
269

Formal Abstractions for Packet Scheduling

ANSHUMAN MOHAN, Cornell University, USA
YUNHE LIU, Cornell University, USA
NATE FOSTER, Cornell University, USA
TOBIAS KAPPÉ, Open University, the Netherlands and ILLC, University of Amsterdam, the Netherlands

DEXTER KOZEN, Cornell University, USA

Early programming models for software-de�ned networking (SDN) focused on basic features for controlling
network-wide forwarding paths, butmore recent work has considered richer features, such as packet scheduling
and queueing, that a�ect performance. In particular, PIFO trees, proposed by Sivaraman et al., o�er a �exible
and e�cient primitive for programmable packet scheduling. Prior work has shown that PIFO trees can express
a wide range of practical algorithms including strict priority, weighted fair queueing, and hierarchical schemes.
However, the semantic properties of PIFO trees are not well understood.

This paper studies PIFO trees from a programming language perspective. We formalize the syntax and
semantics of PIFO trees in an operational model that decouples the scheduling policy running on a tree from
the topology of the tree. Building on this formalization, we develop compilation algorithms that allow the
behavior of a PIFO tree written against one topology to be realized using a tree with a di�erent topology. Such
a compiler could be used to optimize an implementation of PIFO trees, or realize a logical PIFO tree on a target
with a �xed topology baked into the hardware. To support experimentation, we develop a software simulator
for PIFO trees, and we present case studies illustrating its behavior on standard and custom algorithms.

CCS Concepts: • Theory of computation → Semantics and reasoning; • Networks → Network properties.

Additional Key Words and Phrases: packet scheduling, formal semantics, programmable scheduling

ACM Reference Format:

Anshuman Mohan, Yunhe Liu, Nate Foster, Tobias Kappé, and Dexter Kozen. 2023. Formal Abstractions
for Packet Scheduling. Proc. ACM Program. Lang. 7, OOPSLA2, Article 269 (October 2023), 25 pages. https:
//doi.org/10.1145/3622845

1 INTRODUCTION

Over the past decade, programmable networks have gone from a dream to reality [Foster et al. 2020].
But why do network owners want to program the network? Although there has been some buzz
around trendy topics like self-driving networks [Liu et al. 2020] and in-network computing [Dang
et al. 2015; Jin et al. 2018, 2017], network owners often have less �ashy priorities: they simply want
to build networks that provide reliable service under uncertain operating conditions. Doing this
well in practice requires not just �ne-grained control over routing, but also prioritizing certain
packets over others—i.e., controlling packet scheduling—using algorithms that operate at line rate.

Today, most routers support just a few scheduling algorithms—e.g., strict priority, weighted fair
queueing, etc.—that are baked into the hardware. An administrator can select from these algorithms

Authors’ addresses: Anshuman Mohan, amohan@cs.cornell.edu, Cornell University, USA; Yunhe Liu, yunheliu@cs.cornell.
edu, Cornell University, USA; Nate Foster, jnfoster@cs.cornell.edu, Cornell University, USA; Tobias Kappé, t.kappe@uva.nl,
Open University, the Netherlands and ILLC, University of Amsterdam, the Netherlands; Dexter Kozen, kozen@cs.cornell.edu,
Cornell University, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).
2475-1421/2023/10-ART269
https://doi.org/10.1145/3622845

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 269. Publication date: October 2023.

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

https://creativecommons.org/licenses/by-nd/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0002-6803-9767
HTTPS://ORCID.ORG/0000-0003-4677-8902
HTTPS://ORCID.ORG/0000-0002-6557-684X
HTTPS://ORCID.ORG/0000-0002-6068-880X
HTTPS://ORCID.ORG/0000-0002-8007-4725
https://doi.org/10.1145/3622845
https://doi.org/10.1145/3622845
https://orcid.org/0000-0002-6803-9767
https://orcid.org/0000-0003-4677-8902
https://orcid.org/0000-0002-6557-684X
https://orcid.org/0000-0002-6068-880X
https://orcid.org/0000-0002-8007-4725
https://doi.org/10.1145/3622845

269:2 Anshuman Mohan, Yunhe Liu, Nate Foster, Tobias Kappé, and Dexter Kozen

and con�gure their parameters to some extent, but they typically cannot implement entirely new
algorithms. To get around this, Sivaraman et al. [2016b] proposed a new model for programmable

packet schedulers based on a novel data structure called a PIFO tree.1 This relatively simple data
structure can be instantiated to not only realize a wide range of well-studied packet scheduling
algorithms, but also compose them hierarchically. It seems likely that PIFO trees will be supported
on network devices in the near future—indeed, the original paper on PIFO trees presented a detailed
hardware design and demonstrated its feasibility, and researchers have also started to explore how
the PIFO abstraction can be emulated on �xed hardware [Alcoz et al. 2020; Vass et al. 2022].
Informally, a PIFO tree associates a PIFO with each of its nodes. The leaf PIFOs hold bu�ered

packets and the internal PIFOs hold scheduling data. To insert a packet into a PIFO tree, we �rst
determine the leaf where the packet should be bu�ered, and then walk down the tree from the
root to that leaf. At each internal node along this path, we insert into the node’s PIFO a downward
reference to the next node. At the leaf node we insert the packet itself, and this completes the
insertion. The subtlety comes from choosing the ranks with which downward references and
packets are inserted into PIFOs; these ranks are determined by a program called a scheduling

transaction. Conversely, releasing a packet employs a simple, �xed algorithm: pop the root’s PIFO
to get an index to its most favorably ranked child, and recurse on that child until arriving at a leaf.
Popping the leaf gives us the tree’s most favorably ranked packet, which is then emitted.
Despite their operational simplicity, relatively little is known about how the topology of PIFO

trees a�ects the expressivity of their scheduling algorithms. We are also not aware of any work that
studies how to translate scheduling algorithms written for a tree with one topology onto another
tree with a di�erent topology. From a theoretical perspective, this question is interesting because it
o�ers insights into the expressiveness of PIFO trees. From a practical perspective, it is important
because it allows chip designers to focus on developing high-speed implementations with �xed
topologies, freeing up hardware resources for implementing the scheduling logic.

In this paper we develop the �rst formal account of PIFO trees, using tools and techniques from
the �eld of programming languages to model their semantics. We then embark on a comprehensive
study of PIFO trees, examining how expressiveness is a�ected by variations in topology. This leads
to our main result: an algorithm that can compile a scheduling policy written against one PIFO tree
onto another PIFO tree of a di�erent topology. We furthermore develop a reference implementation
of our algorithm, as well as a simulator that we use to validate the algorithm. Finally, we compare
the behavior of the simulator against scheduling algorithms running on a state-of-the-art switch.
More concretely, this paper makes the following contributions:

• We present the �rst formal syntax and semantics for PIFO trees, emphasizing the separation
of concerns between the topology of a tree and the scheduling algorithm running on it.

• We study the semantics of PIFO trees in terms of the permutations they produce, and use this
as a tool to formally distinguish the expressiveness of PIFO trees based on their topologies.

• We propose a fast algorithm that compiles a PIFO tree into a regular-branching PIFO tree,
and a slower algorithm that compiles a PIFO tree into an arbitrary-branching PIFO tree. Our
algorithms are accompanied by formal proofs characterizing when compilation is possible.

• We provide an implementation of the �rst algorithm, as well as a simulator for PIFO trees. We
use this simulator to validate that our compiler preserves PIFO tree behavior, and compare
PIFO trees against scheduling algorithms implemented on a hardware switch.

Overall, this work takes a �rst step toward higher-level abstractions for specifying scheduling
algorithms by developing compilation tools, and suggests directions for future work on scheduling,
in the networking domain and beyond.

1A PIFO is just a priority queue (push-in-�rst-out) that is additionally de�ned to break ties in �rst-in-�rst-out (FIFO) order.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 269. Publication date: October 2023.

Formal Abstractions for Packet Scheduling 269:3

2 OVERVIEW

We start by discussing what is perhaps the most obvious way to implement software-de�ned
scheduling: a programmable priority queue. In this model, incoming packets are ranked using a
(user-de�ned) scheduling transaction, and a packet is enqueued according to its rank. In general, the
scheduling transaction may read and write state. To dequeue a packet, we simply remove the most
favorably ranked packet (i.e., the one with the with lowest rank or, equivalently, highest priority).

Although such an approach is simple and relatively easy to implement, it is unable to express a
basic feature of many packet scheduling algorithms: the ability to reorder bu�ered packets after
they are enqueued. To address this shortcoming, we introduce PIFO trees [Sivaraman et al. 2016b],
which extend the simple programmable queue model and support such reordering.

2.1 Programmable Priority �eues

Suppose you are responsible for programming a switch where incoming packets can be divided
into two �ows, coming to you from data centers in Rochester and Bu�alo respectively. The �ows
are to be given equal priority up to the availability of packets. This last caveat is important: if one
�ow becomes inactive and the other stays active, then the active �ow is given free rein to use the
excess bandwidth until the other �ow starts up again, at which point it again receives its fair share.
Fortunately, the queue in your network device is programmable: it allows you to specify a

scheduling transaction, which assigns an integer rank to each packet and may also update some
internal state. The packet is then inserted into a priority queue, or PIFO, which orders the packets by
rank. Whenever the link becomes available, a di�erent component in the network device removes
the most favorably ranked packet from the queue and transmits it.
The scenario where we aim for an equal split between R and B tra�c can be implemented by

assigning ranks to incoming packets such that the contents of the queue interleave these �ows
whenever possible, and by maintaining some state. Speci�cally, our aim will be to maintain a queue
that has one of the following three forms at any given time. Note that, in keeping with network
queueing tradition, the most favorably ranked item in the queue is on the right, which we call the
head of the queue. These queues are read from right to left, in the order they will be dequeued.

B=, . . . ,B1, (R,B)
∗ R=, . . . ,R1, (R,B)

∗ (R,B)∗

Here, we write (R,B)∗ to stand in for a balanced (possibly zero) number of interleaved R and B
packets interleaved in either order, such as R,B,R,B or B,R,B,R,B,R.

Let us see how these three cases accept a new R or B packet. We just have a PIFO, so our power
is limited: all we can do is assign the incoming packet a rank and then push the packet into the
PIFO at that rank. The packet is inserted among the previously bu�ered packets without a�ecting
the relative order of those packets. We distinguish based on the three possible shapes of the queue:

• To enqueue a B into B=, . . . ,B1, (R,B)∗, give it any rank that puts it within the list of
unbalanced Bs. Making it B=+1 puts it on the far left and preserves arrival order within the B
�ow. To enqueue an R, put it just before or just after B1 (depending on whether the item at
the head of the queue is R or B). This extends the initial (balanced) part of the queue.

• To enqueue a B or an R into R=, . . . ,R1, (R,B)∗, act symmetrically to the previous case.
• To enqueue a B or an R into (R,B)∗, assign it a rank that puts it on the very left. This creates
a queue of either the �rst or the second kind.

2.2 Achieving Balance within Flows

The solution proposed for sharing bandwidth between R and B works well thus far, but now a
complication arises. As it turns out, tra�c from Rochester can be further divided by destination:

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 269. Publication date: October 2023.

269:4 Anshuman Mohan, Yunhe Liu, Nate Foster, Tobias Kappé, and Dexter Kozen

2, 2, 1, 2, 1

P2, P1 B3,B2,B1

1 2

2, 1, 2, 1, 2, 1

P2, T1, P1 B3,B2,B1

1 2push(T1)
−−−−−−−−→

Fig. 1. A PIFO tree allows bu�ered packets to be reordered.

some packets are bound for Toronto and some for Pittsburgh. Tra�c to these sites also needs to be
balanced equally in a 1:1 split, but within the share of tra�c allocated to R packets. That is, every
two packets released should contain one R and one B, and every two R packets released should
contain one T and one P. Again, this is up to the availability of packets.

We now highlight a particular case that may arise when trying to program a scheduling transac-
tion that adheres to these constraints, and show that the desired split cannot be achieved using our
single programmable queue. Suppose T is initially silent, while P and B are active. In this case, our
scheduler should balance P and B evenly: in the absence of T tra�c, P tra�c gets to take up the
entire share allocated to R tra�c. Under this policy, the queue might take the following form:

B3,B2, P2,B1, P1

So far, so good: opportunities for transmission are divided evenly between P and B, up to availability
of packets. But now a Toronto-bound packet T1 arrives, and our scheduling transaction needs to
insert it somewhere in this queue. With an eye to the 1:1 split within the R �ow, T1 can go either
before or after P1 but it really does need to go before P2—after all, if this is not the case, then
opportunities for R tra�c are not being split evenly between T and P. This leaves us with three
possible choices for inserting T1, which would result in one of the following queues:

B3,B2, P2, T1,B1, P1 B3,B2, P2,B1, T1, P1 B3,B2, P2,B1, P1, T1

However, all of these choices violate the 1:1 contract between R and B—recall that both T and P
packets are still R packets, so the options above all propose to send two Rs in a row while an
unbalanced B languishes in the back. Queues that do satisfy the balance requirements include

B3, P2,B2, T1,B1, P1 B3, P2,B2, P1,B1, T1

but note that these require the reordering of previously bu�ered packets relative to each other.
Since our programmable queue model allows us to assign a rank only to the incoming packet, it is
impossible to achieve the desired behavior using a single PIFO. Moreover, it was not obvious at the
onset that the algorithm would require the reordering of previously bu�ered packets.

2.3 Introducing PIFO Trees

Sivaraman et al. [2016b] propose a remarkably elegant solution to the problem discussed above:
instead of a single PIFO, use a tree of PIFOs. The leaves of this tree correspond to �ows, and each
leaf carries, in its PIFO, packets ranked according to rules local to the �ow. Meanwhile, the internal
nodes of the tree contain PIFOs that prioritize the opportunities for transmission between classes of

tra�c, without referring to a particular packet within those classes. This model provides a layer
of indirection, which lets us eke out more expressiveness from the simple PIFO primitive while
maintaining the �exibility of being able to program the relative priorities of each �ow and sub�ow.
To illustrate how a PIFO tree operates, we now show how this model can be used to tackle

the problem posed by the R/B/T/P tra�c scenario discussed prior. The PIFO tree that we will use
is depicted in Figure 1 on the left. Every node in this tree carries a PIFO, which we render, as
before, with the most favorably ranked item on the right. An internal node carries transmission

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 269. Publication date: October 2023.

Formal Abstractions for Packet Scheduling 269:5

opportunities for its children (here, indexed 1 and 2), while leaf nodes carry packets in their PIFOs.
The tree on the left holds our original �ve packets, before the arrival of T1. We maintain the left
leaf as the R leaf and the right leaf as the B leaf; we show this with colored borders.

Dequeueing the tree on the left triggers two steps. First, we dequeue an element from the PIFO in
the root; in this case we obtain 1, a reference to the left child. Second, we look at the left leaf, where
dequeueing the PIFO returns the packet P1. We emit this packet. In general, the pop operation
recurses into a tree until it reaches a leaf, following the path guided by the references popped
from the internal nodes. Repeating pop until the tree on the left is empty would yield the sequence
B3,B2, P2,B1, P1, meaning that the tree on the left matches the setup of our problematic example.
Now T1 arrives. To push T1 into the tree, we perform two steps:

(1) Since T1 belongs to the R �ow, we insert it into the PIFO of the left leaf. We must assign T1
a rank; as noted before, T1 needs to be ranked more favorably than P2, but either position
relative to P1 is allowed. We place T1 after P1 in an attempt to stay closer to arrival order.

(2) We enqueue a 1 index (shown in orange because it was enqueued on account of a T packet)
into the root node. We get to pick 1’s rank before inserting it into the root PIFO; we choose a
rank that maintains 1:1 harmony between the 1s and 2s.

The resulting tree is on the right in Figure 1. Note how repeatedly popping elements from this tree
gives the desired ordering B3, P2,B2, T1,B1, P1. Critically, when the 1 at the root is popped, it causes
the release of P2 and not T1. This is because the index 1 refers to an opportunity for the left child to
propose a packet, not to any individual packet enqueued there. Indeed, the packet T1 has already
been released by the time 1 is dequeued. The release of T1 was triggered by an older 1 index.

As before, we just used PIFOs—at enqueue, each item was assigned a rank and inserted without
a�ecting the relative order of the older items in the PIFO—but the on-the-�y target switching that
we have just seen, in which an index enqueued on account of one packet may eventually lead to the
release of a di�erent packet, is elegant and powerful. This is how PIFO trees facilitate the relative
reordering of bu�ered packets despite the limitations of their relatively simplistic primitives.

2.4 Implementations and Expressiveness

A practical implementation of PIFO trees needs to operate at line rate—state-of-the-art devices
achieve tens of terabits per second, which corresponds to 10 billion operations per second [Intel
2022]. Sivaraman et al. [2016b] proposed a hardware implementation, which overlays the PIFO tree
on a mesh of interconnected hardware PIFOs, and a subset of this mesh is used to pass packets
and metadata between parents and children on each operation. This is a very �exible approach,
capable of accommodating more or less2 any PIFO tree whose number of internal nodes and leaves
does not exceed the number of hardware PIFOs. However, a fully connected mesh comes at a cost:
it essentially requires the hardware to be con�gurable in terms of the connections that are used,
which induces overhead in terms of performance, chip surface, cost, and complexity.

One could imagine a re�nement of this hardware model, where the topology of the tree is �xed.
This raises the question: how much would a �xed topology of PIFO trees limit packet scheduling? In
this motivating section we have shown that a single PIFO (i.e., a PIFO tree consisting of just one
leaf) is less expressive than a two-level PIFO tree, but it is not immediately clear how this distinction
generalizes. Conversely, is it possible for one PIFO tree to express the behavior of another, even if

their topologies di�er? A constructive proof of such a correspondence would yield a compilation
procedure, which could then be exploited to implement a user-designed PIFO tree on �xed hardware.

2The number of di�erent scheduling policies to control each internal node is also limited; refer to op. cit. for further details.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 269. Publication date: October 2023.

269:6 Anshuman Mohan, Yunhe Liu, Nate Foster, Tobias Kappé, and Dexter Kozen

2.5 Technical Contributions

Our aim is to undertake a comprehensive study of PIFO trees as a semantic model for programmable
packet queues. Our technical contributions, and the remainder of this paper, are organized as follows.

§3. We provide a rigorous model of the PIFO tree data structure, including its contents, operations,
and well-formedness conditions.

§4. Using this model, we formally prove that PIFO trees with = leaves are less expressive than
PIFO trees with< leaves when = < <. By extension, this means that if one looks at the class
of PIFO trees of degree : , taller PIFO trees are strictly more expressive.

§5. We develop the notion of (homomorphic) embedding as a tool for showing that the scheduling
behavior of one PIFO tree can be replicated by another.

§6. We propose two procedures to compute embeddings between PIFO trees, if they exist. These
algorithms map a packet scheduling architect’s scheduling policy, written against whatever
tree the architect �nds intuitive, onto the �xed PIFO tree actually implemented in hardware.

§7. We implement a simulator for PIFO tree behavior, as well as the algorithm from §6. We use
this simulator to compare PIFO trees against their embeddings, as well as against standard
algorithms implemented on a state-of-the-art programmable hardware switch.

3 STRUCTURE AND SEMANTICS

We now give a more formal de�nition of the syntax and semantics of PIFO trees. Let’s �x some
notation. When is a set and = ∈ N, we write = for the set of =-element lists over . We denote
such lists in the plural (e.g., :B ∈ =), write |:B | for the list length =, read the 8-th element (for
1 ≤ 8 ≤ =) with :B [8], and write :B [:/8] for the list :B with the 8-th element replaced by : ∈ .

3.1 Structure

Since the topologies of PIFO trees are important for our results, we isolate them into a separate
type, which we will momentarily use as a parameter. Conceptually, these are very straightforward:
a tree topology is just a �nite tree that does not hold any data.

De�nition 3.1. The set of (tree) topologies, denoted Topo, is the smallest set satisfying the rules:

∗ ∈ Topo

= ∈ N CB ∈ Topo=

Node(CB) ∈ Topo

Here, ∗ is the topology of a single-node tree. Given a list CB of = topologies, Node(CB) is the topology
of a node with CB as its children; the topology of the 8-th child of Node(CB) is given by CB [8].

Example 3.2. The topology of the PIFO tree from Figure 1 is given by Node(CB), where CB is a
two-element list of topologies, with both entries equal to ∗.

As mentioned, PIFO trees are trees where each node holds a PIFO. A leaf node uses its PIFO to
hold packets, while an internal node carries (1) a list of its children, and (2) a PIFO that holds valid
references to those children. We can now formally de�ne the set of PIFO trees of a given topology.

De�nition 3.3. We �x an opaque set Pkt of packets, and a totally ordered set Rk of ranks. For any
set (, we also presuppose a set PIFO(() of PIFOs holding values from (and ordered by Rk.

The set of PIFO trees of a topology C ∈ Topo, denoted PIFOTree(C), is de�ned inductively by

? ∈ PIFO(Pkt)

Leaf (?) ∈ PIFOTree(∗)

= ∈ N CB ∈ Topo= ? ∈ PIFO({1, . . . , =})
∀1 ≤ 8 ≤ =. @B [8] ∈ PIFOTree(CB [8])

Internal(@B, ?) ∈ PIFOTree(Node(CB))

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 269. Publication date: October 2023.

Formal Abstractions for Packet Scheduling 269:7

Here, Leaf (?) is a PIFO tree consisting of just one leaf holding the packet-PIFO ? , and Internal(@B, ?)
is a PIFO tree whose root node holds ? , an index-PIFO, as well as @B , a list of PIFO tree children.

3.2 Semantics

We can now de�ne the partial function pop, which takes a PIFO tree and outputs a packet and an
updated PIFO tree. We assume that PIFOs themselves support a partial function pop : PIFO(() ⇀

(× PIFO((), which returns the most favorably ranked element of the PIFO and an updated PIFO.

De�nition 3.4. For all topologies C ∈ Topo, de�ne pop : PIFOTree(C) ⇀ Pkt × PIFOTree(C) by

pop(?) = (pkt, ?′)

pop(Leaf (?)) = (pkt, Leaf (?′))

pop(?) = (8, ?′) pop(@B [8]) = (pkt, @′)

pop(Internal(@B, ?)) = (pkt, Internal(@B [@′/8], ?′))

In rules of this form, here and hereafter, the types of the variables are inferred from context. For
example, ? is a packet-PIFO in the rule on the left but an index-PIFO in the rule on the right.

When run on a leaf, pop simply applies pop to its PIFO, returning the released packet and the
updated node. When pop is run on an internal node, it applies pop to its PIFO; the returned value is
an index 8 pointing to a child node, on which pop is called recursively. The packet returned by the
8-th child is also the present node’s answer, along with a PIFO tree re�ecting the e�ects of popping.

It is worth pointing out that pop is not a total function: it may be the case that pop(@) is unde�ned,
most obviously when when @ is a leaf or internal node with an empty PIFO (hence the call to pop

is unde�ned). This can also cascade up the tree, e.g., when an internal node’s PIFO points to its 8-th
child, but the recursive pop call fails there. We expand on how to prevent this in Section 3.3.

To de�ne the operation push, which inserts a packet into a PIFO tree, we will diverge slightly
from Sivaraman et al. [2016b]. There, a PIFO tree chooses a leaf to enqueue the packet; the algorithm
then walks from this leaf to the root and enqueues a downward reference at each node, where the
rank of each enqueue is computed by a scheduling transaction attached to each non-root node. In
our treatment, we assume that push is supplied with a path that contains all of this information
precomputed; the path is constructed by an external control, which we will de�ne in a moment.

De�nition 3.5. The set of paths for a topology C ∈ Topo, denoted Path(C), is de�ned as follows.

A ∈ Rk

A ∈ Path(∗)

CB ∈ Topo= 1 ≤ 8 ≤ = A ∈ Rk ?C ∈ Path(CB [8])

(8, A) :: pt ∈ Path(Node(CB))

Intuitively, a path is a list (81, A1) :: · · · :: (8=, A=) :: A=+1, where the �rst = elements (8 9 , A 9) contain
the index 8 9 of the next child and the rank A 9 at which this index should be enqueued, and the last
element A=+1 is the rank with which the packet should be enqueued in the leaf PIFO. For example,
the path (1, 10) :: (3, 5) :: 6 means that the scheduling transaction wants us to perform three steps:

(1) Enqueue the index 1 in the root node with rank 10.
(2) Enqueue the index 3 in the �rst child of the root node with rank 5.
(3) Enqueue the packet itself in the third child of the �rst child of the root node with rank 6.

We now de�ne the function push, which acts on a path for the topology of a PIFO tree. We assume
each PIFO admits a function push : PIFO(() × (× Rk → PIFO((), which takes a PIFO, an element,
and a rank, and returns an updated PIFO with the element enqueued at the given rank.

De�nition 3.6. Let C ∈ Topo. For all pkt ∈ Pkt, we de�ne the function push : PIFOTree(C) ×Pkt×
Path(C) → PIFOTree(C) inductively, as follows (types are inferred from context, as before).

push(?, pkt, A) = ?′

push(Leaf (?), pkt, A) = Leaf (?′)

push(@B [8], pkt, pt) = @′ push(?, 8, A) = ?′

push(Internal(@B, ?), pkt, (8, A) :: ?C) = Internal(@B [@′/8], ?′)

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 269. Publication date: October 2023.

269:8 Anshuman Mohan, Yunhe Liu, Nate Foster, Tobias Kappé, and Dexter Kozen

When the node is a leaf, push simply enqueues the packet into the PIFO using the given rank.
When the node is internal, it enqueues an index into the appropriate child into its own PIFO, and
recurses by calling push on the appropriate child with an appropriately shortened path (in either
order). If push succeeds on the child, an altered version of the child is returned; we functionally
update the present node to re�ect its new index-PIFO and list of PIFO tree children.

We model the scheduling algorithm that is run on the tree separately in a control, which keeps
track of (1) a state from a �xed set St of states, as well as (2) a scheduling transaction that decides
on a path (of the right topology) for each incoming packet, while possibly updating the state.

De�nition 3.7. Let C ∈ Topo. A control over C is a triple (B, @, I), where B ∈ St is the current state,
@ is a PIFO tree of topology C , and I : St × Pkt → Path(C) × St is a function called the scheduling
transaction. We write Control(C) for the set of controls over C .

Remark 1. To recover the presentation of the node-bound scheduling transactions from Sivaraman
et al. [2016b], one can just project the return value of I to obtain a rank and child index for each node
(updating the state only in the scheduling transaction for the root node). Conversely, individual
scheduling transactions for each node can be glued together into a monolithic one that has the
same e�ect. For the sake of brevity, we do not expand on these constructions.

3.3 Well-Formedness

From the development preceding, it should be clear that the pop and push operations do not change
a PIFO tree’s topology. There is, however, one more important invariant which these operations
maintain, but which we have not yet discussed. This has to do with the validity of references
carried by the internal nodes. Put simply, the pop and push operations maintain that if the PIFO
of an internal node carries = references to its<-th child, then the leaves below that child carry
exactly = packets. This prevents pop from “getting stuck” as it traverses a non-empty tree looking
for a packet. We now formalize this notion in a typing relation, as follows.

De�nition 3.8. Let (be a set, and ? ∈ PIFO((). We write |? | for the size of ? , which is the number
of elements it holds; furthermore, when B ∈ (, we write |? |B for the number of times B occurs in ? .
Let @ be a PIFO tree. We write |@ | for the size of @, which is de�ned as the number of packets

enqueued at the leaves. Formally, | · | : PIFOTree(C) → N is de�ned for every C ∈ Topo by

|Leaf (?) | = |? | |Internal(@B, ?) | = |@B [1] | + · · · + |@B [=] | (= = |@B |)

We say that @ is well-formed, denoted ` @, if it adheres to the following rules.

` Leaf (?)

∀1 ≤ 8 ≤ |@B |. ` @B [8] ∧ |? |8 = |@B [8] |

` Internal(@B, ?)

Intuitively, leaves are well-formed, and an internal node is well-formed if, for all legal values of
child-index 8 , the 8-th child is itself a well-formed PIFO tree, and the number of times 8 occurs in
the index-PIFO ? is equal to the number of packets held by the 8-th child.
With all of these notions in place, we are ready to formally state the invariants for PIFO trees.

Lemma 3.9. Let C ∈ Topo and @ ∈ PIFOTree(C) and pkt ∈ Pkt. The following hold.

(i) If ?C ∈ Path(C), then push(@, pkt, ?C) is well-de�ned, and ` push(@, pkt, ?C).
(ii) If |@ | > 0 and ` @, then pop(@) is well-de�ned, and ` @′ where pop(@) = (pkt, @′).

Proof sketch. Both of these follow by (dependent) induction on C . �

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 269. Publication date: October 2023.

Formal Abstractions for Packet Scheduling 269:9

4 LIMITS TO EXPRESSIVENESS

We have already suggested that some PIFO trees can express more policies than others. This section
shows formally that, in general, PIFO trees with more leaves are more expressive. In turn, this
tells us that a �xed-topology hardware implementation of PIFO trees needs to support a su�cient
number of leaves if it is to express policies of practical interest.

Throughout this section, we use word notation for �nite sequences of varying length, to contrast
with the list notation used for sequences of �xed length. For instance, we will use juxtaposition to
construct lists of packets ?:C3?:C2?:C1 and write · for the concatenation operator. The constant n
denotes an empty sequence, and (∗ is the set of all �nite sequences over elements of a set (. For the
sake of brevity, most proofs are deferred to the extended version [Mohan et al. 2023b, Appendix A].

4.1 Simulation

Up to this point, we have been imprecise about what it means for one PIFO tree to replicate the
behavior of another, but now we need a formal notion. To this end, we instantiate a tried and true
idea from process algebra [Milner 1971], and more generally, coalgebra [Rutten 2000].

Intuitively, we wish to ask whether, given PIFO trees @1 and @2, any pop (resp. push) performed
on @1 can be mimicked by a pop (resp. push) on @2, such that @1 and @2 schedule packets identically.

De�nition 4.1. Let C1, C2 ∈ Topo. We call a relation ' ⊆ PIFOTree(C1) × PIFOTree(C2) a simulation

if it satis�es the following conditions, for all ?:C ∈ Pkt and @1 ' @2:

(1) If pop(@1) is unde�ned, then so is pop(@2).
(2) If pop(@1) = (?:C, @′1), then pop(@2) = (?:C, @′2) such that @′1 ' @

′
2.

(3) For all ?C1 ∈ Path(C1), there exists a ?C2 ∈ Path(C2) such that

push(@1, ?:C, ?C2) ' push(@2, ?:C, ?C2).

If such a simulation exists, we say that @1 is simulated by @2, and we write @1 � @2.

It follows that, if 21 is a control for @1, then there exists a control 22 for @2 that can make @2 behave
in the same way as @1. Conversely, if @1 is not simulated by @2, then there exists some control 21
for @1 whose scheduling decisions cannot be replicated by any control for @2.

Example 4.2. To build intuition, let us construct a simple simulation between two trees of the
same topology. Let C ∈ Topo, and let B : Rnk → Rnk be some monotone function on Rnk. We de�ne
'B ⊆ PIFOTree(C) × PIFOTree(C) as the relation where @1 'B @2 if and only if @1 and @2 agree on
the contents of PIFOs in corresponding (leaf or internal) nodes, except that if A is the rank of an
item in @1, then B (A) is the rank of that item in @2. It is then easy to show that 'B is a simulation; in
particular, when ?:C ∈ Pkt and ?C1 ∈ Path(C) such that push(@1, ?:C, ?C1) = @′1, we can apply B to
all the ranks in ?C1 to obtain ?C2 ∈ Path(C), and note that @′1 'B push(@2, ?:C, ?C2).

4.2 Snapshots and Flushes

Showing that a relation on PIFO trees is a simulation is not always trivial, but typically doable. In
contrast, showing that a PIFO tree @1 cannot be simulated by a PIFO tree @2 is a di�erent endeavor
altogether. To argue this formally, we have to �nd a property that remains true for @1 over a
sequence of actions, but is eventually falsi�ed when mimicking those actions on @2. We now
introduce snapshots and �ushing as tools to formalize such invariants, and show how the two relate.
A snapshot tells us about the relative order of packets already �xed by leaf nodes alone, but

completely disregards the ordering dictated by the indices in the tree’s internal PIFOs.

De�nition 4.3. Let ? ∈ PIFO(() be a PIFO over some set (. We write flush(?) for the sequence
of elements (from (∗) retrieved by repeatedly calling pop on the PIFO ? until it is empty, with the

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 269. Publication date: October 2023.

269:10 Anshuman Mohan, Yunhe Liu, Nate Foster, Tobias Kappé, and Dexter Kozen

last popped element on the far left. Furthermore, let @ be a PIFO tree. We inductively de�ne the
snapshot of @, denoted snap(@), as a sequence of sequences given by:

snap(Leaf (?)) = [flush(?)]

snap(Internal(@B, ?)) = snap(@B [1]) ++ · · · ++ snap(@B [=]) (= = |@ |)

To prevent confusion between the di�erent levels of �nite sequences, we write [G] to denote a
single-element list containing G , and denote list concatenation on the upper level by ++.

A more delicate concept, flush, does take into account the indices enqueued in the tree’s internal
PIFOs: it yields the sequence obtained by popping a well-formed PIFO tree until it is empty. Keeping
with convention, flush puts the most favorably ranked packet in the PIFO at the right of its output.

De�nition 4.4. Let C ∈ Topo and let @ ∈ PIFOTree(C) be a well-formed PIFO tree. We de�ne
flush(@) as a list of packets by induction on |@ |, as follows:

|@ | = 0

flush(@) = n

|@ | > 0 pop(@) = (?:C, @′)

flush(@) = flush(@′) · ?:C

Lemma 4.5. If @ is a well-formed PIFO tree, flush(@) is an interleaving of the lists in snap(@).

It is possible for PIFO trees to disagree on their snapshots, but still be in a simulation—for instance,
a PIFO tree could simulate a PIFO tree of the same topology, while permuting the contents of some
of the leaves. However, well-formed PIFO trees that are in simulation must agree on flush.

Lemma 4.6. Let @1 and @2 be well-formed PIFO trees. If @1 � @2, then flush(@1) = flush(@2).

4.3 Fewer Leaves are Less Expressive

We now put the formalisms introduced above to work, by constructing, for each topology with =
leaves, a PIFO tree that cannot be simulated by any PIFO tree with fewer leaves. We show that
packets in di�erent leaves can always be permuted by a specially chosen sequence of actions, while
packets that appear in the same leaf are forced to obey the relative order they have in that leaf.

De�nition 4.7. Let C ∈ Topo. We write |C | for the number of leaves in C ; formally,

|∗| = 1 |Node(CB) | = |CB [1] | + · · · + |CB [=] | (= = |CB |)

Lemma 4.5 tells us that the flush of a PIFO tree is an interleaving of the lists in its snapshot. In
particular, when each leaf holds a single element, any ordering of the packets in this tree is an
interleaving of these snapshots. Say each leaf indeed holds only one packet. Can any ordering of
packets be achieved? The following lemma answers this question in the positive, and in the process
provides us with a construction to obtain a tree that describes any permutation.

Lemma 4.8. Let C ∈ Topo, and let % = {?:C1, . . . , ?:C |C | } be a set of distinct packets. For each

permutation c on % , there exists a well-formed PIFO tree @c ∈ PIFOTree(C) such that

flush(@c) = c (?:C |C |) · · · c (?:C1) snap(@c) = [?:C1, . . . , ?:C |C |]

As it happens, PIFO trees as constructed in this way for a �xed topology are closely related, in
the sense that each @c can be transformed into each @c ′ (up to simulation) via a speci�c sequence of
operations. The idea is to use push to append the contents of the PIFO of each internal node in @c ′

to the PIFO of the corresponding node in @c . The packets pushed will be the dummy packets pktX,
which will be scheduled at the head of each leaf. A sequence of pops will then clear these dummy
packets, as well as the original contents of the internal node PIFOs. The tree that results is very
similar to @c , except that the ranks used in its internal PIFOs may have shifted by some constant.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 269. Publication date: October 2023.

Formal Abstractions for Packet Scheduling 269:11

1, 1, 2

C1, 2

A B

1 2

1 2

3 calls to push
−−−−−−−−−−−→

2, 1, 1, 1, 1, 2

C, pktX2, 1, 1, 2

A, pktX B, pktX

1 2

1 2

3 calls to pop
−−−−−−−−−−→

2, 1, 1

C2, 1

A B

1 2

1 2

Fig. 2. E�ecting permutations in 2|C | steps.

As an example, consider the PIFO tree on the left in Figure 2, which �ushes to ABC. We can push
pktX three times to obtain the PIFO tree in the middle, where the added contents are given in red.
Calling pop three times yields the PIFO tree on the right, which itself �ushes to CBA.

Lemma 4.9. Let C ∈ Topo, let % = {?:C1, . . . , ?:C |C | } ⊆ Pkt, and let c, c ′ be permutations on % .

Further, let pktX be a packet not occurring in % . There exists some @ ∈ PIFOTree(C) and a sequence
of |C | pushes of pktX followed by |C | pops that transforms @c into @, such that @ � @c ′ .

Remark 2. Lemmas 4.8 and 4.9 can be generalized to PIFO trees with multiple elements enqueued
at each leaf. In a more lax notion of simulation, where the simulating tree may respond with more
than one push or pop operation, this can be used to interrelate the semantics of PIFO trees with
di�ering topologies. We refer to the extended version [Mohan et al. 2023b, Appendix B] for details.

With this transformation lemma in place, we are ready to formally state and prove a critical the-
orem: a PIFO tree can never be simulated by another PIFO tree with fewer leaves. Contrapositively,
if a PIFO tree @1 is simulated by a PIFO tree @2, then @2 has at least as many leaves as @1.

Theorem 4.10. Let C1, C2 ∈ Topo with |C1 | > |C2 |. For all @1 ∈ PIFOTree(C1) and @2 ∈ PIFOTree(C2)
such that ` @1 and ` @2, we have that @1 � @2 does not hold.

Proof sketch. Take a set of distinct packets % = {?:C1, . . . , ?:C |C1 | }. We �rst consider the case
where @1 = @id, in which id is the identity permutation. If @1 is simulated by @2 ∈ PIFOTree(C2),
then @2 has a leaf with at least two packets, ?:C8 and ?:C 9 . By Lemma 4.9, we can then permute
those packets in @1 to obtain a PIFO tree @′1, using a sequence of push and pop operations that
only involve a dummy packet pktX. Any way of applying push and pop operations to @2 using this
dummy packet will never change the position of ?:C8 and ?:C 9 , because they are in the same leaf;
hence, @2 cannot simulate @1. The more general case can be reduced to the above for well-formed
trees, by simply popping @1 until it is empty, and then pushing packets to turn it into @id. �

5 EMBEDDING AND SIMULATION

In the previous section, we formalized what it means for one tree to simulate the queuing behavior
of another, and showed that the number of leaves is important: a PIFO tree cannot simulate a PIFO
tree with more leaves. We now turn our attention to the converse: when can one PIFO tree simulate
another? As explained, we will focus primarily on the topology of PIFO trees. Proofs of the lemmas
stated here are available in the extended version of this paper [Mohan et al. 2023b, Appendix C].

In a nutshell, the results in this section tell us that a hardware implementation of PIFO trees may
�x a certain topology. As long as the topologies of PIFO trees designed by the user embed in this
topology (see below), the hardware implementation will be able to replicate their behavior.

5.1 Embedding

We start by developing a notion of embedding at the level of PIFO tree topologies, and show that if
C1 ∈ Topo embeds inside C2 ∈ Topo, then PIFO trees over C1 can be simulated by PIFO trees over C2.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 269. Publication date: October 2023.

269:12 Anshuman Mohan, Yunhe Liu, Nate Foster, Tobias Kappé, and Dexter Kozen

C1

1

2

3

C2

1 2

1 2

(a) Embedding a ternary tree into a binary tree. (b) A more complex embedding.

Fig. 3. Two examples of embedding.

Intuitively, an embedding maps nodes of one topology to nodes of the other in a way that allows
internal nodes to designate (new) intermediate nodes as their children. To make this precise, we
need a way to refer to nodes and leaves internal to a topology, which we formalize as follows.

De�nition 5.1 (Addresses). Let C ∈ Topo. We write Addr(C) for the set of (node) addresses in C ,
which is de�ned as the smallest subset of N∗ satisfying the rules

n ∈ Addr(C)

= ∈ N CB ∈ Topo= U ∈ Addr(CB [8]) 1 ≤ 8 ≤ =

8 · U ∈ Addr(Node(CB))

Intuitively, n addresses the root, while 8 · U refers to the node pointed to by U in the 8-th subtree.
When U ∈ Addr(C), we write C/U for the subtree reached by U , de�ned inductively by

C/n = n Node(CB)/(8 · U) = CB [8]/U

This de�nes a total function, because if U = 8 · U ′, then C is necessarily of the form Node(CB) for
CB ∈ Topo= such that 1 ≤ 8 ≤ =, and U ′ ∈ Addr(CB [8]).

Note that this way of addressing nodes is compatible with the intuition of ancestry: if U and U ′

are addresses in C , then U points to an ancestor of the node referred to by U ′ precisely when U is a
pre�x of U ′. This guides the de�nition of embedding, as follows.

De�nition 5.2 (Embedding). Let C1, C2 ∈ Topo. A (homomorphic) embedding of C1 in C2 is an injective
map 5 : Addr(C1) → Addr(C2) such that, for all U, U ′ ∈ Addr(C1), three things hold:

(1) 5 maps the root of C1 to the root of C2, i.e., if U = n then 5 (U) = n .
(2) 5 maps leaves of C1 to leaves of C2, i.e., if C1/U = ∗, then C2/5 (U) = ∗.
(3) 5 respects ancestry, i.e., U is a pre�x of U ′ i� 5 (U) is a pre�x of 5 (U ′).

For example, in Figure 3a, the ternary tree C1 embeds inside the binary tree C2 via the embedding 5 :

5 (n) = n 5 (1) = 1 5 (2) = 21 5 (3) = 22

We do not explicate the embedding shown in Figure 3b, and we drop the child-indices to lighten
the presentation, but observe that the three conditions of an embedding hold. In general, neither
the source nor the target tree needs to be regular-branching so long as these conditions are obeyed.
Given an embedding of a topology C1 into another topology C2, we can obtain embeddings of

subtrees of C1 into subtrees of C2; this gives us a way to superimpose the inductive structure of
topologies onto embeddings, which we will rely on for the remainder of this section.

Lemma 5.3. Let C1, C2 ∈ Topo, and let 5 : Addr(C1) → Addr(C2) be an embedding. The following

hold: (1) if C1 = ∗, then C2 = ∗ as well; and (2) if C1 = Node(CB1), then there exists for 1 ≤ 8 ≤ |CB1 | an

embedding 58 of C1/8 inside C2/5 (8) satisfying 5 (8 · U) = 5 (8) · 58 (U).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 269. Publication date: October 2023.

Formal Abstractions for Packet Scheduling 269:13

5.2 Li�ing Embeddings

Next, we develop away to lift these embeddings so that they range over PIFO trees. Speci�cally, given

an embedding 5 : Addr(C1) → Addr(C2), we lift it into a map 5̂ : PIFOTree(C1) → PIFOTree(C2).

Intuitively, if @ is a PIFO tree over C1, 5̂ (@) is a PIFO tree over C2 that simulates @. The map places
packets at the leaves of the input PIFO tree at the corresponding leaves of the output PIFO tree, and
populates the PIFOs at the internal nodes of the output tree in a way that preserves push and pop.

De�nition 5.4. Let C1, C2 ∈ Topo, and let 5 be an embedding of C1 inside C2. We lift 5 to a map 5̂
from PIFOTree(C1) to PIFOTree(C2) by recursion on C1.

• In the base, where we have C1 = ∗, we choose 5̂ (@) = @. This is well-de�ned by Lemma 5.3.
• In the recursive step, let C1 = Node(CB1), = = |CB1 |, @ = Internal(@B, ?), ? ∈ PIFO({1, . . . , =}),
and, for 1 ≤ 8 ≤ =, note that @B [8] ∈ PIFOTree(CB1 [8]). For each pre�x U of 5 (8) for some

1 ≤ 8 ≤ =, we construct 5̂ (@)U ∈ PIFOTree(C2/U), by an inner inverse recursion on U , starting

from 5 (8) for 1 ≤ 8 ≤ = and working our way to n . This eventually yields 5̂ (@) = 5̂ (@)n ∈

PIFOTree(C2/n) = PIFOTree(C2):
– In the inner base, U = 5 (8) for some 1 ≤ 8 ≤ =. We choose 5̂ (@)U = 5̂8 (@B [8]), where 58
embeds C1/8 inside C2/5 (8), as obtained through Lemma 5.3. This is well-de�ned because 5
is injective, and because @B [8] ∈ PIFOTree(CB1/8), as CB1/8 is a subtree of C1.

– In the inner recursive step, U points to an internal node of C2 with, say,< children. For all 1 ≤

9 ≤ <, U · 9 is a pre�x of some 5 (8). By recursion, we know 5̂ (@)U · 9 ∈ PIFOTree(C2/(U · 9))

exists. We create a new PIFO ?U by replacing the indices 8 in ? (found at the root of
@, see above) by 1 ≤ 9 ≤ < such that U · 9 is a pre�x of 5 (8) if such a 9 exists, and

removing them otherwise. Finally, we choose: ∀1 ≤ 8 ≤ <. @B5 ,U [9] = 5̂ (@U · 9) and 5̂ (@)U =

Internal(@B5 ,U , ?U). By construction, we then have that 5̂ (@)U ∈ PIFOTree(C2/U).

To build intuition, let us revisit the embedding 5 we showed in Figure 3a and lift it to operate on

PIFO trees. The upper row of Figure 4 shows this lifting at the point when we are computing 5̂ for

the root node, and we already have at hand the liftings of the form 5̂8 (B8) for the root’s children B8 .
We present this in two steps. First, we remove indices of children that no longer exist below us
(3, 1, 2, 2, 3, 1, 2 becomes 3, 2, 2, 3, 2 because we remove 1s). Second, we renumber indices for the

new address regime (3, 1, 2, 2, 3, 1, 2 becomes 2, 1, 2, 2, 2, 1, 2 and 3, 2, 2, 3, 2 becomes 2, 1, 1, 2, 1).
As a sanity check, we verify that a lifted embedding preserves well-formedness of PIFO trees. The

proof of the following property also serves as a small model for the proofs about lifted embeddings
that follow, which all proceed by an induction that matches the recursive structure above.

Lemma 5.5. Let C1, C2 ∈ Topo, and suppose 5 embeds C1 inside C2. If ` @, then ` 5̂ (@).

Proof sketch. By induction on C1. In the base, where C1 = ∗, this holds because 5̂ (@) = @. Next,
let Node(CB1) and = = |CB1 | and perform inverse induction on the pre�xes of 5 (8) for 1 ≤ 8 ≤ =.

Show, more generally, that (1) if U is such a pre�x, then ` 5̂ (@)U , and (2) | 5̂ (@)U | is equal to the sum
of |? |8 where 1 ≤ 8 ≤ = and U is a pre�x of 5 (8). Instantiating (1) with U = n implies the claim. �

5.3 Preserving pop

Simulation requires that the simulating tree can always be popped when the simulated tree can be

popped. If @ is well-formed and not empty, this must also be the case for 5̂ (@)—and hence if @ can

be popped so can 5̂ (@) in this case. In fact, this is true regardless of well-formedness.

Lemma 5.6. Let C1, C2 ∈ Topo, and let 5 embed C1 inside C2. If pop(@) is de�ned, then so is pop(5̂ (@)).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 269. Publication date: October 2023.

269:14 Anshuman Mohan, Yunhe Liu, Nate Foster, Tobias Kappé, and Dexter Kozen

3, 1, 2, 2, 3, 1, 2

B2

B1 B3

1

2

3

3, 1, 2, 2, 3, 1, 2

5̂1 (B1)

3, 2, 2, 3, 2

5̂2 (B2) 5̂3 (B3)

1
2

1 2

2, 1, 2, 2, 2, 1, 2

5̂1 (B1)

2, 1, 1, 2, 1

5̂2 (B2) 5̂3 (B3)

1
2

1 2

⇒ ⇒

3, 1, 2, 2, 2, 3, 1, 2

B2

B1 B3

1

2

3

3, 1, 2, 2, 2, 3, 1, 2

5̂1 (B1)

3, 2, 2, 2, 3, 2

5̂2 (B2) 5̂3 (B3)

1
2

1 2

2, 1, 2, 2, 2, 2, 1, 2

5̂1 (B1)

2, 1, 1, 1, 2, 1

5̂2 (B2) 5̂3 (B3)

1
2

1 2

⇒ ⇒

Fig. 4. Li�ing an embedding (above), and preserving push across a li�ed embedding (below). The source and
target topologies as shown in Figure 3a. The new indices inserted are in red.

Proof sketch. By induction on C1. In the base, where C1 = ∗, the claim is trivial because 5̂ (@) = @.
For the inductive step, let C1 = Node(CB1) and = = |CB1 |. Write @ = Internal(@B, ?). Since pop(@) is

de�ned, ? cannot be empty; write 8 for the index at the head of ? . We then prove that pop(5̂ (@)U) is
de�ned for all pre�xes U of 5 (8) by inverse induction on U ; when U = n , this implies the claim. �

We furthermore need to show that if popping @ yields a packet ?:C and a new tree @′, then

popping 5̂ (@) gives us the same packet ?:C , and a tree @′′ that simulates @′. To this end, we show

something stronger, namely that pop commutes with 5̂ (@), in the following sense.

Lemma 5.7. Let C1, C2 ∈ Topo, and let 5 be an embedding of C1 inside C2. Now pop is compatible with

5̂ , i.e., if pop(@) = (?:C, @′), then pop(5̂ (@)) = (?:C, 5̂ (@′)).

Proof sketch. By induction on C1. In the base, where C1 = ∗, the claim holds because 5̂ (@) = @.
For the inductive step, let C1 = Node(CB1) and = = |CB1 |. Furthermore, let 8 be the index at the head
of the PIFO attached to the root of @. As before, we proceed by inverse induction on the pre�xes U
of 5 (9) with 1 ≤ 9 ≤ =, arguing more generally that the following hold:

(1) If U is a pre�x of 5 (8), then pop(5̂ (@)U) = (?:C, 5̂ (@′)U).

(2) Otherwise, if U is not a pre�x of 5 (8), then 5̂ (@)U = 5̂ (@′)U .

Instantiating the �rst property for the root address n ∈ Path(C1) then tells us that:

pop(5̂ (@)) = pop(5̂ (@)n) = (?:C, 5̂ (@′)n) = (?:C, 5̂ (@′)) . �

Remark 3. For any C ∈ Topo, we can de�ne an operator that takes two PIFO trees @1, @2 ∈

PIFOTree(C) and produces a new PIFO tree @1;@2 ∈ PIFOTree(C), where the contents of the PIFO
at each node in @2 are concatenated to the corresponding node in @1 (by shifting the weights of the
former and inserting them). This operator is associative, and has the empty PIFO tree as its neutral
element on both sides, which makes PIFOTree(C) a monoid. When restricted to well-formed PIFO
trees, it is a free monoid: every PIFO tree can uniquely be written as the concatenation of PIFO
trees where each PIFO holds at most one element. Further, given an embedding 5 of C1 into C2,

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 269. Publication date: October 2023.

Formal Abstractions for Packet Scheduling 269:15

5̂ is a monoid homomorphism from PIFOTree(C1) to PIFOTree(C2). These properties can then be
exploited to obtain an abstract proof of Lemma 5.7. Here we have chosen to give an explicit proof.

5.4 Preserving push

We continue by showing that 5̂ is also compatible with push. To this end, we must show that, if we

push the packet ?:C into @ with path ?C , then there exists a path ?C ′ such that pushing ?:C into 5̂ (@)
with path ?C ′ results in a tree that simulates push(@, ?:C, ?C). As it turns out, the correspondence
between paths in C1 and paths in C2 can also be obtained from 5—intuitively, it extends paths that
lead to a leaf of C1 to the corresponding leaf in C2, while duplicating the ranks as necessary.

For example, let us revisit the topologies C1 and C2 from Figure 3a and push a packet into a PIFO
tree with topology C1 using the path (2, 5) :: 7. To preserve push on a tree with topology C2, the
path is translated into (2, 5) :: (1, 5) :: 7 by the embedding from the same �gure. See the lower row
of Figure 4 for an illustration. We give a formal de�nition of this translation below.

De�nition 5.8. Let C1, C2 ∈ Topo and let 5 be an embedding of C1 inside C2. We de�ne 5̃ : Path(C1) →
Path(C2) by induction on C1. First, if C1 = ∗, then every ?C ∈ Path(C1) is of the form A for A ∈ Rnk;
we set 5̃ (A) = A . Since C2 = ∗ by Lemma 5.3, this is well-de�ned.

Otherwise, if C1 = Node(CB1) with |CB1 | = =, then for 1 ≤ 8 ≤ = let 58 be the embedding of C1/8
into C2/5 (8). Every element of Path(C1) is of the form (8, A) :: ?C where 1 ≤ 8 ≤ =, A ∈ Rk and
?C ∈ Path(C1/8). For every pre�x U of 5 (8), we de�ne 5̃ ((8, A) :: ?C)U by inverse recursion. In the
base, where U = 5 (8), we set 5̃ ((8, A) :: ?C)U = 5̃8 (?C). In the inductive step, where U = U ′ · 9 , we set
5̃ ((8, A) :: ?C)U = (9, A) :: 5̃ ((8, A) :: ?C)U ′ . Finally, we de�ne 5̃ ((8, A) :: ?C) = 5̃ ((8, A) :: ?C)n .

We can now show that 5̂ commutes with push if we translate the insertion path according to 5̃ :

Lemma 5.9. Let C1, C2 ∈ Topo, ?:C ∈ Pkt, ?C ∈ Path(C1) and @ ∈ PIFOTree(C1). We have

5̂ (push(@, ?:C, ?C)) = push(5̂ (@), ?:C, 5̃ (?C)).

Proof sketch. By induction on C1. In the base, where C1 = ∗, we know 5̂ (@) = @ and 5̃ (?C) = ?C ,

and further, since push(@, ?:C, ?C) ∈ PIFOTree(C1), we know 5̂ (push(@, ?:C, ?C)) = push(@, ?:C, ?C).
The claim then holds trivially. For the inductive step, let C1 = Node(CB1) and = = |CB1 |. We can then
write ?C = (8, A) :: ?C ′ where ?C ′ ∈ Path(CB1 [8]). Let U ∈ Addr(C1) be a pre�x of some 5 (9) with
1 ≤ 9 ≤ =. We can then prove by inverse induction that the following properties hold:

(1) If U is a pre�x of 5 (8), then 5̂ (push(@, ?:C, ?C))U = push(5̂ (@)U , ?:C, 5̃ (?C)U).

(2) Otherwise, if U is not a pre�x of 5 (8), then 5̂ (push(@, ?:C, ?C))U = 5̂ (@)U

When U = n , the �rst property instantiates to the claim. �

5.5 Simulation

Now that we know that lifted embeddings are compatible with the push and pop operations on
PIFO trees, we can formally state and prove the correctness of this operation as follows.

Theorem 5.10. Let C1, C2 ∈ Topo, @ ∈ PIFOTree(C1). If 5 embeds C1 in C2, then @ � 5̂ (@).

Proof. It su�ces to prove that ' = {(@′, 5 (@′)) : @′ ∈ PIFOTree(C1)} is a simulation.

(1) If pop(@′) is de�ned, then so is pop(5̂ (@′)) by Lemma 5.6.

(2) If pop(@′) = (?:C, @′′), then pop(5̂ (@′)) = (?:C, 5̂ (@′′)) by Lemma 5.7.
(3) If push(@′, ?:C, ?C), then choose ?C ′ = 5̃ (?C) to �nd by Lemma 5.9 that

push(@′, ?:C, ?C) ' 5̂ (push(@′, ?:C, ?C)) = push(5̂ (@′), ?:C, ?C ′). �

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 269. Publication date: October 2023.

269:16 Anshuman Mohan, Yunhe Liu, Nate Foster, Tobias Kappé, and Dexter Kozen

· · · 3, 2, 1

· · · ?:C1

· · · ?:C0 · · · ?:C2

1

2

3
· · · 2, 2, 1

· · · ?:C0 · · · 2, 1

· · · ?:C1 · · · ?:C2

1 2

1 2

· · · 2, 2, 1, 2

· · · ?:C0 · · · 2, 2, 1

· · · ?:C1 · · · ?:C3 , ?:C2

1 2

1 2

Fig. 5. Impossibility of simulation. The trees from le� to right are @′1, @
′
2, @

′′
2 . Although @

′
1 ostensibly simu-

lates @′2, we can push ?:C3 into @′2 to get @′′2 , and no push of ?:C3 into @′1 can simulate this.

Given an embedding 5 of C1 ∈ Topo into C2 ∈ Topo, we can now translate a control 2 = (B, @, I) ∈

Control(C1) into a control 2′ = (B, 5̂ (@), I′) ∈ Control(C2), where I′ (B, ?:C) = (5̃ (?C), B′) when
I (B, ?:C) = (?C, B′). Theorem 5.10 then tells us that 2′ behaves just like 2; there is no overhead in
terms of state, and the translation of the scheduling transaction I is straightforward.

Remark 4. Our results can be broadened to a more general model of scheduling. Say pop returned a
path containing all of the nodes whose PIFOs were popped, along with their ranks, and that a control
could react to a pop using a “descheduling transaction” that could look at this pop-path and update
the state. This extended version of pop would still be compatible with embedding, i.e., Lemma 5.7

can be updated to show that if pop(@) = (?C, ?:C, @′), then pop(5̂ (@)) = (5̃ (?C), ?:C, 5̂ (@′)).

5.6 A Counterexample

A natural question to ask next is whether embeddings can be lifted in the opposite way, i.e., if 5
embeds C1 in C2 and @2 ∈ PIFOTree(C2), can we use 5 to �nd a @1 ∈ PIFOTree(C1) such that @2 � @1?
Theorem 4.10 tells us that this is impossible if C2 has more leaves than C1. But even if C1 embeds in
C2 and C2 does not have any more leaves than C1, such a mapping may be impossible to �nd.

Proposition 5.11. There exist C1, C2 ∈ Topo s.t. for all PIFO trees @1 ∈ PIFOTree(C1) and @2 ∈

PIFOTree(C2), @2 does not simulate @1, even though C1 embeds inside C2 and |C1 | = |C2 |.

Proof. Consider the embedding shown in Figure 3a, and say that C1 and C2 are as labeled in that
�gure. Consider any@1 ∈ PIFOTree(C1) and@2 ∈ PIFOTree(C2), and suppose towards a contradiction
that @1 simulates @2. Take three distinct packets ?:C0 , ?:C1 , and ?:C2 , and let @′2 be the tree obtained
from @2 by pushing ?:C0 , ?:C1 , and ?:C2 to the front of the �rst, second and third leaf respectively,
such that ?:C0 , ?:C1 , and ?:C2 will be popped in that order, as depicted in the center in Figure 5.

Because @1 simulates @2, we can push these packets to obtain a tree @′1 that simulates @′2. In this
tree, ?:C0 , ?:C1 , and ?:C2 must appear in di�erent leaves—otherwise, we could execute a series
of pushes and pops (as in Lemma 4.9) that changed the order of two packets in @′2 but not in @

′
1.

Furthermore, because these packets are popped �rst from @′2, they are also popped �rst from @′1.
We can therefore assume (without loss of generality) that @′1 is as depicted on the left of Figure 5.

Now take a fourth packet ?:C3 distinct from ?:C0 , ?:C1 and ?:C2 , and push it into @′2 to obtain the
PIFO tree @′′2 , depicted on the right in Figure 5 (new elements in red). In @′′2 , the �rst four packets
popped are ?:C1 , ?:C0 , ?:C2 , and ?:C3 . Because @′1 simulates @′2, there exists a way to push ?:C3 into
@′1 that results in a PIFO tree @′′1 where the �rst four packets popped match those of @′′2 . We can
constrain the position of ?:C3 in @′′1 : ?:C3 must be enqueued at the second position of the third leaf
of @′1—otherwise, if, for instance, ?:C3 appeared in the same leaf as ?:C0 in @′′1 , then @

′′
2 could swap

the relative order of ?:C3 and ?:C0 , but @′′1 could not (via the same technique as in Lemma 4.9).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 269. Publication date: October 2023.

Formal Abstractions for Packet Scheduling 269:17

Together, this means that, in @′′1 , 3 must be enqueued near the head of the root PIFO. We have
four possibilities for the root PIFO of @′′1 , listed here along with the �rst four pops they would e�ect:

3213 : ?:C2 , ?:C0, ?:C1, ?:C3 3231 : ?:C0, ?:C2 , ?:C1, ?:C3 3321/3321 : ?:C0, ?:C1, ?:C2 , ?:C3

Because none of these match the �rst four packets popped from @′′2 , we have reached a contradiction.
Our assumption that @1 simulates @2 must therefore be false, which proves the claim. �

6 EMBEDDING ALGORITHMS

So far, we showed that embeddings can be used to replicate the behavior of one PIFO tree with
a PIFO tree of a di�erent topology. To exploit these results in practice, we need to calculate an
embedding of one (user-supplied) topology into another (hardware-mandated) topology. This
section proposes two e�cient algorithms that can be used to �nd such an embedding, if it exists.

6.1 Embedding into Complete 3-ary Topologies

We start by treating the special case where the target of our embedding is a complete topology of
�xed arity. In this case, the algorithm also has a favorable complexity.

Theorem 6.1. Let C1, C2 ∈ Topo such that C2 is a complete 3-ary topology. There is an $ (= log=)
algorithm (= = |Addr(C1) |) to determine whether C1 embeds in C2, and to �nd such an embedding if so.

Proof. We construct an embedding 5 of C1 into complete 3-ary topology of minimal height, in
a greedy bottom-up fashion reminiscent of the construction of optimal Hu�man codes [Cover
and Thomas 2006]. Let U ∈ Addr(C1) and suppose, at some stage of the algorithm, we have for
each U · 8 ∈ Addr(C1) an embedding of C1/(U · 8) inside a complete 3-ary topology C38 of minimum
height—in particular, when U · 8 is a leaf, this is the trivial embedding. To get a minimum-height
embedding of C1/U inside a complete 3-ary topology, we insert all of these topologies C38 into a
min-priority queue, ranked by height. We repeat the following until the queue has one element:

(1) Extract up to 3 elements of the same minimum priority (say<).
(2) Create a new topology of height< + 1 with those elements as children. If desired, pad this

new topology—add dummy leaves just below the root—to make it a complete 3-ary topology.
(3) Insert this new topology with height< + 1 into the priority queue with priority< + 1.

Note, if there is only one topology of minimum height<, we do not need to form a new topology
with one child. We simply reinsert the topology, unchanged, into the queue but with priority< + 1.

It follows from an exchange argument (given below; see [Kleinberg and Tardos 2006, Ch. 4] and
[D’Angelo and Kozen 2023]) that the single remaining topology C is of the minimum height into
which C1/U embeds. An embedding of the whole topology is thus possible provided that C is no taller
than C2. The time required to process a node with 3B children is$ (3B log3B) for the maintenance of
the priority queue and $ (3B) for all other operations, or $ (= log=) in all, where = = |C1 |.
Here is the exchange argument. At any stage of the algorithm, let C ′1, . . . , C

′
:
be a maximal set,

up to size 3 , of queue elements with minimum priority<. Suppose the action of forming a new
topology of height< + 1 with these children and inserting it into the queue was not the right thing
to do, i.e., some other action would have led to a topology C ′ of optimal height. Assume without loss
of generality that C ′1 occurs deepest in C

′; thus the path from the root to C ′1 is the longest among the
queue elements C ′8 . Permute C ′ so that C ′1 occurs rightmost. The topologies C ′2, . . . , C

′
:
can be swapped

for the siblings of C ′1 in C
′, or, if C ′1 has fewer than : siblings, added as a new child to the parent of C ′1

in C ′, without increasing the height of the topology. Thus the action of the algorithm was correct.
For the case : = 1 with more than one topology left in the queue, the argument is the same, with

the observation that in any embedding, C ′1 must have a sibling of greater height. Therefore, it does
not hurt to consider C ′1 to be of height< + 1 even though its height is actually<. �

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 269. Publication date: October 2023.

269:18 Anshuman Mohan, Yunhe Liu, Nate Foster, Tobias Kappé, and Dexter Kozen

6.2 Embedding into Arbitrary Topologies

We now turn our attention to the more general case, where the target of embedding is an arbitrary
PIFO topology. An embedding algorithm can still be achieved here, at the cost of a higher complexity.

Theorem 6.2. Let C1, C2 ∈ Topo, such that each node in C1 has at most 3 children. There is a

polynomial-time algorithm to determine whether C1 embeds in C2, and to �nd such an embedding if so.

Proof. The algorithm is based on bottom-up dynamic programming. Construct a boolean-valued
table) with entries) (U1, U2) for U1 ∈ Addr(C1) and U2 ∈ Addr(C2) that says whether there exists an
embedding that maps U1 to U2. Suppose that U1 ∈ Addr(C1) has 31 children, that we have determined
the values of) (U ′1, U

′
2) such that U1 (resp. U2) is an ancestor (i.e., pre�x) of U ′1 (resp. U

′
2), and that

we wish to determine) (U1, U2). The value will be true if we can �nd target nodes for the children
of U1 among the descendants of U2 that form an antichain w.r.t. the ancestor/descendant relation.
Without loss of generality, we can ignore node U ′2 as a candidate target for a child U1 · 8 if U

′
2

has a descendant U ′′2 such that) (U1 · 8, U ′′2) = true; any embedding that maps U1 · 8 to U ′2 can map
U1 · 8 to U ′′2 instead. We now form a graph with nodes (U ′1, U

′
2) such that) (U ′1, U

′
2) = true and edges

((U ′1, U
′
2), (U

′′
1 , U

′′
2)) such that either U ′1 = U

′′
1 , or U

′
2 = U

′′
2 , or U

′
2 is an ancestor of U ′′2 . An independent

set of size 31 in this graph consists of pairs (U ′1, U
′
2) such that the �rst components are all the 31

children of U1 and the second components form an antichain among the descendants of U2 to which
the �rst components can map. If such an independent set exists, then we set) (U1, U2) to true.

Let = = |Addr(C1) | and< = |Addr(C2) |. To calculate) (U1, U2) for each of the =< pairs U1, U2, we
need to �nd an independent set in a graph with 3< nodes, which can be solved with brute force in
time $ (<3), and this dominates the complexity. The total time of the algorithm is $ (=<3+1). �

7 IMPLEMENTATION

We implemented PIFO trees as described in §2, along with the embedding algorithm covered
in Theorem 6.1, in OCaml. Our implementation includes a simulator that can “run” a tra�c sample
of packets through a PIFO tree and visualize the results with respect to push and pop time.
We show that our scheduler gives expected results when programming standard scheduling

algorithms. We compare the traces from our scheduler to those obtained from a state-of-the-art
hardware switch and �nd reasonable correlation. This reinforces the idea that PIFO trees are a
reasonable primitive for standard programmable scheduling. We then move beyond the capabilities
of a modern switch by showing the result of running hierarchical algorithms on our scheduler.
Finally, we show how our implementation supports the embedding of one PIFO tree into another
without having to program the latter tree anew and without appreciable loss in performance.

7.1 Preliminaries

A PIFO tree is programmed, as in the presentation thus far, by specifying a topology and a control.
The simulator takes a collection of incoming packets, represented as a pcap, and attempts to push
the packets into the tree. It paces these pushes to match the packets’ timestamps in the given pcap.
The simulator also requires a line rate, which is the frequency at which it automatically calls pop.

For ease of presentation, we have standardized a few things that are not fundamental to our
implementation. All our tra�c samples contain 60 packets of the same size, coming from seven
source addresses that we label A through G. We partition the tra�c into �ows simply based on
these addresses, though more sophisticated partitioning is of course possible.

An important subtlety is saturation: we need to enqueue packets quickly enough that the switch
actually has some backlog of packets and therefore has to make a scheduling decision among those
packets. This is easy to do in our OCaml simulator, where we have total control: we set packets to

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 269. Publication date: October 2023.

Formal Abstractions for Packet Scheduling 269:19

arrive at the rate of 10 packets/s and simulate a slower line rate of 4 packets/s. We also achieve
similar saturation when running comparative experiments on the hardware switch.

Reading our visualizations. In the visualizations that follow, the x-axis, read left to right, shows
the time (in seconds) since the simulation started; the y-axis, read top to bottom, shows packets
in the order they arrive at the scheduler. A colored horizontal bar represents a packet, and is

colored based on its source address: A B C D E F G . A horizontal bar is drawn starting at
the time when the packet arrives at the scheduler and ending at the time when it is released by
the scheduler, so shorter bars indicate preferential service. Later packets tend to have longer bars
precisely because we are saturating the scheduler. To notice trends generally, it is useful to zoom
out and look at the “shadow” that a certain-colored �ow casts. To focus more speci�cally on which
packets are released when, it is useful to zoom in and study the right edges of the horizontal bars.

7.2 Standard Algorithms

We �rst show that PIFO trees are a reasonable primitive for standard, non-hierarchical algorithms.
We use a simple ternary topology: one root node with three leaves below it. The standard algorithms
discussed below correspond to the rows of Table 1. We have constructed a pcap of packets with

sources A B C , and, in the left column, we schedule that pcap using PIFO trees.
The �rst come, �rst served (FCFS) algorithm transmits packets in the order they are received.

The strict algorithm strictly prefers C to B and B to A, up to availability of input packets. It is easy
to see the expected trend in the visualization: focus on the “shadow” casy by each �ow; A’s is the
smallest, followed by B’s, followed by C’s. Round-robin seeks to alternate between �ows A, B, and
C. Weighted fair queueing (WFQ) [Demers et al. 1989] allows user-de�ned weights for each �ow;
in the table we show a split of 10/20/30 between A/B/C. The shadows guide intuition here as well.

As a further, albeit informal, endorsement of PIFO trees, we compare our tree-based scheduling
trends to those of a modern switch. The right column of Table 1 shows the same algorithms and
pcaps scheduled by the FIFO-based programmable scheduler exposed by our hardware switch. We
�nd the trends to be in agreement. Our testbed consists of two host Linux machines connected by
a hardware switch. To keep the total number of packets small enough to present here, we use a
slow ingress rate of 60 kbps and an egress rate of 24 kbps, with packets of size 1 kb. Although it is
untenable to visualize them here, we also conduct similar experiments with more realistic ingress
and egress rates (2.5 Mbps and 1 Mbps respectively) and observe similar scheduling trends.
We point out a few oddities in the hardware experiments:

(1) The �rst few packets going into the switch spend so little time in the queue that the horizontal
bars representing them do not render in our visualizations.

(2) The switch releases packets not one by one but in batches of four. This trend does not
appear in our more realistic experiments. We conjecture that this stagger is an artifact of our
unrealistically slow rates: the egress thread appears to pull packets in batches.

(3) The packets do not arrive in as regular a pattern as in software; see the left edges of the
horizontal bars. This is perhaps to be expected in a real-world experiment.

7.3 Hierarchical Algorithms

Our implementation supports arbitrary hierarchical PIFO trees; there is no equivalent in our
programmable hardware switch. Hierarchical packet fair queueing (HPFQ) [Bennett and Zhang
1996] is WFQ applied at many levels, and is a more general instance of the motivating problem we
discussed in §2.2. Table 2 shows HPFQ scheduling a tra�c sample, nowwith unequal splits as shown.
Paying attention to the right hand side of the horizontal colored bars, we see that B gets excellent
service (80/20, versus C) until the �rst packets from A arrive, after which B’s share decreases. This

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 269. Publication date: October 2023.

269:20 Anshuman Mohan, Yunhe Liu, Nate Foster, Tobias Kappé, and Dexter Kozen

Table 1. Standard scheduling algorithms as run against our scheduler and a programmable hardware switch.

Through a PIFO tree Through a programmable switch

FC
FS

St
ri
ct

R
’R
ob

in
W
FQ

Table 2. HPFQ running a tra�ic flow. Share ratios as indicated.

Tree sketch Visualization

H
P
FQ

WFQ: 80/20

CWFQ: 75/25

A B

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 269. Publication date: October 2023.

Formal Abstractions for Packet Scheduling 269:21

Table 3. Hierarchical algorithms (rows 1 and 3), and compiling ternary trees to binary (rows 2 and 4).

Tree sketch Visualization

Tw
oP

ol

WFQ: 10/10/80

A B Strict: E>D>C

C D E

Tw
oP

ol
B
in

WFQ: 10/10/80

T

A B

Strict: E>D>C

T

C D

E

3T
ie
r3

WFQ: 40/40/20

A B RR

C D WFQ: 10/40/50

E F G

3T
ie
r3

B
in

WFQ: 40/40/20

RR

WFQ: 10/40/50

T

E F

G

T

C D

T

A B

could not have been recreated using fair scheduling without hierarchies. Additionally, trees need
not run the same algorithm on di�erent nodes. The �rst and third rows of Table 3 show examples
of more complicated trees running combinations of algorithms on their nodes.

7.4 Compilation

We implement a compilation from ternary PIFO trees to binary PIFO trees using the technique
described in Theorem 6.1, meaning that we can take any ternary topology along with a control
written against it, and automatically create a binary topology and control that together simulate

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 269. Publication date: October 2023.

269:22 Anshuman Mohan, Yunhe Liu, Nate Foster, Tobias Kappé, and Dexter Kozen

the former. We use this to compile all the ternary algorithms described in Table 1 into binary PIFO
trees, and we �nd the resultant visualizations unchanged. We also compile the complex trees shown
in rows 1 and 3 of Table 3 into binary trees; these are shown in rows 2 and 4. The transit nodes that
were automatically created are shown in gray, and the visualizations produced remain unchanged.

Our visualizations are sensitive to push and pop time, and so it is encouraging to see them stay
the same across the compilation process: this suggests that we experience no appreciable loss in
performance as a result of the compilation despite the introduction of new intermediary nodes.

8 RELATED WORK

We outline a class of algorithms that we have not considered in our formalization. We review other
e�orts in formalizing schedulers. We study other e�orts in programmable packet scheduling.

8.1 Non Work-Conserving Algorithms

The focus of our study has been work-conserving scheduling: a pushed packet can immediately
be popped. Non work-conserving algorithms, also known as shaping algorithms, say that a packet
cannot be popped until some time that is computed, speci�cally for that packet, at push. This means
that a less favorably ranked packet may be released before a more favorably ranked one if the
former is ready and the latter is not, and the link may go idle if no packets are ready. We leave
shaping for future work, but provide a few pointers. Sivaraman et al. [2016b] include shaping in
their PIFO tree model. Loom [Stephens et al. 2019] repeatedly reinserts shaped packets into the tree.
Carousel [Saeed et al. 2017] takes a more general approach, applying shaping to all algorithms.

8.2 Formalizations in the Domain of Packet Scheduling

There is a wealth of work from the algorithms and theory communities towards formally studying
packet scheduling using competitive analysis [Aiello et al. 2005; Kesselman et al. 2004; Mansour
et al. 2004]. We refer interested readers to a comprehensive survey by Goldwasser [2010].
Chakareski [2011] formalizes in-network packet scheduling for video transmission as a con-

strained optimization problem expressed using Lagrange multipliers. Nodes coordinate to compute
the optimal rate at which other nodes should send packets. Dürr and Nayak [2016] map packet
scheduling to the no-wait job-shop scheduling problem from operations research, arriving at an
integer linear program that exposes the constraints under which to minimize maximum congestion.
SP-PIFOs [Alcoz et al. 2020] orchestrate a collection of FIFOs to approximate the behavior of a

PIFO. This is bound to be imperfect, so they give a formal way to measure the number of mistakes
their model makes relative to a perfect PIFO. Follow-on analysis by Vass et al. [2022] problematizes
Alcoz et al.’s push-up/push-down heuristic, showing that it can introduce mistakes linearly up to
the number of FIFOs. Their solution is a new heuristic called Spring that counts packets using
exponentially weighted moving averages and can achieve twofold speedup compared to SP-PIFOs.

In search of a universal packet scheduler, Mittal et al. [2016] develop a general model of packet
scheduling. They formally de�ne a schedule as a set of the (�xed set of) packets, the paths those
packets take through the network, and the input and output times the packets enjoy. A schedule is
e�ected by the set of scheduling algorithms that the routers along the way implement. One set of
scheduling algorithms can replay another if, for all packets in the �xed set, it gives each packet an
equal or better output time. Mittal et al. show that there is no universal set of algorithms that can
replay all others, but that the classic least slack time �rst algorithm [Leung 1989] comes close.

8.3 Programmable Scheduling

We outline other lines of work that also orchestrate FIFOs and PIFOs to eke out more expressivity.
We also review work that allows higher-level programming of schedulers.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 269. Publication date: October 2023.

Formal Abstractions for Packet Scheduling 269:23

Orchestrating FIFOs and PIFOs. SP-PIFOs [Alcoz et al. 2020], orchestrate a collection of FIFOs
to approximate the behavior of a PIFO. Sharma et al. [2018] approximate WFQ on recon�gurable
switches. They present a scheduler called rotating strict priority, which transmits packets from
multiple queues in approximate sorted order by grouping FIFOs into two groups and intermittently
switching the relative priority of one group versus the other. Tonic [Arashloo et al. 2020] can
e�ect a range of scheduling algorithms using a FIFO along with the added notion of credit to
implement the round-robin algorithm. Zhang et al. [2021] study packet scheduling using the push-
in pick-out (PIPO) data structure. A PIPO is an approximation of the push-in extract-out (PIEO)
queue [Shrivastav 2019] which picks out the best-ranked item that also satis�es some pop-time
predicate. Sivaraman et al. [2016b] orchestrate PIFOs into a tree structure. They provide a hardware
design targeting shared memory switches. They explain how a PIFO tree can be laid out in memory
as a complete mesh, and sketch a compiler from the logical tree to the theoretical hardware mesh.

Programming at a higher level. QtKAT [Schlesinger et al. 2015] extends NetKAT [Anderson et al.
2014] to bring quality of service into consideration. Their work paves the way for formal analysis
using network calculus and, eventually, the veri�cation of network-wide queueing. Arashloo et al.
[2016] present SNAP, a tool that allows a “one big switch” abstraction: users can reason at a global
level and program a �ctitious big switch, and the tool checks the program for correctness and
compiles it to the distributed setting. NUMFabric [Nagaraj et al. 2016] allows the user to specify
a utility maximization problem, once, and it then calculates the allocations of bandwidth that
would maximize the utility function across the distributed network. Sivaraman et al. [2016a] allow
data-plane programming as a high level “packet transaction” written in Domino, a new imperative
language that compiles to line-rate hardware-level code running on programmable switches.

9 CONCLUSION AND FUTURE WORK

This paper explored higher-level abstractions for packet scheduling. Starting with a proposal by
Sivaraman et al. [2016b], we formalized the syntax and semantics of PIFO trees, developed alternate
characterizations in terms of permutations on packets, established expressiveness results. We also
designed, implemented and tested embedding algorithms. Overall, we believe our work represents
the next step toward developing a programming language account of scheduling algorithms—an
important topic that has mostly remained in the domain of networking and systems. In the future,
we are interested in further exploring the theory and practice of scheduling algorithms, including
non-work conserving algorithms as well as applications to other domains, such as task scheduling.

10 DATA AVAILABILITY STATEMENT

Code supporting this paper is maintained publicly on GitHub [Mohan et al. 2023a]. The version
submitted to the OOPSLA ’23 AEC is permanently archived on Zenodo [Mohan et al. 2023c]. A
version of this paper that includes proofs of lemmas in §4 and §5 is on arXiv [Mohan et al. 2023b].

ACKNOWLEDGMENTS

Thanks to Éva Tardos for suggesting themore general embedding algorithm for arbitrary target trees.
This work was supported by the NSF under award 2118709, grant CCF-2008083, and grant FMiTF-
1918396, the ONR under contract N68335-22-C-0411, and DARPA under contract HR001120C0107.
T. Kappé was partially supported by the EU’s Horizon 2020 research and innovation program under
Marie Skłodowska-Curie grant VERLAN (101027412).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 269. Publication date: October 2023.

269:24 Anshuman Mohan, Yunhe Liu, Nate Foster, Tobias Kappé, and Dexter Kozen

REFERENCES

William Aiello, Yishay Mansour, S. Rajagopolan, and Adi Rosén. 2005. Competitive queue policies for di�erentiated services.
J. Algorithms 55, 2 (2005), 113–141. https://doi.org/10.1016/j.jalgor.2004.04.004

Albert Gran Alcoz, Alexander Dietmüller, and Laurent Vanbever. 2020. SP-PIFO: Approximating Push-In First-Out Behaviors
using Strict-Priority Queues. In NSDI. USENIX Association, Berkeley, California, 59–76. https://www.usenix.org/
conference/nsdi20/presentation/alcoz

Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen, Cole Schlesinger, and David Walker.
2014. NetKAT: semantic foundations for networks. In POPL. ACM, New York, 113–126. https://doi.org/10.1145/2535838.
2535862

Mina Tahmasbi Arashloo, Yaron Koral, Michael Greenberg, Jennifer Rexford, and David Walker. 2016. SNAP: Stateful
Network-Wide Abstractions for Packet Processing. In SIGCOMM. ACM, New York, 29–43. https://doi.org/10.1145/
2934872.2934892

Mina Tahmasbi Arashloo, Alexey Lavrov, Manya Ghobadi, Jennifer Rexford, David Walker, and David Wentzla�. 2020.
Enabling Programmable Transport Protocols in High-Speed NICs. In NSDI. USENIX Association, Berkeley, California,
93–109. https://www.usenix.org/conference/nsdi20/presentation/arashloo

Jon C. R. Bennett and Hui Zhang. 1996. Hierarchical Packet Fair Queueing Algorithms. In SIGCOMM. ACM, New York,
143–156. https://doi.org/10.1145/248156.248170

Jacob Chakareski. 2011. In-Network Packet Scheduling and Rate Allocation: A Content Delivery Perspective. IEEE Trans.

Multim. 13, 5 (2011), 1092–1102. https://doi.org/10.1109/TMM.2011.2157673
Thomas M. Cover and Joy A. Thomas. 2006. Elements of information theory. Wiley, Hoboken, New Jersey.
Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone, and Robert Soulé. 2015. NetPaxos: consensus at network

speed. In SOSR. ACM, New York, 5:1–5:7. https://doi.org/10.1145/2774993.2774999
Keri D’Angelo and Dexter Kozen. 2023. Abstract Hu�man Coding and PIFO Tree Embeddings. In Data Compression

Conference, DCC 2023. IEEE, 1. https://doi.org/10.1109/DCC55655.2023.00077
Alan J. Demers, Srinivasan Keshav, and Scott Shenker. 1989. Analysis and Simulation of a Fair Queueing Algorithm. In

SIGCOMM. ACM, New York, 1–12. https://doi.org/10.1145/75246.75248
Frank Dürr and Naresh Ganesh Nayak. 2016. No-wait Packet Scheduling for IEEE Time-sensitive Networks (TSN). In RTNS.

ACM, New York, 203–212. https://doi.org/10.1145/2997465.2997494
Nate Foster, Nick McKeown, Jennifer Rexford, Guru M. Parulkar, Larry L. Peterson, and M. Oguz Sunay. 2020. Using deep

programmability to put network owners in control. Comput. Commun. Rev. 50, 4 (2020), 82–88. https://doi.org/10.1145/
3431832.3431842

Michael H. Goldwasser. 2010. A survey of bu�er management policies for packet switches. SIGACT News 41, 1 (2010),
100–128. https://doi.org/10.1145/1753171.1753195

Intel. 2022. Product Brief: Intel To�no 3 Intelligent Fabric Processors. Technical Report. Intel. https://www.intel.com/content/
dam/www/central-libraries/us/en/documents/2022-05/to�no-3-intelligent-fabric-processors-brief.pdf

Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soulé, Changhoon Kim, and Ion Stoica. 2018.
NetChain: Scale-Free Sub-RTT Coordination. In NSDI. USENIX Association, Berkeley, California, 35–49. https://www.
usenix.org/conference/nsdi18/presentation/jin

Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion Stoica. 2017.
NetCache: Balancing Key-Value Stores with Fast In-Network Caching. In SOSP. ACM, New York, 121–136. https:
//doi.org/10.1145/3132747.3132764

Alexander Kesselman, Zvi Lotker, Yishay Mansour, Boaz Patt-Shamir, Baruch Schieber, and Maxim Sviridenko. 2004.
Bu�er Over�ow Management in QoS Switches. SIAM J. Comput. 33, 3 (2004), 563–583. https://doi.org/10.1137/
S0097539701399666

Jon M. Kleinberg and Éva Tardos. 2006. Algorithm design. Addison-Wesley, Boston, Massachusetts.
Joseph Y.-T. Leung. 1989. A New Algorithm for Scheduling Periodic Real-Time Tasks. Algorithmica 4, 2 (1989), 209–219.

https://doi.org/10.1007/BF01553887
Bingzhe Liu, Ali Kheradmand, Matthew Caesar, and Philip Brighten Godfrey. 2020. Towards Veri�ed Self-Driving Infras-

tructure. In HotNets. ACM, New York, 96–102. https://doi.org/10.1145/3422604.3425949
Yishay Mansour, Boaz Patt-Shamir, and Ofer Lapid. 2004. Optimal smoothing schedules for real-time streams. Distributed

Comput. 17, 1 (2004), 77–89. https://doi.org/10.1007/s00446-003-0101-0
Robin Milner. 1971. An Algebraic De�nition of Simulation Between Programs. In IJCAI. ACM, New York, 481–489.

http://ijcai.org/Proceedings/71/Papers/044.pdf
Radhika Mittal, Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker. 2016. Universal Packet Scheduling. In NSDI. USENIX

Association, Berkeley, California, 501–521. https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/
mittal

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 269. Publication date: October 2023.

https://doi.org/10.1016/j.jalgor.2004.04.004
https://www.usenix.org/conference/nsdi20/presentation/alcoz
https://www.usenix.org/conference/nsdi20/presentation/alcoz
https://doi.org/10.1145/2535838.2535862
https://doi.org/10.1145/2535838.2535862
https://doi.org/10.1145/2934872.2934892
https://doi.org/10.1145/2934872.2934892
https://www.usenix.org/conference/nsdi20/presentation/arashloo
https://doi.org/10.1145/248156.248170
https://doi.org/10.1109/TMM.2011.2157673
https://doi.org/10.1145/2774993.2774999
https://doi.org/10.1109/DCC55655.2023.00077
https://doi.org/10.1145/75246.75248
https://doi.org/10.1145/2997465.2997494
https://doi.org/10.1145/3431832.3431842
https://doi.org/10.1145/3431832.3431842
https://doi.org/10.1145/1753171.1753195
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2022-05/tofino-3-intelligent-fabric-processors-brief.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2022-05/tofino-3-intelligent-fabric-processors-brief.pdf
https://www.usenix.org/conference/nsdi18/presentation/jin
https://www.usenix.org/conference/nsdi18/presentation/jin
https://doi.org/10.1145/3132747.3132764
https://doi.org/10.1145/3132747.3132764
https://doi.org/10.1137/S0097539701399666
https://doi.org/10.1137/S0097539701399666
https://doi.org/10.1007/BF01553887
https://doi.org/10.1145/3422604.3425949
https://doi.org/10.1007/s00446-003-0101-0
http://ijcai.org/Proceedings/71/Papers/044.pdf
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/mittal
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/mittal

Formal Abstractions for Packet Scheduling 269:25

Anshuman Mohan, Yunhe Liu, Nate Foster, Tobias Kappé, and Dexter Kozen. 2023a. Code repository in support of ‘Formal
Abstractions for Packet Scheduling’. https://github.com/cornell-netlab/pifo-trees-artifact

Anshuman Mohan, Yunhe Liu, Nate Foster, Tobias Kappé, and Dexter Kozen. 2023b. Formal Abstractions for Packet
Scheduling: Extended Version. (2023). https://arxiv.org/abs/2211.11659

Anshuman Mohan, Yunhe Liu, Nate Foster, Tobias Kappé, and Dexter Kozen. 2023c. Software artifact in Support of ‘Formal
Abstractions for Packet Scheduling’. https://doi.org/10.5281/zenodo.8329703

Kanthi Nagaraj, Dinesh Bharadia, Hongzi Mao, Sandeep Chinchali, Mohammad Alizadeh, and Sachin Katti. 2016. NUMFabric:
Fast and Flexible Bandwidth Allocation in Datacenters. In SIGCOMM. ACM, New York, 188–201. https://doi.org/10.1145/
2934872.2934890

Jan J. M. M. Rutten. 2000. Universal coalgebra: a theory of systems. Theor. Comput. Sci. 249, 1 (2000), 3–80. https:
//doi.org/10.1016/S0304-3975(00)00056-6

Ahmed Saeed, Nandita Dukkipati, Vytautas Valancius, Vinh The Lam, Carlo Contavalli, and Amin Vahdat. 2017. Carousel:
Scalable Tra�c Shaping at End Hosts. In SIGCOMM. ACM, New York, 404–417. https://doi.org/10.1145/3098822.3098852

Cole Schlesinger, Hitesh Ballani, Thomas Karagiannis, and Dimitrios Vytiniotis. 2015. Quality of Service Abstractions

for Software-de�ned Networks. Technical Report. Microsoft Research. https://www.microsoft.com/en-us/research/
publication/quality-of-service-abstractions-for-software-de�ned-networks/

Naveen Kr. Sharma, Ming Liu, Kishore Atreya, and Arvind Krishnamurthy. 2018. Approximating Fair Queueing on
Recon�gurable Switches. In NSDI. USENIX Association, Berkeley, California, 1–16. https://www.usenix.org/conference/
nsdi18/presentation/sharma

Vishal Shrivastav. 2019. Fast, scalable, and programmable packet scheduler in hardware. In SIGCOMM. ACM, New York,
367–379. https://doi.org/10.1145/3341302.3342090

Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Mohammad Alizadeh, Hari Balakrishnan, George
Varghese, Nick McKeown, and Steve Licking. 2016a. Packet Transactions: High-Level Programming for Line-Rate
Switches. In SIGCOMM. ACM, New York, 15–28. https://doi.org/10.1145/2934872.2934900

Anirudh Sivaraman, Suvinay Subramanian, Mohammad Alizadeh, Sharad Chole, Shang-Tse Chuang, Anurag Agrawal, Hari
Balakrishnan, Tom Edsall, Sachin Katti, and Nick McKeown. 2016b. Programmable Packet Scheduling at Line Rate. In
SIGCOMM. ACM, New York, 44–57. https://doi.org/10.1145/2934872.2934899

Brent E. Stephens, Aditya Akella, and Michael M. Swift. 2019. Loom: Flexible and E�cient NIC Packet Scheduling. In NSDI.
USENIX Association, Berkeley, California, 33–46. https://www.usenix.org/conference/nsdi19/presentation/stephens

Balázs Vass, Csaba Sarkadi, andGábor Rétvári. 2022. Programmable Packet SchedulingWith SP-PIFO: Theory, Algorithms and
Evaluation. In INFOCOMWorkshops. IEEE, NewYork, 1–6. https://doi.org/10.1109/INFOCOMWKSHPS54753.2022.9798055

Chuwen Zhang, Zhikang Chen, Haoyu Song, Ruyi Yao, Yang Xu, Yi Wang, Ji Miao, and Bin Liu. 2021. PIPO: E�cient
Programmable Scheduling for Time Sensitive Networking. In ICNP. IEEE, New York, 1–11. https://doi.org/10.1109/
ICNP52444.2021.9651944

Received 2023-04-14; accepted 2023-08-27

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 269. Publication date: October 2023.

https://github.com/cornell-netlab/pifo-trees-artifact
https://arxiv.org/abs/2211.11659
https://doi.org/10.5281/zenodo.8329703
https://doi.org/10.1145/2934872.2934890
https://doi.org/10.1145/2934872.2934890
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1145/3098822.3098852
https://www.microsoft.com/en-us/research/publication/quality-of-service-abstractions-for-software-defined-networks/
https://www.microsoft.com/en-us/research/publication/quality-of-service-abstractions-for-software-defined-networks/
https://www.usenix.org/conference/nsdi18/presentation/sharma
https://www.usenix.org/conference/nsdi18/presentation/sharma
https://doi.org/10.1145/3341302.3342090
https://doi.org/10.1145/2934872.2934900
https://doi.org/10.1145/2934872.2934899
https://www.usenix.org/conference/nsdi19/presentation/stephens
https://doi.org/10.1109/INFOCOMWKSHPS54753.2022.9798055
https://doi.org/10.1109/ICNP52444.2021.9651944
https://doi.org/10.1109/ICNP52444.2021.9651944

	Abstract
	1 Introduction
	2 Overview
	2.1 Programmable Priority Queues
	2.2 Achieving Balance within Flows
	2.3 Introducing PIFO Trees
	2.4 Implementations and Expressiveness
	2.5 Technical Contributions

	3 Structure and Semantics
	3.1 Structure
	3.2 Semantics
	3.3 Well-Formedness

	4 Limits to Expressiveness
	4.1 Simulation
	4.2 Snapshots and Flushes
	4.3 Fewer Leaves are Less Expressive

	5 Embedding and Simulation
	5.1 Embedding
	5.2 Lifting Embeddings
	5.3 Preserving pop
	5.4 Preserving push
	5.5 Simulation
	5.6 A Counterexample

	6 Embedding Algorithms
	6.1 Embedding into Complete d-ary Topologies
	6.2 Embedding into Arbitrary Topologies

	7 Implementation
	7.1 Preliminaries
	7.2 Standard Algorithms
	7.3 Hierarchical Algorithms
	7.4 Compilation

	8 Related Work
	8.1 Non Work-Conserving Algorithms
	8.2 Formalizations in the Domain of Packet Scheduling
	8.3 Programmable Scheduling

	9 Conclusion and Future Work
	10 Data Availability Statement
	References

