
Using Deep Programmability to
Put Network Owners in Control

Nate Foster
Cornell University

jnfoster@cs.cornell.edu

Nick McKeown
Stanford University
nickm@stanford.edu

Jennifer Rexford
Princeton University
jrex@cs.princeton.edu

Guru Parulkar
Open Networking Foundation

Stanford University
guru@opennetworking.org

Larry Peterson
Open Networking Foundation

Princeton University
llp@opennetworking.org

Oguz Sunay
Open Networking Foundation
oguz@opennetworking.org

This article is an editorial note submitted to CCR. It has NOT been peer reviewed.
The authors take full responsibility for this article’s technical content. Comments can be posted through CCR Online.

ABSTRACT
Controlling an opaque system by reading some “dials” and setting
some “knobs,” without really knowing what they do, is a hazardous
and fruitless endeavor, particularly at scale. What we need are trans-
parent networks, that start at the top with a high-level intent and
map all the way down, through the control plane to the data plane.
If we can specify the behavior we want in software, then we can
check that the system behaves as we expect. This is impossible if the
implementation is opaque. We therefore need to use open-source
software or write it ourselves (or both), and have mechanisms for
checking actual behavior against the specified intent. With fine-
grain checking (e.g., every packet, every state variable), we can
build networks that are more reliable, secure, and performant. In
the limit, we can build networks that run autonomously under ver-
ifiable, closed-loop control. We believe this vision, while ambitious,
is finally within our reach, due to deep programmability across the
stack, both vertically (control and data plane) and horizontally (end
to end). It will emerge naturally in some networks, as network
owners take control of their software and engage in open-source
efforts; whereas in enterprise networks it may take longer. In 5G
access networks, there is a pressing need for our community to
engage, so these networks, too, can operate autonomously under
verifiable, closed-loop control.

CCS CONCEPTS
• Networks→ Network architectures; Network types;

KEYWORDS
Software Defined Networks (SDN), Programmable Networks, Net-
work Verification, Telemetry

1 INTRODUCTION
Over the last fifteen years we have witnessed an extraordinary
change in how networks are designed and built. This has taken place
in two main phases. In phase one, network owners took charge of
the software that controls their networks. In 2005, cloud providers
built their networks using closed, proprietary networking equip-
ment designed for enterprise and ISP networks. Today, the largest

cloud providers and data-center owners build their own network-
ing equipment based on merchant switching ASICs, a Linux-based
switch OS, and a homegrown management and control system.
While often referred to as disaggregation or Software-Defined Net-
working (SDN), this revolution has really been about who is in
charge. “Who gets to decide what functions, protocols, and features
are supported by a network: Is it the equipment vendors (e.g., router
manufacturers), the technology providers (e.g., chip and optics manu-
facturers), or those who own and operate networks?” [4].

In phase two, network owners started specifying how packets are
processed, by programming the forwarding behavior in switches,
middleboxes, smartNICs, and end-host stacks. This has been made
possible by P4-programmable switches (e.g., Tofino), NICs (e.g., Pen-
sando, Xilinx), and the ability to write efficient packet-processing
code in software (e.g., XDP, DPDK, VPP). The motivation, again,
is about who is in charge. The primary purpose of a network is
to forward packets from one place to another; if network owners
cannot control packet forwarding, they are not really in charge.

Together, these two pieces—control and data planes, with the
behavior of both prescribed by the network owner—recast the net-
work as a deeply programmable platform that can be controlled by
network owners to suit their needs. This view has several natural
consequences. First, network owners will be able to specify the de-
sired behavior at the “top,” and the specification will be partitioned
and compiled “down” to dictate how the network is controlled and
packets are processed. Second, if network owners can tailor the
network to suit their needs, they likely will. Rather than allowing
vendors to determine how their network should operate, network
operators will deploy novel designs that are more reliable, secure,
and performant, using specific insights based on the knowledge
they have gained by running large networks.

As a consequence, most large networks will work differently
from others. Behaviors that were formerly realized using standard
protocols—routing, congestion control, access control, virtualization—
will instead be thought of as custom programs, partitioned across
the platform by a compiler. Done right, interoperability will arise
top-down, from compiling the same programs to different network
elements, rather than being driven bottom-up via standardization.
In practice, standardization will likely trail software development.

ACM SIGCOMM Computer Communication Review Volume 50 Issue 4, October 2020



It will also mean that networking students, researchers, and practi-
tioners will need to learn how to program a network top-down, as
a distributed computing platform.

While perhaps a little controversial to some, we take everything
up to this point as our starting point. Indeed, we believe it is some-
what inevitable. The goal of this paper is to describe what we believe
is now possible, as a direct consequence of the emergence of deep
programmability for networks. This paper is also a call to arms to
our community to explore how networks should be programmed
and for what purpose. The time is ripe to help shape how networks
will be designed in the future and to create new frameworks and
methodologies to assist network owners, allowing them to decide
where to place each piece of functionality.

A particular opportunity enabled by deep programmability is the
ability to observe and verify each packet. We imagine that packets
will carry information about their provenance (the path they took,
the rules they followed, the delays they encountered, etc.) and
network state will be monitored, too (the contents of forwarding
tables, address translation, overlay tunnels, and topology). Packets
and state will be checked against the specified intent to answer
questions like: Did the packet take the correct path? Is it allowed to
be at this point in the network? Is the forwarding state consistent
with a set of invariant properties derived from the owner’s original
specification? And if packets, state, or code are found to be in error,
they can be automatically repaired and re-verified to ensure the
problem is resolved.

In the past, network owners controlled their networks however
they could—wherever they were allowed to read “dials” and set
“knobs.” However, with deep programmability “across the stack,”
they can place functionality where it belongs and verify that it is
implemented correctly. As a community, we have not been thinking
about these issues as a primary focus, but we should. We need to
think more deeply about which functionality belongs in the data
plane (e.g., for high speed, low overhead, and quick adaptation), or
in the distributed control-plane software (e.g., for greater flexibility
without the overhead and delay of going to a central controller),
or in a logically-centralized SDN controller (e.g., for network-wide
visibility and to run centralized algorithms) [24]. And we need to
design effective ways to synthesize the partitioning of functionality
and then verify that the whole system behaves as intended. We
believe that these goals, however ambitious, are now within our
reach. Done right, we believe the answers will eventually lead to
networks that are “programmed by many, operated by few.”

2 RELATIONSHIP TO RECENT TRENDS
The skeptical reader might ask how our position differs from the
past decade of research on logically-centralized SDN controllers [23,
26] or recent efforts in intent-based networking [31], self-driving
networks [10, 32], or in-network computing [30]. The key difference
is that deep programmability “across the stack” focuses not just
on a single component, but is instead a comprehensive approach
allowing network owners to put functionality where it belongs.

Software-Defined Networking (SDN): The push to SDN ar-
chitectures was an important step toward deep programmability—it
opened up control-plane APIs and allowed network owners to pro-
gram directly against them. But as radical as SDN may have seemed

at the time, it is ultimately only a part of the solution. Today’s SDN
applications are sometimes deployed on a centralized controller
not because a centralized design is necessarily the best choice, but
rather because that is where network owners are allowed to deploy
new functionality. For instance, backhauling measurements to a
central controller and computing new configurations to push indi-
vidual devices, limits the responsiveness of the control loop. But it
is too hard to realize better strategies when the underlying devices
are closed and inflexible.

Intent-based Networking: Another recent trend, intent-based
networking, advocates for specifying behavior in terms of high-level
network intents. We completely agree. However, this industry trend
assumes an opaque model in which network owners lack visibility
into the code that determines behavior. Under this regime, one must
somehow configure opaque boxes without a precise understanding
of what the configuration does, without a clear specification of
low-level behavior to check against, and without a means to fix
behaviors when they are found to be broken. While the idea of
having a top-down specification of intent is important, it seems un-
likely (to us) that large networks will be built using opaque models,
because they do not afford the required level of transparency and
control to the network owner.

Self-Driving Networks: Self-driving networks informed by
machine-learning analytics, have also been touted as a promising
future approach for building networks. ML is effective at making
inferences about data that is too complex or too unpredictable for
humans to enumerate. For example, self-driving cars use ML to pro-
cess complex sensor data to try and understand previously unseen
behaviors. But we cannot effectively use machine learning with-
out the right “dials” and “knobs” for observing and controlling the
network. Mogul observes that it would have been impossible to au-
tomate control of a 1965 Corvair, because the relationship between
the car’s controls and its behavior were opaque or ill-defined [27].
Self-driving cars became possible only when vehicles could be con-
trolled precisely in software. The manufacturer of a self-driving car
would not trust opaque software supplied by a vendor that could
only be controlled by configuring an intent. Nor should we.

In-network Computing: The past few years have seen the
emergence of commodity data planes that support programmable
packet processing at line rate. This has created great interest in
supporting a wide range of network functionality in the data plane,
from fine-grained network telemetry to support for distributed
services (e.g., key-value stores, load balancers, and consensus proto-
cols). Yet, just because we can implement sophisticated functionality
in the data plane does not mean that we should [25]. Often the data
plane lacks sufficient resources (i.e., processing or memory) to im-
plement a function well, and sometimes relocating functionality
from end hosts to the network introduces significant complexity
with only negligible performance gains. Clearly, programmable
data planes are important enablers, but the community is only just
starting to develop an understanding of what functionality belongs
there and what should remain in the control plane, or stay out of
the network entirely.

ACM SIGCOMM Computer Communication Review Volume 50 Issue 4, October 2020



TE Solution Network Programmable Component Architecture Objective(s) Timescale
Tuning IGP weights [9] WAN Protocol configuration Centralized Congestion Hours or days

TeXCP [15], OSPF-TE [17] WAN Switch OS agent Distributed Congestion, Failures, Stability Seconds
SWAN [12], B4 [14] WAN SDN controller Centralized Utilization, Latency Minutes

HULA [16], Contra [13] DC P4 data plane Distributed Congestion, Failures Milliseconds
Table 1: Representative historical traffic engineering approaches.

Fine-Grained Telemetry

Host OS

NIC

Closed-Loop 
Control

Run-Time 
Verification

Host OS

NIC

SDN Controller

Switch OS

P4 Data 
Plane

Switch OS

P4 Data 
Plane

Hi-Level 
Intent

Figure 1: Deep programmable network architecture. Thenet-
work owner specifies top-level behavior as a program that
is compiled to code for the controller, switch/host OSes, and
data planes. Telemetry data is collected and used for run-
time verification and closed-loop control. Note that verifi-
cation and closed-loop control may be implemented in the
controller (as shown) or in the switch OS or the data plane
(not shown).

3 FORM SHOULD FOLLOW FUNCTION
This section uses traffic engineering (TE) as a running example
to illustrate the challenges and opportunities that arise with deep
programmability at all layers of the network. We picked TE because
of the fundamental role it plays in many networks, and because
of the long history of developing TE solutions. Of course, deep
programmability and verifiable closed-loop control apply to many
other important applications as well (e.g., congestion control, denial-
of-service attack mitigation, diffusing microbursts, etc.).

3.1 Architecture
Figure 1 depicts the architecture of a deep programmable network
platform, with different “dials” and “knobs” at each level, and verifi-
able closed-loop control using fine-grained telemetry data collected
along end-to-end paths.

Data Plane: Programmable data planes, whether a programmable
switch or a SmartNIC, processes packets at line rate and can “turn on
a dime,” reacting to changes in local state and updating forwarding
behavior instantaneously. However, data planes can only maintain
a limited amount of state and perform simple computations on each
packet.

Switch &Host OSes: The switch OS is equipped with a general-
purpose CPU with sufficient processing power and memory re-
sources to implement sophisticated protocols (e.g., BGP, OSPF,
P4Runtime, etc.) and algorithms, and to aggregate measurement
data collected from the data plane. However, its view of network
state is fundamentally local, and the CPU resources tend to lag
behind high-end servers. The host networking stack has similar
capabilities (and limitations).

SDNcontroller: Finally, the SDN controllermaintains a network-
wide view of the current topology and operating conditions, and
runs sophisticated algorithms that would difficult to express as a
distributed computation. A centralized controller can also incorpo-
rate other data (such as properties of the physical layer) that are
not readily visible to the underlying switches. However, its ability
to update network behavior is limited by the speed at which it can
propagate updates to network devices—it could be anywhere from
less than a second to a few minutes, depending on the size and
complexity of the update.

Given the unique strengths and limitations of each layer, it is
natural to ask which functionality should run where. We explore
this question next, using TE as an example.

3.2 Example: Traffic Engineering
Traffic engineering—adapting routing to the prevailing traffic demands—
is a fundamental network function that has been studied extensively
over the years. Different approaches leverage programmability at
different layers, leading to different adaptation timescales and opti-
mization objectives, as summarized in Table 1. Centralized solutions
make it easier to incorporate sophisticated objectives and additional
data (e.g., shared-risk link groups at the physical layer) and ensure
stability, while distributed solutions enable much faster adaptation
to traffic shifts and device failures.

Protocol configuration: In traditional distributed routing pro-
tocols like OSPF and IS-IS, the switch OSes compute shortest paths
based on configurable link weights. Lacking the ability to change
the switch OS software, let alone the data-plane functionality, net-
work owners resorted to tuning the link weights to coerce the
switches into selecting the desired paths. The paths would be cho-
sen to robustly optimize for a given objective (e.g., minimizing the
maximum link utilization) given traffic demands and failure scenar-
ios extrapolated from historical data. The “control loop,” as it were,
operated on human timescales—hours or days—and was sometimes
implemented manually. In essence, the only “program” being run
was the centralized selection of the link weights themselves. The
weight-selection algorithms relied on abstract models of the control
plane would behave, with no ability to verify those behaviors. In
addition, expressing routing policy in terms of link weights is both
limiting (some combinations of paths cannot be expressed) and

ACM SIGCOMM Computer Communication Review Volume 50 Issue 4, October 2020



inefficient (optimizing link weights is NP-hard), even though the
techniques performed reasonably well in practice.

Distributed control plane: Distributed load-sensitive routing,
with the switch OSes exchanging dynamic link weights and adjust-
ing forwarding accordingly, were explored as early as theARPAnet [19].
While the early protocols worked well under low-to-moderate loads,
preventing oscillations proved much more difficult when network
load increased. After a long “dry spell,” load-sensitive routing saw
a resurgence, including traffic-engineering extensions to protocols
like OSPF and IS-IS [17] as a way to create tunnels that pin traffic on
paths with good performance. Newer research results [11, 15], draw-
ing on techniques from control and optimization theory, showed it
was possible to design distributed control planes with good conver-
gence properties. These solutions relied on customized multipath
protocols and telemetry techniques. Unfortunately, without the abil-
ity to change the “knobs” and “dials” in the control-plane software
on commercial switches, these ideas were never widely deployed.

Centralized SDN controller: Shortly after the first SDN plat-
forms emerged about a decade ago, cloud providers begin experi-
mentingwith SDN-based approaches to traffic engineering. Systems
such as SWAN [12] and B4 [14] exploited the network-wide visi-
bility and direct control over forwarding paths offered by the SDN
control plane to implement complex, multi-objective TE schemes.
For instance, B4 is designed to carry latency-sensitive customer-
facing traffic on short paths while utilizing the excess capacity on
other paths to carry lower-priority internal traffic and also quickly
reacting to failures. Unlike pre-SDN centralized approaches, these
systems operate under closed-loop control: they continuously mon-
itor the load and compute a set of forwarding paths that optimize
for the desired objective. Their main limitation is the high latency
of the control loop—because the controller is centralized, its view
of the network may be out of date. In addition, using SDN protocols
such as OpenFlow to update forwarding tables can require minutes
to propagate changes, which places a limit on the responsiveness.

Distributed data-plane approaches: Several recent systems
have proposed using fine-grained telemetry to enable pure data-
plane TE solutions [2, 13, 16]. The key idea is to record information
about the current network conditions on packets to inform forward-
ing decisions for other packets. For instance, each packet might
record the congestion it “saw” as it traversed the network [2] or
probes might “pick up” statistics kept locally on each switch, to
track of the performance of downstream paths in real time [13, 16].
Switches can then use this information to select the path(s) with the
best performance for forwarding data traffic. Different networks,
and different classes of traffic, may want to optimize different path
performance metrics (such as path length, propagation delay, and
link load), while also imposing constraints on which paths are
considered (such as a sequence of middleboxes to traverse) [13].
Compared to the other approaches just discussed, the “control loop”
in these data-plane approaches to TE is more responsive—there
is no need to wait for a central controller, or even the switch OS,
to intervene. However, there are trade-offs—e.g., unlike central-
ized approaches, simultaneously optimizing for multiple objectives
would be difficult. Also, running these distributed protocols on arbi-
trary topologies (as opposed to tree-like topologies in data centers)
requires protocol mechanisms to prevent forwarding loops [13].

Discussion:While research on TE has changed over time, one
trend is clear: as more andmore components of the network became
programmable, researchers were able to implement more sophis-
ticated solutions. We are not arguing that any of these solutions
are better than the others—there are genuine trade-offs, and we
expect that different considerations would take priority, depending
on the specific needs of the network owner. What’s important is
that the network platform offer the right “dials” and “knobs” so
network owners can take charge and implement the solution they
want. Also, we need a methodology for making principled choices
about which function should go where.

4 PROGRAMMING NETWORK INTENTS
Requiring programmers to write code for each component in a
deep programmable platform would be a tall order. We argue that
network owners should be able to specify their high-level intent
and let a compiler synthesize the distributed set of programs that
run in the data and control planes.

For example, the intent for a traffic-engineering application
might consist of path performance metrics (for ranking the paths)
and regular expressions on paths (to identify which paths are per-
mitted, and how their ranks are computed). A compiler would
then synthesize the control code and forwarding code software to
implement performance-aware routing that realizes the specified
policy [13]. As another example, consider the problem of mitigat-
ing denial-of-service attacks that rely on DNS amplification. The
network operator could specify a high-level query that identifies
DNS amplification attacks (e.g., flagging destination IP addresses
that receive DNS response packets from an unusually large number
of distinct sources), coupled with the appropriate action (e.g., drop
or rate limit) to take on the offending traffic. The compiler would
then synthesize the data-plane programs that collect, analyze, and
act on the traffic accordingly. Hence, the network software would
be generated in a “correct by construction” fashion. Moreover, the
compiler’s output could be validated using run-time techniques
(Section 5).

One challenge that arises when designing any distributed sys-
tem is reasoning about complex dynamics. A failed link can trigger
the BGP convergence process, packet loss triggers TCP conges-
tion control, and poor performance along the current path triggers
performance-aware routing schemes to shift traffic to another path.
We need to know that each control loops will behave well—i.e.,,
converge, or at least avoid significant disruptions or performance
degradation due to oscillations. Often, multiple interacting con-
trol loops need some sort of “timescale separation” to prevent bad
behavior, or some sort of damping to avoid overreacting to new
information. We believe that determining how to verify these prop-
erties of network control loops, or how to synthesize control loops
with known safety or stability properties, is an exciting avenue for
future work. For example, the body of work on “optimization decom-
position” [5] shows how to decompose a variety of network-wide
optimization problems into distributed algorithms that solve these
problems—with provable convergence and correctness properties.
With deep programmability, these optimization-based techniques
now have a plausible path to deployment.

ACM SIGCOMM Computer Communication Review Volume 50 Issue 4, October 2020



5 VERIFIABLE NETWORKS
Having deep programmability “across the stack” also creates an
exciting opportunity for network owners to verify that the network
works as intended. By verifiability, we mean the ability to check that
every packet in the network follows a specified path and provides
the expected performance.

The community has already made important progress on net-
work verification, including static verification of forwarding rules [18,
20] and analysis of existing distributed protocols [3, 8]. Yet, this
early work has been limited in several important ways. One issue
is that they usually work with models—e.g., control-plane snap-
shots of the intended forwarding rules, or abstract models of legacy
protocols—that elide important information about the state of the
switches or the operation of the protocols. Discrepancies can arise
between the model and the actual behavior, especially when failures
occur or when the network is being reconfigured.

Deep programmability enables observing “ground-truth” behav-
ior at the packet level, which can be used to build direct solutions to
many verification problems. In particular, by collecting fine-grained
telemetry data for every packet, the network owner can answer
questions that, while easy to ask, have traditionally been difficult
to answer.

How did this packet get here? Imagine we pick a packet out
of the network and ask how it got here. In other words, we want
to know the set of switches and middleboxes the packet visited
along its path. The goal is to answer the question for this very
packet, not using a traceroute or ping probe, or an inference
drawn from a dump of the forwarding configuration, but rather
based on ground-truth observations of the path itself. If the packet
carries a list of switch IDs (e.g., using In-band Network Telemetry
(INT) [21]), we can check to see if the path is correct. In fact, we
can check for correctness at several different levels in the hierarchy
of control abstractions. At the top, we can check the packet’s path
against the control plane’s topology map for the network (which
might have caused an otherwise correct routing protocol to pick the
wrong path, in which case the corrective action might be to fix the
topology map state, or identify a bug in the code that identifies the
topology). We can also check the path against the forwarding state
in one or more switches: The topology might be correct, but the
routing protocol may have written the wrong forwarding entry. Or
perhaps the state was initially correct, but has since been corrupted
by errant or malicious software or failed hardware.

Why did the packet get here? While path information tells
us a lot, we can carry the example a step further. Imagine that we
also ask why the packet got here. The packet could carry with it
the sequence of forwarding rules that it followed at each switch
along the path. For example, it might tell us that at the first switch
it matched on a rule, which identified the second switch to go to
next. Armed with this list of rules, our analysis and verification
tools can identify which rules caused the packet to arrive here.
This can help pinpoint the cause of the error in the control-plane
software, the routing protocol, an access control policy, or in the
switch forwarding table. We can also ask what execution path the
packet took through the data-plane program at each switch in its
path [22]. If the answer violates our expectations, the program (or
compiler!) may have a bug that needs to be fixed.

How long was the packet queued at each hop? The oppor-
tunities become even more interesting if we consider performance
measures, too. Imagine we can ask our packet how long it was
queued at each hop in its journey. If we can observe the delay at
each hop, we can automatically and immediately determinewhether
or not the network is meeting service level objectives (SLOs). Fur-
thermore, with similar information about other packets traversing
some of the same links and the same time, the network can identify
where most of the delay takes place and (more importantly) why.
It might point to a microburst, which would now be identified in
place and time. Or it might point to a shortcoming in the traffic
engineering or congestion control algorithms. It might even point
to a denial-of-service attack that is overloading some of the links.
Whatever the reason for the degradation, the control loop can take
an appropriate corrective action.

What is the performance of this path? In addition to mea-
suring the performance experienced by each packet, the network
can track the performance of paths through the network. This is
possible by aggregating performance statistics across packets that
traverse the same path. Alternatively, the network can combine
link-level statistics (such as link utilization and queue depth) from
the data plane across multiple links, to compute statistics (such as
the maximum utilization or total queuing delay across all links in a
path) even for paths that do not (yet) carry any traffic [16]. These
data-plane measurements enable the network to verify that the
paths offer the expected performance, or to identify alternate paths
that would offer better performance.

Fortunately, once the network knows a correctness or perfor-
mance property is violated, it is often relatively easy to decide what
to do about it—such as reporting, marking, dropping, rate limiting,
or rerouting some portion of the traffic. This makes it straightfor-
ward for the network to enforce high-level policy goals by using
telemetry results to trigger simple actions—often directly in the
data plane to react quickly and minimize overhead. Packets that
generate errors can be reported (to enable further diagnosis) and
dropped (to prevent security violations). If a queue has a backlog,
arriving packets can be probabilistically marked or dropped in pro-
portion to the size of their flow. Or if a path has poor performance,
the switch can divert a portion of the traffic to less-loaded paths.

6 END-TO-END PROGRAMMABILITY
Deep programmability—and the opportunity to build networks that
run autonomously under verifiable, closed-loop control—is opening
up, with data-center fabrics and the backbones interconnecting
those data centers at the vanguard. But the biggest opportunity,
both in terms of technical challenges and societal impact, is the
access network. This is a particularly critical moment in time for
the mobile cellular network, with the early stage transition to 5G
opening the door to deep programmability being truly end-to-end.

Historically one of the most opaque networks imaginable, the
cellular network is being re-designed according to SDN principles
with the emergence of 5G [6, 7]. The new architecture embraces
disaggregation, with the packet and signal-processing pipeline em-
bedded in the base stations of the Radio Access Network (RAN) split
into multiple, distributed subsystems, each controlled from an edge

ACM SIGCOMM Computer Communication Review Volume 50 Issue 4, October 2020



cloud-hosted control plane. This centralized controller, often re-
ferred to as the Near Real-Time RAN Intelligent Controller (RIC),
hosts a set of control applications that make global (RAN-wide)
decisions, as opposed to local (per base station) decisions. This
includes handover control, link aggregation control, radio interfer-
ence management, and load balancing. Even some aspects of the
user plane responsible for forwarding packets between the Radio
Units and the Internet are being prototyped as P4 programs running
in programmable switches.

This opportunity for deep programmability is coupled with a
networking paradigm that fundamentally depends on the fidelity
of telemetry data. Real-time decisions about how to schedule trans-
missions in a way that makes the most efficient use of the available
spectrum is based on frequent (≤ 1ms) Channel Quality Indicators
sent from user devices to base stations. Also influencing these de-
cisions are information on the respective loads on the virtualized
components of the disaggregated RAN, as well as the throughput
and latency information on the links that interconnect them. This
fine-grain information is aggregated and feeds into RAN-wide con-
trol decisions about when it is better to serve a user device from
the current base station versus a neighboring base station, versus
multiple base stations simultaneously. Near-real-time control deci-
sions take the interference of the shared radio spectrum and the
need to support device mobility into account. Still higher-level con-
trol loops then make telemetry-informed decisions about how to
allocate spectrum resources to meet delay and throughput require-
ments, from low-power IoT devices to enhanced mobile broadband
with multi-gigabit peak rates to mission-critical applications requir-
ing predictable latencies.

If the control loops that steer the mobile cellular network were
not challenging enough in their own right, 5G has laid out an
ambitious roadmap for the next decade, including support for (i) a
massive Internet of Things, including devices with ultra-low energy
(10+ years of battery life), ultra-low complexity (10s of bits-per-
sec), and ultra-high density (1 million nodes per square km); (ii)
mission-critical control, including ultra-low latency (as low as 1 ms),
ultra-high predictability (hitting the latency target 99.999% of the
time), and extreme mobility (up to 100 km/h); and (iii) enhanced
mobile broadband, with extreme capacity (10 Tbps per square km)
and data rates (multi-Gbps peak, 100+ Mbps sustained).

The stakes could not be higher: 5G will be an integral part of
our cyber-physical world. Disaggregation opens the door to deep
programmability, but using that opportunity to bring verifiable
closed-loop control to access networks is on us.

7 PRONTO EXEMPLAR
The paper lays out an ambitious agenda, but one we believe is now
within reach. To this end, we are building a full-featured network,
called Pronto, under verifiable closed-loop control. Our goal is for
Pronto to be an exemplar for others to replicate and improve upon.

The Pronto network consists of a 5G-enabled edge cloud con-
structed from the software components and programmable for-
warding elements shown in Figure 2:

• P4-programmable switches based on the Protocol Indepen-
dent Switch Architecture; e.g., Barefoot Tofino.

• P4-programmable NICs; e.g., Xilinx smartNICs.

• P4-programmable vSwitch in the end host, directing packets
to the correct VM/container.

• An open source SDN stack that includes a thin switch OS
(Stratum), an SDN Controller (ONOS), and a suite of control
applications that implement a leaf-spine fabric (Trellis) [28].

• A disaggregated and software-defined, 3GPP-compliant RAN
(SD-RAN) and Mobile Core (SD-Core) [29].

• A runtime control portal and lifecyclemanagement toolchain
that operationalizes the network (not shown in Figure).

The open-source software that controls Pronto is called Aether
and is being deployed and operated by the Open Network Founda-
tion [1].

Pronto adds the measurement, code generation, and verifica-
tion elements needed for verifiable closed-loop control to this pro-
grammable foundation. Fine-grained measurements are recorded
using INT, allowing for packets to be stamped by the forwarding
elements to indicate the path it took, the queuing delay it experi-
enced, and the rules it matched. These measurements are then fed
back into the verification and code generation tools.

We package the combination of software and hardware shown in
Figure 2 as an edge cloud pod, called theAether Compute Edge (ACE),
which we then replicate in enterprises around the world. Aether
includes a cloud-hosted management platform (not shown) that
supports ACE as a managed service, providing the lifecycle man-
agement and runtime control needed to make Pronto operationally
complete. An Aether management portal also gives enterprises the
ability to deploy innovative edge services on their ACE pod, taking
advantage of the local 5G connectivity.

8 CONCLUSION
We believe it is inevitable that networks will become deeply pro-
grammable, from top to bottom and end to end, opening up a new
era in network design. While some network owners will be tenta-
tive, designing networks that replicate the behavior of the opaque
systems of the past, others will be bolder, taking the opportunity to
re-design their networks to transparently implement the behavior
they really want, with all the visibility (dials) and controls (knobs)
they need, where they need them. As they construct their networks
as a single coherent, distributed system, they will also build-in ver-
ification at multiple levels of abstraction, meaning networks will
be worthy of the trust society increasingly places in them.

As a community, we could contribute to this change in a piece-
meal fashion, to help it along from the sidelines. But we believe
there is a much bigger opportunity—in fact, a pressing need—for
the research community to develop new methodologies for sys-
tem design, considering the network as one large, programmable
distributed system. In these early days, there is ample opportu-
nity to shape how future networks are designed. A community
effort to define new abstractions and new frameworks, to assist
network owners in their work, will lead to a vibrant ecosystem
in which we can all share the code that implements the necessary
and non-differentiating infrastructure, while leaving room for net-
work owners to differentiate by introducing their own innovative
ideas. This opportunity exists for all networks, from ISPs to cloud
providers and from homeWiFi to the enterprise. But the need is par-
ticularly urgent (and technically challenging) for emerging access

ACM SIGCOMM Computer Communication Review Volume 50 Issue 4, October 2020



Figure 2: Pronto: An exemplar network built using commercially available programmable hardware, open-source software,
and new measurement, code generation, and verification elements needed for verifiable closed-loop control.

networks, particularly 5G, to ensure they can be designed using a
top-down, transparent methodology, and operated as a verifiable,
closed-loop system.

ACKNOWLEDGMENTS
We would like to thank the many ideas contributed by the entire
Pronto team at Cornell, Princeton, Stanford and ONF. This material
is based upon work supported by the Defense Advanced Research
Projects Agency (DARPA) under Contract No. HR001120C0107.

REFERENCES
[1] Aether: Managed 5G-Enabled Edge Cloud for Enterprises, April 2020. https:

//www.opennetworking.org/aether/.
[2] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu, A. Fingerhut,

V. T. Lam, F. Matus, R. Pan, N. Yadav, and G. Varghese. CONGA: Distributed
congestion-aware load balancing for datacenters. In ACM SIGCOMM, 2014.

[3] R. Beckett, A. Gupta, R. Mahajan, and D. Walker. A general approach to network
configuration analysis. In ACM SIGCOMM, August 2017.

[4] M. Casado, N. McKeown, and S. Shenker. From Ethane to SDN and beyond. ACM
SIGCOMM Computer Communications Review, 49(5):92–95, Nov. 2019.

[5] M. Chiang, S. Low, R. Calderbank, and J. Doyle. Layering as optimization decom-
position: A mathematical theory of network protocols. Proceedings of the IEEE,
95(1), January 2007.

[6] I. Chih-Lin and S. Katti. O-RAN: Towards an Open and Smart RAN, October
2018. https://www.o-ran.org/s/O-RAN-WP-FInal-181017.pdf.

[7] T. Czichy. 5G RAN optimization using the O-RAN software community’s RIC
(RAN Intelligent Controller). In Open Networking Summit, Europe, Septem-
ber 2019. Slides available at https://wiki.o-ran-sc.org/pages/viewpage.action?
pageId=10715420&preview=/10715420/10715422/Near_RT_RIC_for_ONS.pdf.

[8] A. Fogel, S. Fund, L. Pedrosa, M. Walraed-Sullivan, R. Govindan, R. Mahajan, and
T. Millstein. A general approach to network configuration analysis. In USENIX
Networked Systems Design and Implementation, May 2015.

[9] B. Fortz, J. Rexford, andM. Thorup. Traffic engineering with traditional IP routing
protocols. IEEE Communications Magazine, 40(10):118–124, 2002.

[10] Y. Geng, S. Liu, F. Wang, Z. Yin, B. Prabhakar, and M. Rosenblum. Self-
programming networks: Architecture and algorithms. In Annual Allerton Confer-
ence on Communication, Control, and Computing, 2017.

[11] J. He, M. Suchara, M. Bresler, J. Rexford, and M. Chiang. Rethinking internet
traffic management: From multiple decompositions to a practical protocol. In
ACM SIGCOMM CoNext Conference, December 2007.

[12] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and R. Watten-
hofer. Achieving high utilization with software-driven WAN. In ACM SIGCOMM,
page 15–26, 2013.

[13] K.-F. Hsu, R. Beckett, A. Chen, J. Rexford, P. Tammana, and D. Walker. Contra:
A programmable system for performance-aware routing. In USENIX Networked
Systems Design and Implementation, February 2020.

[14] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wan-
derer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat. B4: Experience
with a globally-deployed software defined WAN. In ACM SIGCOMM, page 3–14.

[15] S. Kandula, D. Katabi, B. Davie, and A. Charny. Walking the tightrope: Responsive
yet stable traffic engineering. In ACM SIGCOMM, Philadelphia, PA, August 2005.

[16] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford. HULA: Scalable load
balancing using programmable data planes. In ACM SIGCOMM Symposium on
SDN Research, 2016.

[17] D. Katz, K. Kompella, and D. Yeung. Traffic engineering (TE) extensions to OSPF
version 2, September 2003. RFC 3630.

[18] P. Kazemian, G. Varghese, and N. McKeown. Header space analysis: Static
checking for networks. In USENIX Networked Systems Design and Implementation,
San Jose, CA, May 2012.

[19] A. Khanna and J. Zinky. The revised ARPANET routingmetric. InACMSIGCOMM,
pages 45–56, September 1989.

[20] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey. VeriFlow: Verifying
network-wide invariants in real time. InUSENIX Conference on Networked Systems
Design and Implementation, Apr. 2013.

[21] C. Kim, P. Bhide, E. Doe, H. Holbrook, A. Ghanwani, D. Daly, M. Hira, and
B. Davie. In-band Network Telemetry (INT), June 2016. https://p4.org/assets/
INT-current-spec.pdf.

[22] S. Kodeswaran, M. T. Arashloo, P. Tammana, and J. Rexford. Tracking P4 program
execution in the data plane. In ACM SIGCOMM Symposium on SDN Research,
March 2020.

[23] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ra-
manathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker. Onix: A distributed
control platform for large-scale production networks. In USENIX Conference on
Operating Systems Design and Implementation, page 351–364, 2010.

[24] N. Matni, A. Tang, and J. C. Doyle. A case study in network architecture tradeoffs.
In ACM SIGCOMM Symposium on SDN Research, 2015.

[25] J. McCauley, A. Panda, A. Krishnamurthy, and S. Shenker. Thoughts on load
distribution and the role of programmable switches. ACM SIGCOMM Computer
Communication Review, 49(1), January 2019.

[26] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner. OpenFlow: Enabling innovation in campus networks.
ACM SIGCOMM Computer Communication Review, 38(2):69–74, 2008.

[27] J. Mogul. Unsafe at any speed: Self-driving networks without self-crashing
networks. In ACM SIGCOMMWorkshop on Self-Driving Networks.

[28] L. Peterson, C. Cascone, B. O’Connor, and T. Vachuska. Software-Defined Networks:
A Systems Approach. 2020. https://sdn.systemsapproach.org.

[29] L. Peterson and O. Sunay. 5G Mobile Networks: A Systems Approach. 2020.
https://5g.systemsapproach.org.

[30] A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and P. Kalnis. In-network compu-
tation is a dumb idea whose time has come. In ACM Workshop on Hot Topics in
Networks, page 150–156, 2017.

[31] Y. Tsuzaki and Y. Okabe. Reactive configuration updating for intent-based net-
working. In International Conference on Information Networking (ICOIN), pages
97–102, 2017.

[32] M. Wang, Y. Cui, X. Wang, S. Xiao, and J. Jiang. Machine learning for networking:
Workflow, advances and opportunities. IEEE Network, 32(2):92–99, 2018.

ACM SIGCOMM Computer Communication Review Volume 50 Issue 4, October 2020

https://www.opennetworking.org/aether/
https://www.opennetworking.org/aether/
https://www.o-ran.org/s/O-RAN-WP-FInal-181017.pdf
https://wiki.o-ran-sc.org/pages/viewpage.action?pageId=10715420&preview=/10715420/10715422/Near_RT_RIC_for_ONS.pdf
https://wiki.o-ran-sc.org/pages/viewpage.action?pageId=10715420&preview=/10715420/10715422/Near_RT_RIC_for_ONS.pdf
https://p4.org/assets/INT-current-spec.pdf
https://p4.org/assets/INT-current-spec.pdf
https://sdn.systemsapproach.org
https://5g.systemsapproach.org

	Abstract
	1 Introduction
	2 Relationship to Recent Trends
	3 Form Should Follow Function
	3.1 Architecture
	3.2 Example: Traffic Engineering

	4 Programming Network Intents
	5 Verifiable Networks
	6 End-to-End Programmability
	7 Pronto Exemplar
	8 Conclusion
	Acknowledgments
	References

