(1+6/10)]n (1)
>[(1+d-96/5)—(1+d/10)]n

> (6/2)n.

Let E; be a binary variable that equals 1 if the algorithm is not correct on the graph G} or if the

maximum matching size in G} is below (1 —49/5)(3/2)n and 0 otherwise. By Claim 6 and the assumption
on correctness of ALG we have

|M N M|

Prob|E; = 1] <2/3 4 e %™ < 3/4. (2)



We have

k
H(X|[) = ZH(XHH,X«)
=1
k
<Y H(Xi, B X))

i=1

k
=Y H(EI X)) + H(X|IL Xoy, By)
1=1
k
=Y (1+ H(X|I, Xy, E;))

i=1
We now upper bound H (X;|II, X;, E;). Note that if E; = 0, then by (1) one has
|M M| > (5/2)n. (4)

For every e € M; such that e € M we know that if F; = 0 (i.e. the algorithm is correct) then X, = 1
(the edge is present in the graph). We thus have
H(XG|I, Xi, E)
= H(XZ‘|H7X<IL', E,L' = l)PI‘Ob[El = 1} + H(X7,|H, X<i7 Ez = O)PI‘Ob[EZ = O]
= H(X")Prob[E; = 1]+ H(X'|II, X;, E; = 0)Prob[E; = (]
< H(X")Prob[E; = 1] + Z H(X!|TI, X~;, E; = 0)Prob[E; = 0]  (by subadditivity of entropy)
ecM;
< H(X')Prob[E; =1]+ Y H(X!|[I,X.;, E; = 0)Prob[E; = 0] (since X} =1 for all e € M)
eEMi\M
YProb[E; = 1] + (|M;]| — (§/2)n)H(X!)Prob[E; = 0]  (by (4) and since conditioning reduces entropy)
(X")Prob[E; = 1] + (1 — Q(1))H(X")Prob[E; = 0]
(1-Q(1))H(X") (since Prob[F;] is larger than a constant by (2))

Putting this together with (5), we get

E
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<
Il
_
—
Ut
=

<Y (1-Q(1))H(X;) (for sufficiently large n)
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Thus, we get that
H(X|I) < (1 -0Q(1))H(X),

implying that
H(IT) > I(X;T0) = H(X) — HX|T) = Q(1)H(X),

and thus message length must be n!+?(1/1oglogn) hits for any constant § > 0, as required.
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