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ABSTRACT
Current approaches to network observability rely on techniques like
active probing, packet sampling, and path-level telemetry, which
only provide a partial view. This paper presents causal telemetry,
a new model that adapts ideas from distributed systems to the
network setting. Causal telemetry captures causal relationships
between events, including those that take place on physically sepa-
rated devices. We motivate causal telemetry through examples, we
show how it can be used to diagnose anomalies and faults, and we
present algorithms for constructing the needed causal graphs from
network executions. We develop a P4-based prototype implementa-
tion, CoCaTel, and discuss a case study that uses causal telemetry
to detect Priority-Based Flow Control (PFC) deadlocks.
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1 INTRODUCTION
Networks have become complex distributed systems [12]. The pro-
cessors in these distributed systems are switches that use sophisti-
cated algorithms (e.g., [1, 19]) to optimize the paths that packets
take as they traverse the network. But complex distributed systems
are notoriously difficult to manage, and networks are no exception.

Management of a complex system invariably requires visibility
into the states of the system’s components. With in-band network
telemetry (INT) [14, 17], that visibility is provided by augmenting
each packet with a log that records how that packet is processed at
each hop. These logs are then aggregated at a central collector and
the operator gets visibility into the network’s operation by querying
the collector. For example, a query might retrieve a packet’s end-
to-end forwarding path, the specific forwarding entries used on
individual devices, or the amount of time spent queueing.
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The overhead associated with implementing INT is non-trivial.
Even so, it has not dissuaded the research community from in-
vestigating approaches based on telemetry, doubtless because the
visibility provided into a network’s operation is so valuable to oper-
ators. Visibility, however, depends on what information is collected
and what queries are supported.

For the algorithms that network switches run today, queries
involving causal connections between events at switches would be
invaluable. For example: was a recent change to a forwarding rule
at one switch responsible for the delays at another switch, or was
it instead the delays themselves that prompted the change? Prior
work on supporting INT has largely ignored causality. Reading real-
time clocks at switches sometimes works as a proxy, but not always.
Moreover, even were clocks kept synchronized, there would still
be unnecessary complexities in formulating queries, since packets
usually visit switches at different times, not contemporaneously.

This paper introduces a new basis for INT, causal telemetry, as
well as a prototype, CoCaTel, that establishes the practicality of
the approach. CoCaTel supports queries about causality between
network events; it also handles all of the queries that other INT
systems support. The overhead associated with running CoCaTel is
comparable to the overhead of the prior INT systems. Engineering
innovations designed to improve the performance of INT imple-
mentations should apply to CoCaTel, too.

A proposal to use causality as the foundation for understanding
network behavior should not be surprising. Over four decades
ago, Lamport [5, 25] showed the benefits of viewing executions
of a distributed system in terms of causally-related events, with
computations depicted as space-time diagrams and with cuts used
to describe states that might be observed. Causal telemetry uses
space-time diagrams as its data model, and CoCaTel incorporates
algorithms for constructing and querying this data model.

Existing network telemetry does not track causality.1 We con-
jecture two reasons for this gap:
• A misplaced fear that the additional expressiveness causality
provides is useless. If the data plane implements mostly-stateless
forwarding, why bother tracking inter-packet relationships? The
examples in §2 and §6 show that causality is useful for visibility
into the operation of algorithms found in today’s networks.

• A misplaced fear that tracking causality would be too costly. We
find that CoCaTel imposes only modest overheads above INT,
which is widely deployed.
In sum, we propose a new foundation for understanding network

behavior—causality, rather than real-time clocks. We argue that
causality is necessary to answer queries of practical interest in
modern networks, including functional and performance queries.
We relate causal telemetry to prior work on INT and to systems like

1Cuts, however, have been used—see work by Yaseen et al. [37]
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Figure 1: Left: example topology with high latency and transient loop; Right: corresponding space-time diagram.

synchronized snapshots, where a request can be issued to collect
current state information. Our CoCaTel prototype demonstrates
that causal telemetry can be implemented on P4-based switches.
We also discuss opportunities for optimization that can reduce
overhead. Finally, we discuss our vision for future work, including
support for multi-tenancy and a security model.

2 OVERVIEW
We start by reviewing techniques for understanding network be-
havior and show how causality can improve on these approaches.

Command-Line Utilities and Packet Sampling. Many operators
rely on command-line tools (e.g., ping and traceroute) to under-
stand network behavior. These tools use probe packets to check
connectivity and to determine forwarding paths. “Bump in the wire”
monitoring middleboxes (e.g., sFlow, etc.) produce aggregate sta-
tistics by sampling packets flowing across links. These approaches
are useful, but provide only limited visibility.

Global States. In a software-defined network (SDN), the con-
troller maintains a global view of the network. This view can be
analyzed to detect and diagnose faults. For example, data-plane
verification tools like Header Space Analysis (HSA) [20] and Veri-
flow [21], check key invariants (e.g., reachability, loop freedom, etc.)
every time the controller changes the network configuration. Re-
cent work by Yaseen et al. [37] uses Chandy-Lamport snapshots [5]
of the data plane state. However, while it’s attractive to think in
terms of global states, this approach also has limitations: a packet
traversing the network can be part of multiple global states—e.g.,
during reconfiguration. Hence, conclusions obtained by analyzing
global states are not always valid for states “seen” by individual
packets—analyses that examine multiple states are required.

In-Band Telemetry. With INT [14, 17], each packet logs the states
it encounters as it traverses the network. For example, the log might
record the end-to-end path, the forwarding rules used on each

switch, or the total time spent queueing. At the network edge, the
log is collected at a server where it can be analyzed. INT is popular,
and for good reason—observing how each packet is processed is a
powerful capability. But is INT the ultimate network observability
tool? Being based on logs for individual packets, it cannot provide
insights about scenarios involvingmultiple packets or the controller.
Again, more complex analyses are required.

Our Approach: Causal Telemetry. This paper presents a new ap-
proach for understanding network behavior.We call it causal teleme-
try. As the name suggests, causal telemetry is based on INT ex-
tended with information to track causality. That is, packet logs
aggregate state along the end-to-end forwarding path and they also
keep track of causal relationships among packets, control messages,
etc. Causal telemetry thus captures aspects of network behavior
that are not adequately modeled by existing frameworks.

Example. To illustrate causal telemetry’s benefits, consider the
execution shown in Figure 1. The network has a leaf-spine topology
with two spines (S1 and S2), four leaves (L1 through L4), and four
hosts (H1 through H4). The controller (C) manages the configura-
tion of the switches, which initially forward packets along these
paths (among others):

• H1 to H2 via [L1,S1,L2]
• H2 to H1 via [L2,S2,L1]
• H3 to H1 via [L3,S1,L1]
• H3 to H4 via [L3,S2,L4]

Suppose the following sequence of events occurs, as depicted in
Figure 1. First, H1 sends a packet to H2 ( 1○). Second, H3 sends a
packet toH4 ( 2○). Third, after receiving the packet fromH3, switch
S2 signals the controller ( 3○), which reconfigures the switches to
forward packets along the following paths, among others ( 4○):

• H1 to H2 via [L1, S2, L2]
• H2 to H1 via [L2, S1, L1]
• H3 to H1 via [L3, S2, L2, S1, L1]
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Finally, H1 sends another packet to H2, which now follows a
different path ( 5○). The reasons for signaling the controller are
unimportant—e.g., perhaps S2’s was experiencing congestion or
its existing forwarding rules timed out. What matters is that the
network was reconfigured.

Now suppose the final packet ( 5○) experienced high latency at S2.
Using INT, we could easily detect this latency increase by recording
the amount of time the packet spends in each queue [14]. However,
it’s surprisingly hard with INT to get a deeper explanation for why
the performance of theH1 toH2 flowwas degraded. If the logs have
detailed timestamps, we can determine what other packets were in
the queue on S2 when the packet experienced high latency. But we
cannot easily explain why H1 to H2 traffic was being forwarded
via S2 in the first place. For reaching that conclusion, we would
need to relate the packet coming from H1 to the packet coming
from H3 that caused S2 to signal the controller! Note that because
the packets followed disjoint paths, we cannot reliably determine
which came first, unless the switches have synchronized clocks.

Here, what we need is not only to keep track of the states ob-
served by individual packets, but also to record causal relationships
between them. Figure 1 shows a space-time diagram that gives
those causal relationships for this example. The full interpretation
of this diagram is explained in the next section. For now, notice
that it records the trajectories followed by each individual packet,
as well as relationships among packets. The re-routing of the H1 to
H2 flow after the earlier packet from H3 to H4 can be easily seen.
Hence, the H3 packet is a potential cause of that routing change.

There is a second issue arising in this example that can also be
understood in terms of the space-time diagrams. To reconfigure
the switches, the controller sent messages to S1 and L1 through
L3 concurrently. However, if S2 is reconfigured before L2, then
there will be a transient loop—L2will use the original configuration
to send traffic destined for H1 to S2, while S2 will use the new
configuration to send traffic destined for H1 back to L2. This loop
disappears as soon as the configuration on L2 is updated. But this
behavior is likely a bug and could indicate a deeper issue with the
controller. With INT, we would not detect this bug, since none of
the packets in our scenario followed a loopy path. But using the
space-time diagram, we immediately see the bug is possible—e.g., if
anH2 toH1 packet had been sent at the “cut” indicated by the black
line, the packet would have been forwarded in a loop. So we see
how a space-time diagram can be used for hypothetical reasoning
and post-hoc analysis too.

3 BUILDING SPACE-TIME DIAGRAMS
Causal telemetry supports three kinds of network events: sends,
receives, and internal events. Send and receive events result from
communication between different switches, or between switches
and the controller; internal events result from packet-processing
on individual devices.

Like INT [14], causal telemetry generates a log for each network
event—e.g., receipt of a packet at a switch—and collects these logs
at a server, where they can be analyzed. Existing systems [17] have
already shown the feasibility of generating such logs, typically by
using a custom header to aggregate information along the end-to-
end forwarding path.

However, to capture causality between events—especially those
occurring on physically-separate nodes—we need to add additional
information to the log. We introduce an event identifier (event_id),
which is a pair comprising a node identifier (node_id) and a mono-
tonically increasing local timestamp (node_ts). For internal events,
we simply store the event identifier in the log. For send events,
we store the event identifier in the log and also embed it in the
outgoing message. For receive events, we extract the identifier of
the sender and record the sender and receiver in the log.

This simple scheme suffices for building a space-time diagram—
i.e., a directed graph in which vertices encode events and edges
encode causality between events. When we draw a space-time
diagram, we group the vertices representing events on the same
device (e.g. switch or controller) together.2

It is easy to order events on the same device, as event identifiers
are unique and have monotonically increasing timestamps. Hence,
timestamps induce a total order on the events on a given device.
However, thus far, event identifiers do not impose an order on
events occurring on different devices. It turns out that not every
pair of events on different devices can be ordered. The best one
can hope to do, as observed by Lamport [25], is to relate send and
receive events—i.e., the send event causally precedes the receive
event. This is precisely the information stored in the logs of the
receive events. By reading the log of each receive event, we are
able to add the causal edges between every pair of send event and
receive event to the space-time diagram.

Readers familiar with the distributed systems literature may
observe that this scheme is not a direct implementation of the
Lamport clocks. Indeed, because our scheme explicitly carries event
identifiers with packets, we are able to encode the edges in the
causal diagram directly, rather than having to reconstruct them
from an ordering on logical clock timestamps.

4 P4-BASED IMPLEMENTATION
Figure 2 depicts a P4 switch that generates the logs needed to
implement causal telemetry, as just described.

Generating Logs. Log data is sourced from ordinary packet head-
ers; metadata (managed by the user program); and by a special
causal telemetry header, which keeps track of the (event_id). Log
packets are generated using the E2E clone primitive on P4 switches.
After the log packet is generated, it traverses the egress pipeline,
where it is truncated to remove extraneous information—e.g., the
payload. The log packet is then forwarded to the collector.

To reduce the number of logs that must be transmitted, causal
telemetry optionally supports batching: P4 registers are used to
store the information from several logs, and the combined log
is shipped periodically to the collector (e.g. when the size of the
combined log approaches the MTU). Note that this approach is
slightly different than the one used in INT systems, where logs are
aggregated on packets and only sent to the collector at the last hop.
Batching event logs on switches rather than in packets provides an
easy mechanism for enabling or disabling telemetry—an operator
can use an active packet to turn log collection “on” or “off”. Batch

2Devices can be defined at different granularities as long as the events on the same
device share the same local clock. For example, we might choose to model a device as
a single pipeline on a switch, or as the entire switch.
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Figure 2: A packet processed by a BMv2 switch implementing causal telemetry.

logs on switches also lays the groundwork for on-switch processing
of logs (e.g., filtering, aggregation, etc.), which could further reduce
storage and computation costs at the collector.

Device Granularity. Existing INT systems often abstract each
switch as a single processor. Real-world switches have multiple
independent processing pipelines that operate in parallel. To ac-
curately model the concurrency that may occur within a switch,
our prototype implementation models switches at pipeline gran-
ularity. When a user packet is processed at a BMv2 switch, we
add separate send and receive events to the space-time diagram
for the ingress and egress pipelines. Modeling causality at pipeline
granularity gives additional visibility—e.g., it allows operators to
observe packet reordering that can occur due to queueing.

Control Plane Events. To model causality induced by the control-
plane, we add events for messages that travel between controllers
and switches. The controller is responsible for generating logs for
control messages and delivering the logs to the collector. However,
we also need to determine the relative ordering of control events
and packet events on switches. To achieve this, we introduce an
additional register in the P4 program that records a monotonically
increasing version number on receipt of each message from the
controller. We store this version number in the log for packet events
and extend the ordering on events so that a controller message
whose version is less than or equal to 𝑉 causally precedes all data
plane events whose log contains version 𝑉 . This scheme neatly
solves the problem of ordering control and packet events, but it does
require atomic switch reconfiguration—i.e., updating the version
number and a forwarding rule. In settings where the control API
does not support atomic updates, their effect can be simulated using
consistent updates [34].

5 COCATEL PROTOTYPE
We have built a P4-based prototype of causal telemetry, called Co-
CaTel, that runs on the Behavioral Model Version 2 (Bmv2) [9]
software switch. CoCaTel consists of ∼1100 lines of P4 code to
generate and collect event logs in the programmable data plane
and ∼700 lines of Python code to build the space-time diagram at
the centralized server. In addition, we have implemented 6 appli-
cations for CoCaTel, including an application that implements all
of the query operators in Marple [32], thereby demonstrating that
CoCaTel is more expressive.

6 CASE STUDY: PFC DEADLOCK
As a case study to illustrate the power of causal telemetry, we have
used CoCaTel to provide visibility into Priority-Based Flow Control
(PFC) [13], a mechanism used in the implementation of lossless
fabrics. When the queue depth on a switch 𝑆 exceeds a pre-set
threshold, 𝑆 sends a PFC_STOP message to its upstream neighbor,
requesting that it stop sending packets to 𝑆 . Later, if the queue
depth at 𝑆 goes below a pre-set threshold, 𝑆 sends a PFC_RESUME
message, informing the upstream switch it may resume.

PFC can create cyclic buffer dependencies between switches, lead-
ing to a deadlock [36]. While prior work has developed solutions for
deadlock detection in networks [28, 35, 36], these approaches are
task specific and cannot be used to monitor other network behav-
iors at the same time. Existing INT systems [14, 17] have not been
used to detect deadlocks, but even in situations where they could
help, they would lack the capability to help operators to ascertain
the causal sequence of events that led to deadlock in the first place.

In contrast, we can easily detect PFC deadlocks in CoCaTel sim-
ply by finding a consistent cut in which there is a cycle of switches,
all waiting for their downstream neighbor. CoCaTel’s space-time
diagram captures the causal ordering of the events that led to the
deadlock, which gives operators a basis for identifying good strate-
gies to avoid future occurrences.

Figure 3 shows a scenario where a PFC deadlock exists. There
are three concurrent flows:

• F1 flows from H1 to H2 via [S1, S2]
• F2 flows from H2 to H3 via [S2, S3]
• F3 flows from H3 to H1 via [S3, S1]

The relevant switch state, as shown in Figure 3 are (i) the for-
warding table; (ii) a register that records whether a 𝑃𝐹𝐶_𝑆𝑇𝑂𝑃 has
been received from upstream switches, and (iii) the packet queues.

Suppose a packet goes from S1 to S2. Upon receiving this packet,
the queue on S2 exceeds the pre-set threshold and sends a PFC_STOP
message to S1. S1 then adds S2 to its PFC register and stops sending
packets toward S2. The next packet to be dequeued at S1 is a packet
in flow F1 which, according to S1’s forwarding table, should be
forwarded to S2. But S1 cannot transmit the packet until it receives
a PFC_RESUME message from S2. So S1 is “waiting for” S2 to make
progress. In addition, suppose the same interaction subsequently
happened between S2 and S3, and between S3 and S1, causing S2
to wait for S3 and S3 to wait for S1. It should be clear at this point
there is a cyclic “waits-for” dependency among S1, S2 and S3, so
the network is deadlocked and no switch can make progress.
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Figure 3: Case study: PFC deadlock detection.

Detecting deadlock is a classic use for consistent cuts on space-
time diagrams. The right side of Figure 3 shows a cut, indicated
by the black line, in which an operator can easily spot the cyclic
wait-for relationships among S1, S2, and S3. Moreover, the space-
time diagram clearly shows the order of switches “locked” by the
PFC_STOP messages is: S1, S2, and then S3. Using this information,
an operator can easily locate where the PFC deadlock started in the
network and design the resolution accordingly.

Note that PFC deadlock is an example of a purely data-plane
algorithm where causality is useful for understanding network
behavior. As more and more sophisticated data plane algorithms
are implemented in P4, we expect that similar examples will follow.

7 DISCUSSION AND FUTUREWORK
Expressiveness. Causal telemetry is more expressive than exist-

ing systems, as can be seen from the fact that the their data models
can be obtained as projections of causal telemetry’s space-time
diagrams. For example, by retaining only selected events of interest,
we get the data model used by command-line tools (e.g., ping and
traceroute) and systems based on sampling (e.g., sFlow). By retain-
ing only the events for a single switch, ordered by local timestamp,
we get the data model used by Sonata [15]. By grouping events
related to each individual flow (e.g., identified by a 5-tuple), order-
ing them according to causality, and applying various aggregation
functions, we get the data model used by sketch-based telemetry
systems [7, 11, 26, 27, 31, 33, 38]. Finally, by enumerating consistent
cuts we get consistent global states, which is the data model used
by Speedlight [37]. Based on these examples and others, we be-
lieve causal telemetry is both expressive and the right foundational
model for network observability.

Efficiency. Causal telemetry adds only modest overheads to ex-
isting INT systems [14, 17]. Specifically, overheads are added at
two places. First, event_id and control plane version number (de-
scribed in section 4) are added to each log packet. The added fields
do not increase the number of log packets and only constitute a
small fraction of each log packet. Causal telemetry also supports
log batching to further reduce the overhead of shipping logs to
the collector. Since we batch logs on each switch, in the future, we
expect that users will be able to make trade-offs between on-switch
and at-collector log processing flexibly. Second, we generate logs
for messages that travel between controllers and switches whereas
existing INT systems do not keep track of control messages at all.
The logs for control messages add only modest overheads because
the number of control messages is very small compared to the
number of data plane packets and these logs can be batched at the
controller to further reduce overhead. In the future, we plan to
deploy CoCaTel to a hardware testbed and evaluate it on real traffic
to conduct an empirical analysis of overheads.

Dynamic Customization. A practical implementation of causal
telemetry must navigate trade-offs between expressiveness and
overhead. In principle, all of the information related to an event
could be written to the log, but in practice, we often need to bound
the size of the log to reduce storage and communication overheads.
We believe operators should have the power to define what infor-
mation goes into the log. We imagine a future implementation in
which new logging schemes can be defined dynamically, where
multiple schemes can be supported concurrently, and where every
node in the network—e.g. switches, controllers, ends hosts, etc.—
can generate event logs, giving operators visibility into behaviors
at different layers.
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Failures. Failures can undermine the visibility offered by causal
telemetry. For instance, dropped packets may not generate events,
and logs may be lost on their way to the collector. These issues
arise in systems based on INT as well. To handle dropped packets,
one can augment our model with new events. We plan to explore
using in-network failure detection and mirror-on-drop to support
these extensions. In addition, to handle lost logs, one can create
a reliable network fabric for communication with the controller,
possibly by assigning higher priority to log packets.

Security. The ability to make detailed observations of network
state raises questions about security, particularly in multi-tenant
settings. We plan to extend causal telemetry by adding a security
model that incorporates authorization. This model will allow net-
work owners to specify policies that control the flow of information,
thereby ensuring that confidential information is not leaked via
telemetry and also that telemetry data is not tainted.

8 RELATEDWORK
Causal telemetry extends existing in-band telemetry systems [14, 16,
17, 32, 40]. These INT systems are popular despite their overheads,
probably because they provide fine-grained visibility into network
behavior. However, they either cannot relate behaviors occurring on
different devices, or they rely on real-time clocks local to switches.
So they lack mechanisms for tracking causality.

Speedlight [37] recognized the importance of causal consistency
in the context of networks, adopting Lamport-Chandy snapshots
for network executions. Compared to causal telemetry, Speedlight
follows a sampling approach and constructs snapshots when di-
rected by the network operator. As a result, Speedlight may miss
important network events and cannot do post-hoc analyses. In
contrast, causal graphs produced by CoCaTel can generate every
consistent snapshot of a network execution.

Causal analysis on network logs [18, 22–24] recognized the im-
portance of understanding the causal relationship between network
events, and uses causal inference to mine the causality between
network anomalies and their causes. Our work differs by using
the happens-before relationship [25] whereas prior work by Jarry
et al. [18] and Kobayashi et al. [22, 23, 24] relies on correlations
between events. Both happens-before and correlation can be seen
as approximations of “true” causality. Correlation fails to identify
causally-related events that happen infrequently, whereas happens-
before might deem a pair of events as related even when there is no
causal connection between them. The false-positives that happens-
before creates are easily dismissed by using further analysis. In
contrast, the false-negatives generated by using correlations are
not easily detected and, indeed, might hide the source of problem-
atic behavior we are trying to analyze.

A number of prior systems have explored the design and im-
plementation of systems for querying the state of a network [4, 8,
11, 15, 33, 39]. These systems have made advances in the design of
high-level query languages and in the development of efficient com-
pilation techniques, but the languages lack an expressive semantic
foundation—particularly for queries involving network-wide state.
Most prior work restricts the set of queries that can be posed to
work around this limitation. For example, Sonata focuses on queries
for a single switch [15], while Marple [32] focuses on queries that

either (i) concern a single switch (ii) concerns a single packet or (iii)
are associative and communicative so that the order of aggregation
for sub-queries doesn’t matter. We believe that causal graphs are a
better foundation for network-wide queries.

The problem of constructing consistent global cuts and evaluat-
ing global predicates for distributed systems has been extensively
studied in the distributed systems community [2, 5, 6, 30]. These
techniques have been applied to distributed systems [3, 10, 29],
where it is known as distributed tracing. We observe that mod-
ern networks have themselves become distributed systems [12],
and hence propose adopting causal graphs [25] in the context of
networks too.

ACKNOWLEDGMENTS
We are grateful to the EuroP4 reviewers for their feedback and
suggestions for improving this paper. We also wish to thank Griffin
Berlstein, who contributed many ideas to early discussions about
causal telemetry, as well as our colleagues in the Cornell NetLab
who gave generous and detailed feedback on this work. This work is
supported by DARPA (HR001120C0107), NSF (1642120), and AFOSR
(F9550-19-1-0264).

REFERENCES
[1] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan

Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Ma-
tus, Rong Pan, Navindra Yadav, and George Varghese. 2014. CONGA: Distributed
Congestion-Aware Load Balancing for Datacenters. In Proceedings of the 2014
ACM Conference on Special Interest Group on Data Communication. 503–514.

[2] Ozalp Babaoglu and Keith Marzullo. 1993. Consistent global states of distributed
systems: Fundamental concepts and mechanisms. (1993).

[3] Victor Bahl, Paul Barham, Richard Black, Ranveer Chandra, Moises Goldszmidt,
Rebecca Isaacs, Srikanth Kandula, Lun Li, John MacCormick, Dave Maltz, et al.
2006. Discovering dependencies for network management. (2006).

[4] Kevin Borders, Jonathan Springer, and Matthew Burnside. 2012. Chimera: A
declarative language for streaming network traffic analysis. In 21st USENIX
Security Symposium. 365–379.

[5] K Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: Determining
global states of distributed systems. ACM Transactions on Computer Systems
(TOCS) 3, 1 (1985), 63–75.

[6] Robert Cooper and KeithMarzullo. 1991. Consistent detection of global predicates.
ACM SIGPLAN Notices 26, 12 (1991), 167–174.

[7] Graham Cormode and Shan Muthukrishnan. 2005. An improved data stream
summary: the count-min sketch and its applications. Journal of Algorithms 55, 1
(2005), 58–75.

[8] Chuck Cranor, Theodore Johnson, Oliver Spataschek, and Vladislav Shkapenyuk.
2003. Gigascope: A stream database for network applications. In Proceedings of
the 2003 ACM SIGMOD International Conference on Management of Data. 647–651.

[9] Antonin Bas et al. 2022. Behavior Model Version 2. Retrieved 2022-09-21 from
https://github.com/p4lang/behavioral-model

[10] Rodrigo Fonseca, George Porter, Randy H Katz, and Scott Shenker. 2007. X-
Trace: A Pervasive Network Tracing Framework. In 4th USENIX Symposium on
Networked Systems Design and Implementation (NSDI).

[11] Nate Foster, Rob Harrison, Michael J Freedman, Christopher Monsanto, Jennifer
Rexford, Alec Story, and David Walker. 2011. Frenetic: A network programming
language. ACM Sigplan Notices 46, 9 (2011), 279–291.

[12] Nate Foster, Nick McKeown, Jennifer Rexford, Guru Parulkar, Larry Peterson,
and Oguz Sunay. 2020. Using deep programmability to put network owners in
control. ACM SIGCOMM Computer Communication Review 50, 4 (2020), 82–88.

[13] IEEE 802.1 Working Group. 2008. Priority-based Flow Control. Retrieved 2022-
09-21 from https://1.ieee802.org/dcb/802-1qbb/

[14] The P4.org Application Working Group. 2020. In-band Network Telemetry (INT)
Dataplane Specification. Retrieved 2022-09-21 from https://p4.org/p4-spec/docs/
INT_v2_1.pdf

[15] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer Rexford, and
Walter Willinger. 2018. Sonata: Query-driven streaming network telemetry.
In Proceedings of the 2018 conference of the ACM special interest group on data
communication. 357–371.

[16] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Maziéres, and
Nick McKeown. 2012. Where is the debugger for my software-defined network?.

https://github.com/p4lang/behavioral-model
https://1.ieee802.org/dcb/802-1qbb/
https://p4.org/p4-spec/docs/INT_v2_1.pdf
https://p4.org/p4-spec/docs/INT_v2_1.pdf


Causal Network Telemetry EuroP4 ’22, December 9, 2022, Roma, Italy

In Proceedings of the first workshop on Hot topics in software defined networks.
55–60.

[17] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Mazières, and
Nick McKeown. 2014. I know what your packet did last hop: Using packet
histories to troubleshoot networks. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI). 71–85.

[18] Richard Jarry, Satoru Kobayashi, and Kensuke Fukuda. 2021. A quantitative causal
analysis for network log data. In 2021 IEEE 45th Annual Computers, Software, and
Applications Conference (COMPSAC). IEEE, 1437–1442.

[19] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer
Rexford. 2016. HULA: Scalable Load Balancing Using Programmable Data Planes.
In Proceedings of the Symposium on SDN Research. Article 10.

[20] Peyman Kazemian, George Varghese, and Nick McKeown. 2012. Header space
analysis: Static checking for networks. In 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI). 113–126.

[21] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P Brighten
Godfrey. 2013. VeriFlow: Verifying Network-Wide Invariants in Real Time. In
10th USENIX Symposium on Networked Systems Design and Implementation (NSDI).
15–27.

[22] Satoru Kobayashi, Kazuki Otomo, and Kensuke Fukuda. 2019. Causal analysis
of network logs with layered protocols and topology knowledge. In 2019 15th
International Conference on Network and Service Management (CNSM). IEEE, 1–9.

[23] Satoru Kobayashi, Kazuki Otomo, Kensuke Fukuda, and Hiroshi Esaki. 2017.
Mining causality of network events in log data. IEEE Transactions on Network
and Service Management 15, 1 (2017), 53–67.

[24] Satoru Kobayashi, Keiichi Shima, Kenjiro Cho, Osamu Akashi, and Kensuke
Fukuda. 2022. Comparative Causal Analysis of Network Log Data in Two Large
ISPs. In NOMS 2022-2022 IEEE/IFIP Network Operations and Management Sympo-
sium. IEEE, 1–6.

[25] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed
System. Communications of the ACM (CACM) 21, 7 (1978), 558–565.

[26] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. 2016. Flowradar: A better
netflow for data centers. In 13th USENIX Symposium on Networked Systems Design
and Implementation (NSDI). 311–324.

[27] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir
Braverman. 2016. One sketch to rule them all: Rethinking network flow mon-
itoring with univmon. In Proceedings of the 2016 ACM SIGCOMM Conference.
101–114.

[28] Pedro Lopez, Juan-Miguel Martínez, and Jose Duato. 1998. A very efficient
distributed deadlock detection mechanism for wormhole networks. In Proceedings

1998 Fourth International Symposium on High-Performance Computer Architecture.
IEEE, 57–66.

[29] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. 2015. Pivot tracing: Dynamic
causal monitoring for distributed systems. In Proceedings of the 25th Symposium
on Operating Systems Principles. 378–393.

[30] Keith Marzullo and Gil Neiger. 1991. Detection of global state predicates. In
International Workshop on Distributed Algorithms. Springer, 254–272.

[31] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat. 2014. Dream:
dynamic resource allocation for software-defined measurement. In Proceedings
of the 2014 ACM conference on SIGCOMM. 419–430.

[32] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat
Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon Kim. 2017.
Language-directed hardware design for network performance monitoring. In
Proceedings of the Conference of the ACM Special Interest Group on Data Commu-
nication. 85–98.

[33] Srinivas Narayana, Mina Tahmasbi, Jennifer Rexford, and David Walker. 2016.
Compiling path queries. In 13th USENIX Symposium on Networked Systems Design
and Implementation (NSDI). 207–222.

[34] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David Walker.
2012. Abstractions for Network Update. In Proceedings of the 2012 ACMConference
on Special Interest Group on Data Communication. 323–334.

[35] Alex Shpiner, Eitan Zahavi, Vladimir Zdornov, Tal Anker, and Matty Kadosh.
2016. Unlocking credit loop deadlocks. In Proceedings of the 15th ACM Workshop
on Hot Topics in Networks. 85–91.

[36] Xinyu Crystal Wu and TS Eugene Ng. 2021. ITSY: Initial Trigger-Based PFC
Deadlock Detection in the Data Plane. In IEEE INFOCOM 2021-IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS). IEEE, 1–8.

[37] Nofel Yaseen, John Sonchack, and Vincent Liu. 2018. Synchronized network
snapshots. In Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication. 402–416.

[38] Minlan Yu, Lavanya Jose, and Rui Miao. 2013. Software Defined Traffic Measure-
ment with OpenSketch. In 10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI). 29–42.

[39] Yifei Yuan, Dong Lin, Ankit Mishra, Sajal Marwaha, Rajeev Alur, and Boon Thau
Loo. 2017. Quantitative network monitoring with netqre. In Proceedings of the
conference of the ACM special interest group on data communication. 99–112.

[40] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu, Ratul Mahajan,
Dave Maltz, Lihua Yuan, Ming Zhang, Ben Y Zhao, et al. 2015. Packet-level
telemetry in large datacenter networks. In Proceedings of the 2015 ACMConference
on Special Interest Group on Data Communication. 479–491.


	Abstract
	1 Introduction
	2 Overview
	3 Building Space-Time Diagrams
	4 P4-Based Implementation
	5 CoCaTel Prototype
	6 Case Study: PFC Deadlock
	7 Discussion and Future Work
	8 Related Work
	References

