
CS-455 Topics in Theoretical Computer Science February 27, 2017

Lecture 2
Lecturer: Michael Kapralov Scribes: Aida Mousavifar and Junxiong Wang

1 Cont’d

In the last lecture, we introduce a stream algorithm to distinguish Yes case and No case in the distinct
elements problem. However, by the linearity of expectation, the expected size of sample set S is n

t .
To achieve an o(n) space algorithm, we modify the sample methods. We firstly introduce the limited
independence.

Definition 1 A family of hash functions H = {h : [n]! U} is a pair-wise independent if for every pair
of distinct elements x, y 2 [n] and every a, b 2 U , we have:

Prh2H [h(x) = a ^ h(y) = b] =
1

|U |2 .

An example of pair-wise hash family is {ax+ b mod p} where a, b, x 2 Zp and a, b are selected indepen-
dently uniformly at random and p is a prime number.

1.1 Sample

(1) Choose a parameter B = ⇥(t).

(2) Select a hash function h from a pair-wise independent family H.

(3) Let S = {i 2 [n], h(i) = 1}

1.2 Analysis

• No Case: k  t

Pr[
X

xi > 0]  Pr[supp(X) \ S 6= ;]

 Pri2supp(X)[i 2 S]

 k

B

 t

B

where the second inequality fellows from union bound.

• Yes Case: k � 2t

Pr[
X

xi > 0] 
X

Pr[i 2 S]�
X

i,j2supp(X),i 6=j

Pr[i 2 S ^ j 2 S]

=

k

B
�

X

i,j2supp(X),i 6=j

1

B2

=

k

B
� k(k � 1)

B

 2t

B
� (2t)2

B2

1

where the first inequality fellows from Inclusion-exclusion principle and the second inequality fellows
from the definition of pair-wise independent hash family.

By taking B = 16t, we can obtain the following inequality.

Pr[Y es]� Pr[No]  t

B
� 4t2

B2

 t

B
(1� 1

4

)

 3

4

t

B

Once we have ALGt that distinguish k < t and k � 2t, to solve the distinct elements problem, we can
run ALGt for t = 1, 2, 4, · · · , n. Thus overall algorithm is O(log n log

1
� log n) with the failure probability

at most � log n.

2 Distinct Elements Problem

In this lecture, we start by counting the number of distinct elements in a stream. Later on, we focus on
computing lp norm of the frequency vector of the input stream.

2.1 Flajolet-Martin algorithm

The Flajolet-Martin algorithm is an algorithm for approximating the number of distinct elements in a
stream with a single pass and space-consumption logarithmic in the maximal number of possible distinct
elements in the stream. The algorithm was introduced by Philippe Flajolet and G. Nigel Martin [4]. Later
it has been improved by Marianne Durand and Philippe Flajolet [2]. Flajolet et al. in [4] introduced
probabilistic method of counting which was inspired from a paper by Robert Morris Counting large
numbers of events in small registers. Morris in his paper says that if the requirement of accuracy is
dropped, a counter n can be replaced by a counter log n which can be stored in log log n bits [3]. Flajolet
et al. in [4] improved this method by using a hash function h which is assumed to uniformly distribute
the element in the hash space (a binary string of length L)

We present Flajolet-Martin algorithm, which uses O(log log n) space to solve the approximate count-
ing distinct elements problem. In the following algorithm, by [n] we denote {1, · · · , n}.

2.1.1 FM algorithm

(1) Pick a random hash function h: [n]! [0, 1].

(2) Maintain a counter X = mini2stream h(i).

(3) Output ˜t = 1
X � 1.

Let us first prove two claims regarding the expected value and the variance of X in above algorithm.

Claim 2 Let X1, · · · , Xt be t i.i.d random variables from the distribution UNIF[0, 1]. Also, let X =

min1it Xi, then

E[X] =

1

t+ 1

.

2

Proof

E[X] =

Z 1

0
Pr[X � �]d�

=

Z 1

0
Pr[min

1it
Xi � �]d�

=

Z 1

0

Y

1it

(Pr[Xi � �])d�

=

Z 1

0
(1� �)td�

=

Z 1

0
�td�

=

1

t+ 1

Claim 3 Let X1, · · · , Xt be t i.i.d random variables from the distribution UNIF[0, 1]. Also, let X =

min1it Xi, then

Var[X] = O(

1

t2
).

Proof Recall that, one can compute the variance of a random variable using the following formula:

Var[X] = E[X2
]� (E[X])

2.

Therefore, let us first compute E[X2
].

E[X2
] =

Z 1

0
Pr[X2 � �]d�

=

Z 1

0
Pr[X �

p
�]d�

=

Z 1

0
(1�

p
�)td�

= 2

Z 1

0
ut
(1� u)du

= 2(

1

t+ 1

� 1

t+ 2

)

=

2

(t+ 1)(t+ 2)

So

Var[X] = E[X2
]� (E[X])

2

=

2

(t+ 1)(t+ 2)

� 1

(t+ 1)

2

= O(

1

t2
).

3

Thus, by Chebyshev we get that the probability of failure of FM Algorithm is

Pr[|˜t� E[˜t]]| > ✏t] = Pr[|˜t� t]| > ✏t]  V ar[˜t]

t2✏2
= O(

1

✏2
)

So far, we have the right mean, but a bad variance. How do we fix that? One way to remedy this
problem is to run a number Q (to be determined later) of independent rounds of FM Algorithm, and
then output the average as an estimate. Given that the outputs are i.i.d random variables, the variance
goes down, but the mean doesn’t change. In light of this observation, we introduce FM+, a modified
version of FM.

2.2 FM+ algorithm

In this section we improve FM algorithm using the averaging method. FM+ algorithm provides an
(✏, �)-approximation by repeating FM Algorithm many times and then returning the average. We say
a (randomized) algorithm provides (✏, �)-approximation iff it outputs an estimate that is (1 ± ✏) multi-
plicative factor of the actual value with probability at least (1� �).

(1) For Q = O(

1
✏2), maintain Q copies of FM Algorithm. Let X1, X2 · · ·XQ be the output of the Q

copies.

(2) Let X =

1
Q

PQ
j=1 Xj .

(3) Output 1
X � 1.

By linearity of expectation, the expected value of FM+’s estimate is still t. However, the variance
becomes smaller. In particular, the variance of the estimate is now Var(X1)

Q . Note that the space re-
quired by FM+ becomes O(✏�2

log n). Thus, we now obtain an algorithm that requires O(log n) space
and returns (1 + ✏)-approximation with constant probability. In the following section, we focus on
improving the success probability of the FM+ algorithm.

2.3 FM++ algorithm

As we saw in the previous lectures, we can use median trick to improve the success probability of an
algorithm. Therefore, we also apply this trick to FM+ algorithm and get the FM++ algorithm. To this
end, create Q · R hash functions and split them into R distinct groups (each of size Q). Within each
group take the mean of the Q results. Finally use the median for aggregating together the R group
estimates as the final estimate.

(1) For Q = O(

1
✏2) and R = O(log

1
�), maintain Q·R copies of FM Algorithm. Let Xr,q 8r = 1, . . . R,

8q = 1, . . . Q be the output of the Q ·R copies.

(2) Let Xr
=

1
Q

PQ
q=1 X

r,q 8r = 1, . . . R

(3) Let X = medianr=1,...R{Xr}

(4) Output 1
X � 1

By applying Chernoff, it’s easy to show that by choosing R = O(log

1
�) we get a � (any constant

less than half would suffice) probability of failure. The space requirement of FM++ now becomes

4

O(log

1
�

1
✏2 log n). Flajolet et al. [3] further improve the space complexity of the above mentioned algo-

rithm to O(

1
✏2 log log n+ log n) by storing the position of the least significant bit.

In 2010 article "An optimal algorithm for the distinct elements problem",[1] Daniel M. Kane, Jelani
Nelson and David P. Woodruff give an improved algorithm, which computes a (1 ± ✏)- approximation
using an optimal O(

1
✏2 + log n) bits of space with 2

3 success probability.

3 Turnstile Model

Much of the streaming literature is concerned with computing statistics on frequency distributions that
are too large to be stored. For this class of problems, there is a vector x = (x1, . . . , xn) (initialized
to the zero vector) that has updates presented to it in a stream. The goal of these algorithms is to
compute functions of x using considerably less space than it would take to represent x precisely. There
is a common models for updating such streams, called "turnstile" model. In the turnstile model each
update is of the form (i,�i) , so that xi is incremented by some (possibly negative) integer �i. In the
"strict turnstile" model, no xi at any time may be less than zero. So far we know how to compute
f(x) = ||x||0 = |{i : xi 6= 0}|. How about ||x||p = (

P
i2[n] |xi|p)

1
p for p > 0?

There exist algorithms for approximating ||x||p with space complexity poly(log n) for p 2 [0, 2] and
space ⌦(n1� 2

p
) for p > 2. In this lecture, we present an algorithm for the case that p = 2. Note that

FM does not apply to strict turnstile model because we are not able to capture the proper minimum
after updates. A randomized algorithm seeks to approximate a function f(x) with constant probability
while only making a single pass over this sequence of updates and using a small amount of space. All
known algorithms in this model are linear sketches: they sample a matrix A from a distribution on
integer matrices in the preprocessing phase, and maintain the linear sketch b = A · x while processing
the stream. At the end of the stream, they output an arbitrary function of b = A · x. Li, Nguyen,
Woodruff [5] show that any single pass constant probability streaming algorithm for approximating an
arbitrary function f(x) in the turnstile model can also be implemented by sampling a matrix A from the
uniform distribution on O(n logm) integer matrices, with entries of magnitude poly(n), and maintaining
the linear sketch b = A · x. Any update in the stream such as (i,�i) is equivalent to b b+A · (�i · ei)
where ei is the i-th indicator vector.

4 Lower-bounds against deterministic algorithms

In this section, we first prove a lower-bound on the space complexity of any deterministic algorithm for
computing the lp norm. Later, we present a randomized algorithm for computing the l2 norm.

Claim 4 Any deterministic streaming algorithm that approximate ||x||k =

P
j x

k
j up to a (1±0.1)-factor

must use ⌦(n) space for every integer k 6= 1.

Proof For every large enough integer n divisible by 4, there exists a collection F of subsets of
{1, 2, . . . , n} of cardinality n

4 such that for any two distinct subsets such G1 6= G2 2 F , |G1 \ G2|  n
8

and |F | � 2

cn for any constant c.
Toward contradiction, assume that there is a deterministic algorithm ALG(G), which uses less than

cn bits for small constant c. Therefore, ALG(G) has less than 2

cn possible states. Thus, if one runs this
algorithm on all the sets in F , by the pigeonhole principle there exist G1 6= G2 2 F such that the state of
the algorithm ends up being the same, i.e., ALG(G1) = ALG(G2) = S. So if we concatenate G1 to end
of these two strings, the output of the algorithm would be the same, i.e., ALG(G1, G1) = ALG(G2, G1).
However, we show that the lk-norm(k 6= 1) in G1, G1 and G2, G1 are far from each other. Let x1 and x2

denote the frequency vector of G1, G1 and G2, G1, respectively. Now we consider the following cases:

5

• l0-norm:
||x1||0 =

n
4 , ||x2||0 � 2 · n

4 �
n
8

) ||x2||0 � n
4 +

n
8 > (1 + 0.1)n4 = (1 + 0.1)||x1||0

• lk-norm (k � 2):
||x1||k = 2

k · n
4

Let � = |G1 \G2|. We know that �  n
8

||x2||k = 2 · n
4 � 2�+� · 2k  2 · n

4 � 2

n
8 +

n
8 · 2k  (2

k
+ 2)

n
8

) (1 + 0.1)||x2||k  2

k · n
4 = ||x1||k

This contradicts the fact that ALG is a (1± 0.1)-approximation algorithm.

5 AMS Sketch

In this section we introduce a randomized algorithm for computing l2-norm for a frequency vector x. To
this end, let us first define k-wise independent hash function.

Definition 5 A family of hash functions H = {h : [n]! U} is a k-wise independent if for any k distinct
elements (x1, · · · , xk) 2 Uk and any numbers (u1, · · · , uk), we have:

Prh2H [h(x1) = u1 ^ · · · ^ h(xk) = uk] = (

1

|U |)
k.

(1) Pick a 4-wise independent hash function: h : [n]! {�1,+1}

(2) Let �i = h(i) so � 2 {�1, 1}n

(3) Maintain Z =< �, x >

(4) Output Z2

Let us first prove two claims regarding the expected value and the variance of Z2 in above algorithm.

Claim 6

E[Z2
] = ||x||22

Proof

E[Z2
] = E[(

X

i2[n]

�ixi)
2
]

= E[
X

i,j2[n]

�i�jxixj]

= E[
X

i2[n]

�2
i x

2
i] + E[

X

i 6=j2[n]

�i�jxixj]

= E[
X

i2[n]

x2
i] +

X

i 6=j2[n]

E[�i]E[�j]xixj

= ||x||22

6

Claim 7

Var[Z2
]  2||x||22

Proof Recall that, one can compute the variance of a random variable using the following formula:

Var[Z2
] = E[Z4

]� (E[Z2
])

2.

Therefore, let us first compute E[Z4
].

Z4
= (

X

i2[n]

�ixi)(

X

j2[n]

�jxj)(

X

k2[n]

�kxk)(

X

l2[n]

�lxl)

Let us consider several types of terms:

• all the indexes are equal i = j = k = l:P
i2[n] �

4
i x

4
i =

P
i2[n] x

4
i

• the indexes matched 2 by 2:�4
2

�P
i<j(�i�jxixj)

2
= 6

P
i<j x

2
ix

2
j

• terms with a single (unmatched) multiplier: in this case, since the value E[�i] = 0 for any 1  i  n,
then the coefficient of such terms are zero.

Therefore, E[Z4
] =

P
i2[n] x

4
i + 6

P
i<j x

2
ix

2
j . So the variance of Z2 is :

Var[Z2
] = E[Z4

]� (E[Z2
])

2

=

X

i2[n]

x4
i + 6

X

i<j

x2
ix

2
j � (

X

i

x2
i)

2

=

X

i

x4
i + 6

X

i<j

x2
ix

2
j �

X

i

x4
i � 2

X

i<j

x2
ix

2
j

= 4

X

i<j

x2
ix

2
j

 2(

X
x2
i)

2

= 2||x||42

We have E[Z2
] = ||x||22 and Var[Z2

]  2||x||42. Now we improve the precision of the estimate by
repeating the algorithm for a sufficient number of times (independently) and using the average as an
estimate.

(1) For t = O(

6
✏2), maintain t i.i.d copies of the above algorithm. Let Z1, Z2 · · ·Zt be the output of

the Z copies.

(2) Let ˜Z =

1
t

Pt
i=1 Zi.

(3) Output ˜Z2.

7

By linearity of expectation, we have E[˜Z] = ||x||22. However, the variance becomes smaller. In par-
ticular, the variance of the estimate is now Var(Zi)

t  2
t ||x||

4
2. By Chebyshev’s inequality we get

Pr[| ˜Z2 � ||x||22| > ✏||x||22] 
(

2
t) · ||x||

4
2

✏2||x||42

 2

t✏2

 1

3

References

[1] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: sparsification, spanners, and
subgraphs. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI symposium on Principles of
Database Systems, pages 5–14. ACM, 2012.

[2] Marianne Durand and Philippe Flajolet. Loglog counting of large cardinalities. In European Sympo-
sium on Algorithms, pages 605–617. Springer, 2003.

[3] Philippe Flajolet. Approximate counting: a detailed analysis. BIT Numerical Mathematics,
25(1):113–134, 1985.

[4] Philippe Flajolet and G Nigel Martin. Probabilistic counting algorithms for data base applications.
Journal of computer and system sciences, 31(2):182–209, 1985.

[5] Christian Konrad. Maximum matching in turnstile streams. In Algorithms-ESA 2015, pages 840–852.
Springer, 2015.

8

