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Caveats

• LLMs are remarkable, we should use them for most things

• This talk is not about LLMs







Context

• BERT used to require non-trivial compute

• Belief: Open architecture questions in NLP

• Today’s Talk: How important is attention?



ELMo

Bidirectional RNN

[Peters et al., 2018]



ELMo For Pretraining

Model GLUE

ELMo 67.7

ELMo+Attn 71.0

BERT-Base 79 - 83

[Peters et al., 2018, Devlin et al., 2018]
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Architecture?

• Several confounding differences, e.g. frozen model.

• Followup: To Tune or Not to Tune? Adapting Pretrained
Representations to Diverse Tasks [Peters et al., 2019]

• Conclusion: Transformers significantly beat BiLSTMs
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Other Models

Maybe there are other models

• Convolutions?

• Mixers?



Pretraining with CNNs

Are Pre-trained Convolutions Better than Pre-trained

Transformers? [Tay et al., 2020]

Answer: No.

Model SST-2

ELMo 91.8

Best CNN 92.2

BERT-Base 93.5



Pretraining with CNNs

Are Pre-trained Convolutions Better than Pre-trained

Transformers? [Tay et al., 2020]

Answer: No.

Model SST-2

ELMo 91.8

Best CNN 92.2

BERT-Base 93.5



Pretraining with FNet

FNet: Mixing Tokens with Fourier Transforms

[Lee-Thorp et al., 2021]

Replaces attention with 2D FFT mixing-layer.

Model GLUE (dev)

Best FNet 76.3
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• Highly optimized training

• Long-range ability

• Expensive O(n2), but we have the money...

(But aren’t you curious...)
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State Space Models (SSM)

• Think hybrid RNN / CNN

• SOTA on speech generation and long-range tasks

• Tutorial at The Annotated S4

[Gu et al., 2020, Gu et al., 2021b, Gu et al., 2021a]



State Space Model - Continuous Time

Let u(t) ∈ R be a continuous input and y(t) ∈ R be output.

SSM is a differential equation.

x′(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t).

Where x(t) ∈ RN is a hidden state and model parameters,

A ∈ RN×N ,B ∈ RN×1,C ∈ R1×N ,D ∈ R1×1
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Discrete Time Sequence

Goal: Map scalar sequence u1, . . . , uL to y1, . . . , yL,



Discrete Time SSM

SSM on discretize time data,

xk = Axk−1 +Buk

yk = Cxk +Duk.

Using discretization with (learned) sampling rate parameter∆,

A,B,C = discretize(A,B,C,∆)



Recurrent Form

Output sequence y1, . . . , yL can be computed as a linear RNN,

xk = Axk−1 +Buk

yk = Cxk +Duk.

Note xk ∈ RN is the bigger hidden state for uk ∈ R, and x0 = 0.



Convolutional Form
Alternative: 1D convolution with kernelK (width L),

K = (CB,CAB, . . . ,CA
L−1

B)

y = conv1d(KL . . . K1, u1 . . . uL)

Intuition:

y1 = CBu1

y2 = CABu1 +CBu2 = C(ABu1 +Bu2) = C(x1 +Bu2)
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Convolutional Form

Step 1: Discretize (Training Only). Step 2: Apply 1D Conv



Implementation - Computing Kernel

K = (CB,CAB, . . . ,CA
L−1

B)

• Simple approximations work well (See S4D, DSS)

[Gu et al., 2021a, Gupta, 2022, Gu et al., 2022]



Implementation - Fourier Transform

y = K ∗ u

• At long L, convolution computed with FFT.

• More efficient than self-attention or standard RNN.



Important Training Initialization
• ParameterA is initialized with HiPPO Matrix
[Gu et al., 2020]

• Kernel formed by Legendre coefficients



Summary: SSM

• Mapping from sequence-to-sequence

• Acts like an RNN, Computed like a CNN

• Fast to train and utilize



Outline

Context

State Space Models

Model Architectures

Experiments



Objective: Replicate BERTwith SSM

• Everything else identical (loss, number of parameters, data)



Naive Idea Self-attention⇒ SSM
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Can this work?

• SSM is significantly less expressive than self-attention.

• Static routing through the model like a CNN.

• Can it learn to do matching across sentences?
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Test: Matching Across Gaps

Task: QNLI [Wang et al., 2018]

What percentage of farmland grows wheat?

∼∼∼
More than 50% of this area is sown for wheat and 33% for barley.

Arch H P H ∼ P
stack / ssm 77.4 69.7
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Proposed Fix: Multiplicative Gating

Add dynamism to stacked model with multiplicative gating.

σ(Wu)⊗ (Vu)

Positive results with CNN, Transformer, and SSM models.

[Dauphin et al., 2017, Shazeer, 2020, Narang et al., 2021]



Proposed Architecture: BiGS
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Gating Adaptation

What percentage of farmland grows wheat?

∼∼∼
More than 50% of this area is sown for wheat and 33% for barley.

Arch H P H ∼ P
stack / ssm 77.4 69.7

gated / ssm 77.4 77.7
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Full Experiment: QNLI
Preview: Experimental results, pretraining for QNLI.



Related Result: Induction Heads (H3)

Synthetic induction head experiment from [Dao et al., 2022]

a b c d e⇒ f g h i . . . x y z⇒ f

Arch Induction

ssm 35.6

gating + ssm 100

attention 100



Induction Heads
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Experiment 1: BERT

• Models trained using “24 Hour” BERT [Izsak et al., 2021]
• All BERT-Large Size
• Training length (Short 11B, Medium 22B, Full >100B)
• 128 Length Sequences

• Codebase in JAX (from Annotated S4 [Rush, 2022]) using
S4D

• Training data and masking is identical



Short Training ∼11B Tokens

Model GLUE (Dev)

ELMo 68.7

BERT 83.3

Stacked-SSM 77.2

BiGS 83.3



Is it just Gating?

Model GLUE

BERT 83.3

Gated-BERT 81.8



BERT Large > 100B Tokens

Model GLUE (Test)

BERT-Large∗ 83.0

BiGS 83.0

∗Best reported BERT-Large Results.



Analysis: Masked PPL Transfer



Analysis: Kernel Visualization

• Each BiGS layer only has 2 kernels (forward / backward).

• Shows all routing in layer 2! (vs O(HT 2) attention coef.)



Analysis: All Kernels



Analysis: Change in Kernels during Finetuning

Task: MNLI



Analysis: Syntax

• Observation: SSM model seems to do better on
syntax-centric tasks

• Hypothesis: Locality of features encourages a stack-like
inductive bias.



Observation 1: COLA

Model COLA

BERT 60.5

BiGS 64.7

Statistically significant across runs.



Observation 2: Agreement Attractors
Task from [Linzen et al., 2016, Goldberg, 2019].

Yet the ratio of men who survive to the women and

children who survive [is] not clear in this story



Observation 3: Diagnostics
From [Marvin and Linzen, 2018, Goldberg, 2019]:

BiGS BERT LSTM

SUBJECT-VERB:

Simple 100.0 100.0 94.0

Sentential complement 85.1 85.6 99.0

Short VP coordination 91.0 86.5 90.0

Long VP coordination 97.5 97.5 61.0

Across prep phrase 88.6 84.8 57.0

Across subj relative clause 88.4 84.9 56.0

Across obj relative clause 89.9 85.1 50.0

Across obj relative (-that) 86.9 81.1 52.0

In obj relative clause 97.2 99.1 84.0

In obj relative (-that) 88.7 81.6 71.0

REFL ANAPHORA:

Simple 97.1 98.9 83.0

In a sentential complement 79.9 86.2 86.0

Across a relative clause 79.1 75.9 55.0



Experiment 2: Longformer

• Can we lengthen SSM L → L′ without approximation?

• Continued training based on Longformer protocol.

• Two experimental scales



SCROLLS

Length QALT CNLI

LED(162M) 1024 26.6/27.2 73.4

4096 26.6/27.3 71.5

16384 25.8/25.4 71.5

BART (140M) 256 26.0/25.8 69.8

512 26.8/27.4 71.6

BiGS (130M) 128 32.3/30.0 68.7

4096 32.8/31.7 71.4



FLOPs



Related Results: H3 - SSM For Language
Modeling

• Alternative gating method for language modeling

• Use 2 attention layers + SSM and reach Transformer PPL.

• Efficient implementation targeting on GPUs.

[Dao et al., 2022]



Next Steps

• Attention may not be required? Simpler routing + gating.

• More analysis on feed-forward contribution.

• Transfer from pretraining unclear.
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