
Avenir: Managing Data Plane Diversity with Control Plane Synthesis

Eric Hayden Campbell
Cornell

William T. Hallahan
Yale

Priya Srikumar
Cornell

Carmelo Cascone
ONF

Jed Liu
Intel

Vignesh Ramamurthy
Infosys

Hossein Hojjat∗

Tehran & TeIAS
Ruzica Piskac

Yale
Robert Soulé

Yale
Nate Foster

Cornell

Abstract
The classical conception of software-defined networking
(SDN) is based on an attractive myth: a logically central-
ized controller manages a collection of homogeneous data
planes. In reality, however, SDN control planes must deal
with significant diversity in hardware, drivers, interfaces, and
protocols, all of which contribute to idiosyncratic differences
in forwarding behavior that must be dealt with by hand.

To manage this heterogeneity, we propose Avenir, a synthe-
sis tool that automatically generates control-plane operations
to ensure uniform behavior across a variety of data planes.
Our approach uses counter-example guided inductive synthe-
sis and sketching, adding network-specific optimizations that
exploit domain insights to accelerate the search. We prove
that Avenir’s synthesis algorithm generates correct solutions
and always finds a solution, if one exists. We have built a
prototype implementation of Avenir using OCaml and Z3
and evaluated its performance on realistic scenarios for the
ONOS SDN controller and on a collection of benchmarks
that illustrate the cost of retargeting a control plane from one
pipeline to another. Our evaluation demonstrates that Avenir
can manage data plane heterogeneity with modest overheads.

1 Introduction
The network control plane plays a similar role in modern
systems as a classical OS kernel. It manages resources such
as end-to-end forwarding paths, maps incoming traffic onto
those paths, and enforces policy such as ensuring isolation
between tenants in a public cloud.

One challenge that complicates the design of the control
plane is dealing with data plane heterogeneity. Much as an
OS kernel manages hardware resources for a variety of pe-
ripherals, the network control plane manages hardware re-
sources for a variety of data planes. Most network operators
purchase equipment from multiple manufacturers to avoid
lock-in, which results in devices with heterogeneous feature
sets, and even devices manufactured by the same vendor tend

∗Work performed at Cornell.

to evolve over time. This heterogeneity manifests as com-
plexity throughout the control plane, appearing in low-level
drivers and SDKs, device OSes (e.g., SONiC [42], FBOSS [5],
Stratum [45]), higher-level APIs (e.g., OpenFlow [23], Open-
Config [30], P4Runtime [6]), and even network applications.

As an example, switches based on Broadcom ASICs
such as Trident2, Tomahawk and Qumran-MX all expose
an OpenFlow-like API to SDN controllers (or more precisely,
the OF-DPA [32] abstraction). However, due to differences
in the chips, the API behaves in subtly different ways on
various devices. For instance, the Termination MAC table,
which determines whether to route packets or bridge them,
appears in all three devices but behaves differently on Tri-
dent2/Tomahawk versus Qumran-MX—the former supports
matching on the ingress port while the latter does not. This
discrepancy has led to bugs: before a special case was added
to the ONOS controller, multicast traffic on Qumran-MX de-
vices was flooded out on all ports rather than being forwarded
to the proper multicast groups [34].

This anecdote is just one example of a more pervasive
problem. The OF-DPA API specification [32] is more than
150 pages of English prose. The ONOS development team
took two years to validate Qumran-MX switches and certify
them as production-ready. This effort included multiple itera-
tions of testing and bug fixing to port the Tomahawk driver to
Qumran-MX, even though the devices come from the same
vendor, implement the same protocols, and expose the same
control plane abstractions. In practice, the problem of map-
ping abstract specifications of forwarding behavior down to
real-world targets seems too hard to solve by hand.

Control Plane Synthesis. This paper presents a different
approach to managing data plane diversity. Rather than rely-
ing on careful engineers to manually craft bug-free mappings
from high-level abstractions to low-level targets, we show how
to automate this task using program synthesis. More precisely,
we develop Avenir, a system that automatically translates con-
trol plane operations written against an abstract forwarding
specification (e.g., OF-DPA), into lower-level operations for
a physical target (e.g., Qumran-MX).

Our approach proceeds in two steps. First, we use the P4
language [4] to model the behavior of the abstract and target
devices. Although P4 was originally designed as a domain-
specific language for programming devices like Barefoot’s
Tofino switch, it is also being used as a specification language
for fixed-function devices (e.g., at Google [47]). For our pur-
poses, what matters is that P4 provides a precise, bit-level
specification of data plane behavior that can be mechanized
using an SMT solver [21]. Hence, when P4 is not sufficiently
expressive to model the pipelines’ behavior, our approach
should still be applicable. For example, one could work with
other packet-processing languages like NPL, eBPF, or ven-
dor SDKs. Second, we use counterexample guided inductive
synthesis (CEGIS) [41] to translate the abstract control plane
operations, such as inserting entries into a match-action table,
into equivalent physical operations. Our synthesis algorithm
is provably sound (i.e., if it succeeds, the abstract and target
behaviors are guaranteed to be equivalent) and complete (i.e.,
if there a translation for a given operation, Avenir finds it).

At a technical level, we exploit the insight that data plane
devices are fundamentally simple. When modeled as pro-
grams, they lack complex features like pointers and loops
(parser state machines and uses of recirculation can be finitely
unrolled in practice). Although data planes exhibit complex-
ity in other dimensions, such as the number of protocols or
table entries they support, the amount of processing they per-
form on any given packet is limited. Hence, it is possible to
model their behavior using simple, loop-free programs that
are amenable to analysis using automated solvers. In par-
ticular, P4’s match-action tables can be treated as program
sketches—i.e., programs populated with unknown variables
called holes. The CEGIS loop synthesizes table operations by
inductively filling in the program’s holes. The controller inter-
acts with these tables incrementally: table entries are usually
not changed wholesale, but in small batches. We incremen-
tally synthesize individual control plane operations rather than
full tables, which greatly improves Avenir’s efficiency.

However, even if one does synthesis incrementally, scaling
up to real-world programs remains a significant challenge.
Program synthesis has often been used in offline settings,
where performance is not a critical concern. However, a typi-
cal control plane might modify a table every few milliseconds.
To enable online operation, Avenir incorporates heuristic op-
timizations such as ignoring existing table rules (when pos-
sible), and learning “templates” that cache repeated patterns
and avoid unnecessary calls to the SMT solver.

Implementation and Evaluation. We have built an imple-
mentation of Avenir in OCaml and Z3, and evaluated its ef-
fectiveness and scalability. In particular, we used Avenir to
perform a “reboot” load test from the ONOS controller with
moderate overhead: ONOS takes 15 minutes to generate 40k
abstract IPv6 forwarding rules while our tool translates the
insertions to a Broadcom pipeline in about 12 minutes. We
conducted a series of experiments in which we retarget control

AVENIR	

Control	
	Plane	

		Logical
			pipeline	edits

Inductive	Synthesis

Verification

ABSTRACT	PIPELINE
Match(eth.dst) Action

0xb 0x753318a0

* nop()

Match(...) Action

* drop()

Match(ipv4.dst) Action

10.0.0.1 1

* nop()

			Candidate	Impl.

?1	=	0xb
?2	=	0x753318a0
?3	=	10.0.0.1	...

Data	
Plane	

TARGET	PIPELINE
Match(eth.dst) Action

0xb

* nop()

Match(...) Action

* drop()

Match(meta.nexthop) Action

?5 ?6
* drop()

Match(ipv4.dst) Action

10.0.0.1 1

* nop()

Counterexample

	eth.dst	=	0xb
	log_egress	=	1
	phys_egress	=	0

0x753318a0

Figure 1: Avenir maps control plane operations for an ab-
stract pipeline into corresponding operations for a target using
sketch-based synthesis. The synthesis loop alternates between
verifying the correctness of a candidate implementation and
learning from counterexamples to generate a better one; the
holes (e.g., ?5) in the target sketch denote missing values that
are filled in using an SMT solver.

planes from one pipeline to another, and show that generated
rules successfully forward packets on the Bmv2 software
switch. Finally, to assess Avenir’s scalability, we ran experi-
ments on synthetic microbenchmarks.
Contributions. This paper presents Avenir, a practical con-
trol plane synthesis tool based on the following contributions:

• We present synthesis algorithm that incrementally computes
changes to data plane operations, motivated by examples in
real-world control planes.

• We formalize our synthesis algorithm and prove (in the
appendix) that it is sound and complete.

• We present optimizations that leverage incrementality and
domain insights to accelerate synthesis.

• We discuss an implementation and show through case stud-
ies and microbenchmarks that Avenir synthesizes control
plane operations correctly with modest overheads.

L2_fwd
eth.dst Action

ABB28FC set_out(5)

L3_fwd
ipv4.dst Action
10.0.0.1 set_out(8)

(a) Pipeline 1, with L2 and L3 forwarding for the original, homogeoneous network.

L2_fwd
eth.dst Action

?1 ?2

L3_fwd
ipv4.dst Action
10.0.0.1 set_meta(8)

?5 ?6

LAG
meta Action

8 set_out(8)
?3 ?4

(b) Pipeline 2, with a level of metadata indirection, and “holes” filled in. During
synthesis, Avenir solves for these unknowns and concludes that ?1 = ABB28FC,
?2 = set_meta(5), ?3 = 5, ?4 = set_out(5).

L2_fwd
eth.dst Action

ABB28FC set_m2(5)

L3_fwd
ipv4.dst Action
10.0.0.1 set_m3(8)

LAG
m2,m3 Action

5,8 set_out(8)
5,∗ set_out(5)
∗,8 set_out(8)

(c) Pipeline 3, which introduces two additional metadata fields.

fwd_table
eth.dst, ipv4.dst Action
∗,10.0.0.1 set_port(8)

ABB28FC,∗ set_port(5)

(d) The second abstract pipeline which implements a “one big table.”

(Pipe1⇒ Pipe2)

e 7→ e.table e.keys set_meta(e.out)
LAG e.out set_out(e.out)

(Pipe1⇒ Pipe3)

e in L2 7→ L2 e.keys set_meta(e.out)
LAG (e.out,∗) set_out(e.out)

e in L3 7→ L3 e.keys set_meta(e.out)
LAG (∗,e.out) set_out(e.out)
L3 (r.m1,e.out) set_out(e.out)

for every existing row r in LAG

(e) Translations from Pipeline 1 to Pipelines 2 and 3.

(OBT⇒ Pipe1)

e if eth.dst = ∗ 7→ L2 e.ipv4.dst set_out(e.out)
e if eth.ipv4 = ∗ 7→ L3 e.eth.dst set_out(e.out)

e otherwise 7→ Failure

(OBT⇒ Pipe2)

e if eth.dst = ∗ 7→ L2 e.ipv4.dst set_out(e.out)
e if eth.ipv4 = ∗ 7→ L3 e.eth.dst set_meta(e.out),

LAG (e.out,∗) set_out(e.out)
e otherwise 7→ Failure

(OBT⇒ Pipe3)

e if eth.dst = ∗ 7→ L2 e.ipv4.dst set_out(e.out)
e if eth.ipv4 = ∗ 7→ L3 e.eth.dst set_meta(e.out),

LAG (∗,e.out) set_out(e.out)
LAG (r.m1,e.out) set_out(e.out)

for every existing row r in LAG
e otherwise 7→ Failure

(f) Translations from “one big table” to Pipelines 1 to 3.

Figure 2: Pipelines used in example scenario.

2 Background and Motivation
As shown in Figure 1, Avenir sits between the controller
and the data plane, exposing an interface based on an ab-
stract pipeline to the SDN control plane. It intercepts the
control operations, translates them to the target pipeline, and
passes results to the switch agent to install on the target device.
Note that because Avenir works with an abstract notion of a
pipeline, it could be used at multiple levels of abstraction—
e.g., to implement a driver for a given switch, an abstraction
layer like SAI, or even at higher layers of the SDN controller.
Likewise, because Avenir operates on switch-by-switch gran-
ularity, it can expose different abstract pipelines for different
targets. Avenir’s synthesis algorithm is sound and its solu-
tions are formally verified, which eliminates the potential for
subtle bugs caused by the inherent complexity of the problem,
assuming the specifications are correct. Avenir’s algorithm is
also complete—i.e., given sufficient time, it is guaranteed to
find a correct sequence of target operations if it exists.

Status Quo: Manual Control Plane Mappings. Consider
a simple running example based on ONOS that illustrates the
need for a control plane synthesis tool. Suppose that each
switch implements the simple L2-L3 pipeline in Figure 2a. In
this pipeline, the output port is set based on the Ethernet and

IPv4 destination addresses in the corresponding tables.
As the network matures, its engineers decide to add addi-

tional physical data planes—e.g., to incorporate a new gen-
eration of hardware or to avoid vendor lock-in. For instance,
the pipeline, shown in Figure 2b, adds a layer of metadata
indirection to the physical device to support link aggregation.

To avoid disrupting the control plane, which likely consists
of hundreds of thousands of lines of code,1 the engineers write
a driver that translates operations written for Pipeline 1 into
operations for Pipeline 2. In this case, the driver, shown in
Figure 2e, is relatively simple: for each rule, it simply copies
the output port into meta and inserts a row into the LAG table
effectively copying the value of meta into the output port.

Now, suppose the engineers decide to support a third
pipeline (Figure 2c), which sets a separate metadata field
in each table. The translation (Figure 2e), is also simple, but
requires some care to write—in particular, the L3 table’s for-
warding decision must always be preferred in the LAG table.

Finally, suppose the engineers want to migrate their original
pipeline to a one big table abstraction (Figure 2d), similar to
OpenFlow. Now, the engineers need to make code changes to
all three translations (Figure 2f).

1ONOS has currently about 611k lines of Java code [28, 37].

Of course, the ONOS engineers could compose the trans-
lations from the one big table to the first pipeline, and on to
the other pipelines. However as more and more logical and
physical tables are added, managing a complex cascade of
translations would become unwieldy, and hard to maintain.
Control Plane Synthesis with Avenir. Avenir improves
upon the state of the art—i.e., writing manual translations—by
automating the translation of rules from an abstract pipeline
to a target pipeline. Of course, the programmer still needs to
write programs that capture the behavior of both pipelines,
and that’s a non-trivial task. But we believe this should be less
challenging than actually writing the translations—akin to
describing source and target languages vs. writing a compiler.

To see how this is done, let’s explore how Avenir translates
abstract Pipeline 1 L2 insertions into Pipeline 2 insertions.
First, assume, as shown in Figure 2b, that the L3 table is pop-
ulated with rules that match on the IPv4 address (10.0.0.1)
and set the metadata to (8), and the LAG table matches on that
metadata and forwards out port 8. Consider inserting a sin-
gle rule into the abstract Pipeline 1 L2 table that matches on
eth.dst = ABB28FC and sets the outport to 5. To reflect this
update in Pipeline 2, we then need to solve for the unknowns,
written as (?) in Figure 2b. These unknowns model the an-
swers to questions like “Which tables need modification?”
and “What should the matches/actions/action data be?”

More formally, the unknowns (?) represent a special kind
of variable we instrument our program with, called a hole.
Programs instrumented with holes are called sketches. We
heuristically search for a valuation of these holes that makes
the behaviors of the two pipelines equivalent. In this example,
we could set ?1 = ABB28FC, ?2 = set_meta(5), ?3 = 5, and
?4 = set_out(5). Since we do not need to insert a rule in the
L3 table, we do not need to find values for these holes. In
practice, holes can only be assigned values, not code snippets,
like we are doing here for ?2 and ?4. We will see how to
construct these sketches in detail in Section 3.2, and we will
introduce our synthesis algorithm in Sections 3.3, 4.1 and 5.2.

As a strawman, we might consider an offline approach,
where we synthesize the driver code once-and-for-all that
translates any abstract operation into equivalent target opera-
tions. However, there are many cases (e.g., Figure 2f) where
there is no translation that works for all abstract operations,
this synthesis algorithm would fail to produce any solution
in many cases where Avenir would succeed. Avenir’s online
solution allows for a more dynamic and flexible approach.
Incrementality and Optimizations. The key challenge in
making Avenir practical is scaling up to handle real-world
programs, which typically have at least dozens of tables with
thousands of rules. Avenir needs to potentially compute a
translation on every abstract control plane operation, so it
must be responsive. As another strawman, imagine an ap-
proach that computes a full set of table rules on every control
plane operation. This strategy might be workable when the
tables have only a few rules, e.g., recomputing the existing

match in Pipeline 2’s L3 table, but it would quickly become a
bottleneck if there were say, tens of thousands of rules in L3.
Hence, we employ an incremental approach in which we syn-
thesize “deltas” consisting of small batches of control plane
operations rather than full tables. By only considering the
most recent insertion or deletion into a table, we can often
reuse previous solutions and avoid redundant recomputation.

Going a step further, we can cache “templates” derived
from previous solutions to help translate future operations.
For example, on the next insertion into L2, we can try to
reuse the same stucture by inserting into L2_fwd and LAG,
with actions set_meta and set_out, forcing the argument to
set_meta to equal the LAG table match.

3 Control Plane Synthesis
Our synthesis algorithm is based on CEGIS [40]. The core of
CEGIS is a loop with two main components: verification and
inductive synthesis. In each iteration of the loop, a candidate
implementation is run through the verification component to
check correctness. If verification fails, a counterexample trace
is produced, allowing the inductive synthesis component to
learn from this failure to generate a better candidate. The loop
terminates when verification ultimately succeeds.

In our setting, the CEGIS loop is run for each insertion into
the abstract pipeline. Inductive synthesis produces candidate
control plane implementations for the target pipeline, and
verification checks whether the behavior of the two pipelines
are equivalent. The rest of this section discusses the CEGIS
components in detail. Section 4 discusses optimizations that
make this approach efficient and scalable.

3.1 Basic Definitions and Verification
The verification component of the CEGIS loop determines
whether the synthesized control plane operations implement
the same packet-processing behavior on the target pipeline
as on the abstract pipeline. We model packets as finite maps
from a fixed set of header and metadata fields to bit vectors,
and say two packets are equal and write pkt = pkt′ if they
agree on all header fields. Packets have a direct interpretation
as a boolean formula: for headers Hdr and a list~x⊆ Hdr, we
write pkt[~x] to mean

∧
x∈~x x = pkt.x.

Syntax and Semantics. In Figure 3, we define the syntax of
pipelines. A pipeline program is a just a command c ∈ Cmd,
that denotes a packet processing function, which we write
JcK : Pkt→ Pkt. Pipeline programs can contain bitvector ex-
pressions e ∈ Expr and boolean expressions b ∈ Bool. Given
a bitvector [n]s of length s, we use “wraparound” semantics
when values n larger than 2s−1 overflow. We often omit sub-
scripts when s is clear from context or use evocative notation.

There are a few ways to compositionally build a pipeline
program. First, fields f can be assigned values via the com-
mand f := e, which updates the packet pkt to pkt{ f 7→ n},
where e evaluates to n in pkt. Further, commands can be se-
quenced, c1;c2, which first executes c1 then c2. We can also

c ::= (c ∈ Cmd)
| f := e Assignment(*)
| c;c Sequence(*)
| if

−−−→
b→ c fi Guarded Commands(*)

| apply t Table Application

a ::= (a ∈ Act)
| λ (~x). c(∗) Function

t ::=

name : Name;
keys : Name+;
actions : Act+;
default : Act

 Table Definition

δ,ε ::= (δ ∈ Edit)
| Ax(ρ) Insertion
| Dx(n) Deletion

ρ ∈ Row = List[BitVec]×List[BitVec]×N
τ,σ ∈ Inst = Name→ List[Row]

v ::= [n]n Bitvector (v ∈ BitVec)

h ::=
{

name : Name;
width : N

}
Header Field (h ∈Hdr)

m ::=
{

name : Name;
width : N

}
Metadata Field (h ∈Meta)

f ∈ Hdr∪Meta

x ∈ Name

n ∈ N

Figure 3: Pipeline syntax. Actions vary under starred variants

use conditional control flow, written if b1→ c1 . . . bn→ cn fi,
which executes command ci on the incoming packet pkt for
the smallest-indexed bi that evaluates to tt on pkt. These con-
ditionals are similar to Dijkstra-style guarded commands [9].
Finally, table application apply(t) executes match-action table
t. Tables are represented as records, where t.name is table’s
name; t.keys is a list of packet headers referred to by name;
t.actions is the list of actions (which are lexically-scoped
anonymous functions λ(~x).c); and t.default is the command
that is executed when the table is missed. Only certain com-
mands c may occur inside an action (denoted with a (∗) in
Figure 3)—e.g., table application is not allowed.

Notice that tables have no way of referring to their entries.
To represent entries in a table t, we maintain a table instantia-
tion τ : Name→ List[Row], alongside the syntactic pipeline,
which maps table names to their row lists. We write Inst for
the set of all instantiations. We refer to the pair (c,τ) as the
pipeline state. A row ρ ∈ Row is a triple ρ = (~m, ~d,a), where
~m are matches, a is the action index and ~d is the action data.

We can define a source-to-source syntactic transforma-
tion subst(c,τ) that replaces every occurence of apply(t) in
c with a guarded command encoding the rows of the table
~ρ = τ(t.name), as follows, where the ith row ρi = (~mi,~di,ai):

if

t.keys = ~m0 → t.action[a0](~d0)

· · ·
t.keys = ~mn → t.action[an](~dn)

tt → t.default

 fi

HOLE DESCRIPTION

?Delt,i = 1 Delete row i in table t
?Addt, j = 1 Add j rows to table t
?Actt, j = i New Row j in table t (if added), has action i
?kt, j = v New Row j in table t (if added), matches header k with v
?dt, j,i = v New Row j in table t (if added with action i)

has action data for parameter d set to v

Figure 4: Summary of holes used in sketching.

We say that a row (~m, ~d,a) is well-defined for a table t when
|~m| = |t.keys|, a < |t.actions|, and for the parameters ~x of
t.actions[a], |~d| = |~x|. Further, an instance is well-defined
when all of its rows are well-defined for their tables, and a
command is well-defined when no two tables have the same
name. We assume that commands and instantiations are well-
defined, and that there are no bit-width mismatches: both are
easy to check statically.

Finally, we have control plane edits (δ ∈ Edit), which are
operations that allow the control plane to modify table in-
stantiations. We interpret them as functions, i.e., δ(τ) ∈ Inst.
There are two kinds of edits: insertions and deletions. For a
given instance τ, an insertion Ax(ρ)(τ) appends ρ to the end
of τ(x) (meaning it has the lowest priority). If τ(x) has a row
ρ′ with the same matches as ρ, the inserted row is dropped. A
deletion Dx(i)(τ) removes the ith element from τ(x).

Now that we know how to interpret pipelines as func-
tions, we say c1 = c2 when they are functionally equiva-
lent. To check this condition, we use predicate transformer
semantics to generate a verification condition [13], written
c1 ≡ c2, which we check using an SMT solver, by running
CheckSat(c1 6≡ c2). If the solver returns UNSAT, we con-
clude the programs are equivalent. Otherwise, it returns SAT
as well as a model that encodes a counterexample χ—i.e.,
an input and output packet pair χ that demonstrates different
behavior in the abstract and physical programs, writing χ0 and
χ1 for the input and output packets respectively. It is easy to
prove that this validity check implies functional equivalence.

Theorem 1. For every pair of pipelines c1,c2, if c1 = c2
then CheckSat(c1 6≡ c2) = UNSAT, and if c1 6= c2 then
CheckSat(c1 6≡ c2) = Sat χ.

Proof. By soundness of verification conditions with respect to
the denotational semantics of guarded commands [9,13].

3.2 Synthesizing Candidates via Sketches
To propose new candidate programs for verification, we use
a technique called Sketching [41]. A sketch is a command
containing special variables called holes. Aside from holes
for values (i.e., ?k for match keys and ?d for action data),
which we introduced in Section 2, we also need holes for
table entries, corresponding to deletions (?Del), insertions
(?Add) and action choice (?Act). The meaning of these holes
is described in Figure 4.

fix_cex(p,σ,χ,n,~x), χ0[~x]⇒ wp(instr(p,σ, ·,n),χ1[~x])

model(p,σ,X), CheckSat
(
∀~x.

∧
χ∈X fix_cex(p,σ,χ, |X |,~x)

)
Figure 5: The model function. In the above, the vector~x is all
of the non-hole variables that occur in the formula.

To compute a candidate solution in our CEGIS loop,
we first instrument the program with holes. We write
instr(c,τ,~δ,n) to describe the program~δ(τ(c)) with deletion
holes for every row in τ, and holes for n row insertions. We do
not add deletion holes for insertions in

−→
δ , which is crucial for

the completeness theorem (Section 4). We lift this function
from tables to programs in the obvious way.

Consider the L2 table from pipelines 1 and 2. To instrument
it with holes, allowing for a single insertion, we would insert a
deletion hole for the existing rule and a single row of insertion
holes, yielding the following sketch:

Match(eth.dst) Action

?Del = 0 ABB28FC set_out(5)

?Add = 1 ?eth.dst if ?Act = 0→ set_out(?p)
?Act = 1→ drop()

fi

A possible model for these holes that matches the destina-
tion MAC address with 00 : 00 : 00 : 00 : 00 and drops the
packet, is {?Del 7→ 0,?eth.dst 7→ 0,?Act 7→ 1}. Note that ?p
is irrelevant, so we omit it from the model.

Of course, sketches represent a vast search space of edits:
every existing table row can be deleted, and up to n rows can
be inserted. Blindly searching through this space would not
scale in practice. Instead, we learn from counterexamples to
help guide the search toward a solution.

3.3 Counterexample-Guided Search
When the solver determines that a proposed candidate pipeline
is not equivalent to the abstract pipeline, it generates a coun-
terexample χ that encodes an input-output packet pair. This
pair corresponds to a behavior of the abstract switch that is
not replicated in the candidate or vice versa. We can use this
counterexample to guide our search. More formally, we use
the weakest precondition wp(c,ϕ) whose satisfying models
are inputs that, after executing c, yield outputs satisfying ϕ.

The fix_cex function constructs the formula χ0[~x] ⇒
wp(s,χ1[~x]) for the sketch s = instr(p,σ, ·, |X |). The formula
identifies edits that when applied to the physical pipeline state
(p,σ) produce the input-output behavior indicated by χ.

The function model in Figure 5 lifts fix_cex over all coun-
terexamples X that have been seen so far. Notice that we only
instrument the physical pipeline with |X | insertion holes since
each counterexample hits at most one rule in each table.

3.4 Synthesis Algorithm
The full synthesis algorithm is presented in Figure 6. Given a
abstract pipeline l, a target pipeline p, an abstract table instan-

cegis(l, p,τ,σ,~δ,X),

match CheckSat(subst(l,τ) 6≡ subst(p,~δ(σ))) with

| UNSAT → Ok~δ
| SAT →

match model(p,~δ(σ),{χ}∪X) with
| UNSAT → Fail

| SAT ~δ′ → cegis(l, p,τ,σ,~δ′,{χ}∪X)

Figure 6: Simple Algorithm for Control Plane Synthesis.

tiation τ, a target table instantiation σ, a sequence of physical
edits~δ, and a set of counterexamples X , cegis(l, p,τ,σ,~δ,X)
produces a sequence of edits ~ε such that subst(l,τ) =
subst(p,~ε(σ)) if one exists. We initially call the algorithm
with~δ = [] and X = {}. First, we call the SMT solver to check
for equality. If the programs are equal, we are done, and return
~δ. Otherwise, we get a counterexample χ and solve for new
edits by augmenting X with χ, applying the edits to the target
pipeline and calling model. If it returns UNSAT, there is no
way to make the programs equivalent and we fail. Otherwise,
we get a new sequence of edits and keep searching.

3.5 Formal Properties
Next we establish two formal properties for our synthesis al-
gorithm: soundness and completeness. Soundness means that
synthesized target operations produce equivalent behavior.

Theorem 2 (Soundness). For every l, p ∈ Cmd, τ,σ ∈ Inst,
~δ ∈ List[Edit], and X ⊆ Jsubst(l,τ)K ∩ Jsubst(p,~δ(σ))K
if cegis(l, p,τ,σ,~δ,X) = Ok~ε then subst(l,τ) =
subst(p,~ε(σ)).

Proof. Follows from Theorem 1.

Completeness says that if a solution exists, then our syn-
thesis algorithm will (eventually) find it.

Theorem 3 (Completeness). For every l, p ∈ Cmd, τ,σ ∈
Inst,~δ ∈ List[Edit], and X ⊆ Jsubst(l,τ)K∩ Jsubst(p,~δ(σ))K,
if ∃~δ′ ∈ List[Edit]. subst(l,τ) = subst(p,~δ′(σ)) then ∃~δ′′ ∈
List[Edit]. cegis(l, p,τ,σ,~δ,X) = Ok ~δ′′ and subst(l,τ) =
subst(p, ~δ′′(σ)).

Proof. By induction on the size of Pkt\π1(X).

Limitations The main limitation of this first synthesis algo-
rithm is that the number of queries is bounded by the number
of counterexamples—i.e., every possible packet. Given an
MTU of n, there could be as many as 2n packets.

4 A Scalable Solution: Incremental Synthesis
To obtain a scalable synthesis algorithm, we first exploit
the insight that the control plane operates in an incremen-
tal fashion—i.e., before each control plane operation, the data

Match(eth.dst) Action

?Del0 = 0 ABB28FC set_out(5)
?Add0 = 1 ?eth.dst0 if ?Act0 = 0→ set_out(?p0)

?Act0 = 1→ drop()
fi

?Add1 = 1 ?eth.dst1 if ?Act1 = 0→ set_out(?p1)
?Act1 = 1→ drop()

fi

Match(ip.dst) Action

?Del2 = 0 10.0.0.1 set_out(8)
?Del1 = 0 8.8.8.8 set_out(47)

?Add3 = 1 ?ipv4.dst3 if ?Act2 = 0→ set_out(?p2)
?Act2 = 1→ drop()

fi
?Add3 = 1 ?ipv4.dst3 if ?Act3 = 0→ set_out(?p4)

?Act3 = 1→ drop()
fi

(a) Basic Sketch: Satisfiable for packets that hit L2’s first row and L3’s second.

Match(eth.dst) Action

?Del0 = 0 ABB28FC set_out(5)
?Add0 = 1 ?eth.dst0 if ?Act0 = 0→ set_out(?p0)

?Act0 = 1→ drop()
fi

Match(ip.dst) Action

?Del2 = 0 10.0.0.1 set_out(8)
8.8.8.8 set_out(47)

?Add1 = 1 ?ipv4.dst1 if ?Act1 = 0→ set_out(?p1)
?Act1 = 1→ drop()

fi

(b) Incremental Sketch: Unsatisfiable for packets that hit L2’s first row and L3’s second, which triggers backtracking, remembering that the
previously-synthesized edit was incorrect.

Figure 7: Examples of basic and incremental sketches for Pipeline 1.

planes are already equivalent, so we only need to handle in-
cremental changes to the abstract program, such as adding
or deleting a rule. In the common case, we do not have to
resynthesize all of the previously generated rules. However,
some care is needed as certain control plane operations do
require deleting previously installed rules.

4.1 Single Counterexample-Guided Search
Our first enhancement to the basic synthesis algorithm is to
only add insertion holes to solve for the most recent coun-
terexample, and only add deletion holes for state that existed
before synthesis began, which greatly reduces the number of
holes we need to produce as we explore the space. Instead
of instrumenting the program with insertion holes for every
counterexample, we only do it for the most recent one.

Consider again the L2 and L3 tables from pipelines 1
with the initial state depicted in Figure 2a. We want to
synthesize edits that send Ethernet packets that miss in
the L2_fwd with destination DECAFBAD out on port 47.
Suppose the first counterexample has input packet χ0 =
{eth.dst 7→ DECAFBAD, ipv4.dst 7→ 8.8.8.8}, and output
packet χ1 = χ0{out 7→ 47}. Let’s say on the first itera-
tion we produce the (incorrect) edit to L2_fwd that maps
ipv4.dst = 8.8.8.8 to set_out(47), and the verification step
will provide a new counterexample.

Suppose the next counterexample has input packet
χ′0 = {eth.dst 7→ ABB28FC, ipv4.dst 7→ 8.8.8.8}, and output
packet χ′1 = χ′0{out 7→ 5}. Now the simple algorithm will
produce the sketch in Figure 7a, which can be solved by
deleting the already inserted row (?Del1 = 1) and adding the
single required row to the L2 table (?Add0 = 1, ?eth.dst0 =
DECAFBAD, ?Act0 = 0, ?p0 = 47, and remaining Add/Del
holes disabled).

In contrast, the incremental search will first create the un-
satisfiable sketch shown in Figure 7b. There is no way to fill
its holes to satisfy the above counterexample. We backtrack
with the knowledge that ?ipv4.dst 6= 8.8.8.8 and attempt to
solve the original sketch with respect to the original coun-
terexample, and the only remaining solution is correct.

First, notice that the final simple sketch uses 21 holes,
whereas each incremental sketch uses only 10. On the other
hand, the incremental search sends 3 sketches to the solver as
opposed to the simple search, which only sends 2. Why do
we want to send more queries to Z3 instead of less? This is
a result of the NP-completeness of SAT/SMT solving. Solv-
ing more formulae with fewer variables is often faster than
solving fewer formulae with more variables. Here, the search
space size for the 3 incremental sketches is approximately
3 · |B|10, whereas for “simple” query it is approximately |B|21,
where |B| is the size of the bitvector domain.

Further, observe that the incremental sketches we send
will always have 10 holes, independent of the number of
counterexamples, whereas the simple sketch will continue to
add holes as the number of counterexamples grows.

We formalize this new incremental model-finding function
model′ in Figure 8. It is defined in term of a satisfiability check
for a conjunction of three sub-formulas. The first conjunct
uses a modified fix_cex function that instruments the pro-
gram with one addition hole per table. The second conjunct,
ϕ, limits the search by preventing models from reoccurring.
The final conjunct is a search oracle HEURISTIC() that com-
putes restrictions on the search space. The only constraints
on HEURISTIC() are that it must not add covered rules or
previously-deleted rules (to avoid looping), and it must not
permanently preclude any solution (to ensure completeness).

fix_cex(p,σ,~δ,~x,χ), pkt[~x]⇒ wp(instr(p,σ,~δ,1),pkt′[~x])

model′(p,σ,~δ,χ,ϕ), SAT

(
∀~x.fix_cex(p,σ,~δ,~x,χ))
∧ ϕ∧HEURISTIC()

)
Figure 8: The model′ function computes edits to physical
state (p,σ) to accomodate the counterexample χ. The oracle
soundly restricts the search space.

cegis(l, p,τ,δ,σ), verify(l, p,δ(τ),σ, [])
verify(l, p,τ,σ,~δ),

match CheckSat(subst(l,τ) 6≡ subst(p,~δ(σ))) with

| UNSAT→Ok~δ

| SAT χ→ solve(l, p,τ,σ,~δ,χ,tt)

solve(l, p,τ,σ,~δ,χ,ϕ),
match model′(p,σ,~δ,χ,ϕ) with
| UNSAT→ Fail

| SAT ~δ′→
match verify(l, p,τ,σ,~δ◦~δ′) with

| Ok ~δ′′→ Ok ~δ′′

| Fail→ solve(l, p,τ,σ,~δ,χ,ϕ∧¬~δ′)

Figure 9: The incremental backtracking CEGIS algorithm.

4.2 Incremental Synthesis Algorithm
We present our incremental synthesis algorithm in Figure 9.
It comprises two mutually recursive functions: verify, which
checks the verification condition and solve, which generates
new models. Both functions take the same arguments: the ab-
stract and target programs and instantiations ((l,τ) and (p,σ)
respectively), and a sequence of edits to the target program
~δ. They either return Ok~δ′, where~δ is the prefix of~δ′ and
CheckSat(subst(l,τ) 6≡ subst(p,~δ′(σ))) = UNSAT, or Fail,
if there is no such~δ′. The cegis function is the “main” method.
It takes the abstract and target pipelines (l and p) and instanti-
ations (τ and σ) as arguments, as well as the abstract edit δ. It
then applies δ to τ and invokes verify with no target edits.

The verify function resembles the cegis function of Sec-
tion 3. It first checks whether the programs are equal, and if
so returns Ok~δ. Otherwise it calls solve with an initial coun-
terexample χ and an unrestricted model, which searches for
an edit to make the programs equivalent.

The solve function takes the standard arguments, with the
addition of a counterexample χ and the model space restric-
tion formula ϕ, which keeps track of failed solutions for χ, to
prevent repetition. First, model′ searches for a target edit that
corrects the behavior for the counterexample. If none exists,
we return Fail, indicating that there is no sequence of equiva-
lent target edits with the prefix~δ. Otherwise, model′ provides
a model ~δ′. In this case we extend the running sequence of
edits to~δ◦~δ′ and call back to verify. If successful, we return
the result, otherwise we preclude ~δ′ from the space of pos-

sible models ϕ (writing ¬~δ′ for the negation of valuations
that produce ~δ′.) Then we recursively call solve and continue
searching within this restricted space of models.

4.3 Formal Properties
We prove that the incremental algorithm is also sound and
complete. As with the simpler algorithm, the proof of sound-
ness follows by the correctness of the verification condition.

Theorem 4 (Incremental Soundness). For every l, p ∈ Cmd,
τ,σ ∈ Inst, δ ∈ Edit, X ⊆ Jsubst(l,τ)K ∩ Jsubst(p,~δ(σ))K,
if cegis(l, p,τ,σ,δ,X) = Ok ~ε, then subst(l,τ) =
subst(p,~ε(σ)).

Proof. Again, the result follows from Theorem 1.

As in the simple synthesis algorithm, incremental complet-
ness relies on the finite domain, which here is the product of
two finite domains: (1) sequences of reachable edits that do
not redundantly add and delete a rule, and (2) the number of
valuations for the holes introduced by the instr function.

Theorem 5 (Incremental Completeness). For every ab-
stract program l, target program p, abstract instanti-
ation τ, target instantiation σ and abstract edit δ if
∃~ε ∈ List[Edit]. subst(l,δ(τ)) = subst(p,~ε(σ)) then ∃~δ′ ∈
List[Edit]. cegis(l, p,τ,δ,σ, []) = Ok ~δ′ and subst(l,δ(τ)) =
subst(p,~δ′(σ)).

Proof. By strong outer induction on the size of the reachable
non-deleting edit sequences, and strong inner induction on
the (lexicographically ordered) size of the counterexample set
and the number of models in each model space.

Theorem 5 proves that Avenir translates abstract operations
given unbounded resources. In practice, Avenir’s effectiveness
relies on heuristics and optimizations.

5 Heuristics and Optimizations
Avenir offers a number of heuristic optimizations designed to
help it scale to larger networks. Interestingly, these optimiza-
tions need not be sound. We introduce a run-time check for
soundness and revert the optimization if it fails. We focus on
two classes of optimizations: verification and model finding.

5.1 Exploiting Incrementality
The key to scalable synthesis is to adopt an incremental ap-
proach and focus on edits, while incorporating further opti-
mizations within the verification and synthesis steps.

Fast Counterexamples. In the incremental setting, we know
that a new abstract insertion δ must be the cause of any se-
mantic difference with the target pipeline. We symbolically
compute packets that hit δ via an SMT query that gives us a
potential counterexample packet pkt. We use the denotational
semantics to check whether pkt is a real counterexample. If
pkt doesn’t induce different behavior we retry the query (in

practice 10 times) until we either obtain a true counterexam-
ple, or resort back to the standard equivalence check.
Program Slicing. We leverage the incrementality assump-
tion to use program slicing to verify only the part of the
program that changes. This isn’t always sound, so we check
that the abstract edits are reachable iff the target edits are. We
also have a faster and stronger constraint that checks that the
abstract and target matches are disjoint from the extant rules.
If both conditions fail, we run the full equivalence check.
In practice, slicing composes with constant propagation and
dead code elimination to normalize the queries.
Query Templates. The queries produced using program slic-
ing are often syntactically similar. So when we see two valid-
ity queries that only differ in their specific concrete values, we
try to abstract those concrete values into a universally quanti-
fied variable. We then check whether that more-general query
is valid. If it is, we add it to a cache of templates, otherwise
we continue in a CEGIS loop by negating the valuation of
the quantified variables and trying again. Whenever we get
future queries that are instances of the template, we can return
VALID without having to consult the SMT solver.
Translation Templates. As with queries, we can cache trans-
lations of operations by generalizing over their concrete val-
ues to obtain a template. The template observes the way that
concrete values are mapped from previously-seen abstract in-
sertions into their equivalent target insertions, and structurally
replicates that mapping on the new abstract insertion. It also
observes the cache of translations for differing constants and
generates unused constants for new rules which optimizes for
metadata patterns like in Figures 2b and 2c. Note that before
adding a solution to the cache, Avenir optionally reduces its
size, by heuristically removing superfluous target edits, which
improves the generality of the solution. When no template
applies, Avenir relies on a heuristic-guided search.

5.2 Model-Finding Heuristics
Now we describe the implementation of the HEURISTIC()
oracle, which abstracts a combination of heuristics. In our for-
malization, we assume that the heuristics are always complete.
However in practice, many of Avenir’s individual heuristics
are not; when a given combination fails, we disable some and
try again with a different combination. This search through
the heuristics is currently hard-coded, but we plan to support
user control of the search strategy and custom heuristics. We
describe the heuristics useful in our experiments here.
Ternary and Optional Matching. In the previous sections,
we only inserted holes to generate exact matches. We can
generate ternary matches for a match key k, which allows
us to represent, say, a wild-carded IPv4 source address in
only a single row (rather than 232 exact-match rows). To do
this, we generate a pair of holes ?k and ?kmask and encode the
match as k&?kmask = ?k. To eliminate duplicate keys we also
enforce the constraint ?k&?kmask = ?k. For optional matches,
we restrict the masks to be all 1s or all 0s.

Exact and Mask Hints. When a row is inserted into the
abstract pipeline, the non-wildcarded keys K of that row are
likely relevant in classifying packets. So, we force the rele-
vance of matches on fields in K, either by copying the abstract
match values into the target edits (which is very optimistic),
or by forcing their masks (if masking is enabled) to be all 1s.

Action Hints. Given a counterexample (pkt0,pkt1), we can
observe the variables that change in the abstract program,
i.e., ∆ = {x | pkt0.x 6= pkt1.x}, and ensure that all edits have
actions that can influence the value of some variable in ∆.

Other Optimizations. Our final collection of optimizations
are based on intuitive heuristics that arise often in practice.

• Reachable Adds. We force synthesized models to be
reachable using the counterexample driving the search.

• Prefer Adds. We try to find a solution that does not
require deleting existing rules.

• Prefer Non Zero Models. We enforce ?k 6= 0 6= ?d for
all key and data holes, unless they are wildcarded.

• Bounded Edits. We restrict the search space so that
backtracking is triggered beyond specified limits.

• Previous Counterexamples. We try to synthesize rules
that do not violate previously-seen counterexamples.

6 Implementation
We implemented Avenir in approximately 11K lines [37] of
OCaml code that interfaces with Z3 [8]. Our implementation
accepts a description of an abstract and a target pipeline, se-
quences of insertions to both programs (to construct the initial
state), as well as a sequence of abstract edits to synthesize.
Avenir then produces a sequence of edits to the target program
(or fails if no such sequence exists). All of the optimizations
described in 5 are configurable as command line flags. In our
implemention, we use an efficient encoding of the weakest
precondition [13], which has linear size for the programs in
our internal syntax.

P4 Program Encoding. The front-end of our implementa-
tion supports a large subset of P4, via an encoding from P4’s
control blocks into Avenir’s internal syntax. This translation
resembles previous work on verifying P4 programs [21]. Of
course, P4 is a larger language than Avenir’s syntax. We sup-
port more complex P4 language constructs by desugaring
them into sequences of internal commands.

We currently assume that all of the data plane programs use
the same parser and headers. Hence, in cases where a mapping
only exists due to invariants enforced by the parser—e.g., that
a packet cannot simultaneously have IPv4 and IPv6 headers—
these assumptions must be manually encoded as annotations.
We also ignore match kinds and assume all matches are either
exact, ternary or optional, depending on command line flags.
Finally, we manually encode certain device-specific behaviors

0 1 2 3 4
time (s)

0

50

100

co
m

pl
et

io
n

%

logical
action_decompose

metadata
early_validate

double
choice

Figure 10: Retargeting case study: solid lines show cold-start
completion %; dotted lines show hot-start completion %.

such as the initial value fields and the drop port value. Our
implementation is on GitHub2 under an open-source license.

7 Evaluation
To evaluate Avenir, we demonstrate its functionality under
a variety of synthetic and realistic scenarios, and measured
its performance against hand-written baselines. First, we
show how Avenir can automatically retarget a given abstract
pipeline to multiple target pipelines (Section 7.1). Second, we
pass packets through the Bmv2 software switch using the gen-
erated rules, which both shows they are correct and quantifies
Avenir’s performance when installing rules for multiple hosts
(Section 7.2). Third, we present a case study consisting of a
realistic workload drawn from the Trellis data center fabric,
running on top of the ONOS SDN controller [2, 29] (Sec-
tion 7.3). Finally, we study Avenir’s scalability via a suite of
microbenchmarks (Section 7.4). Our evaluation pays particu-
lar attention to the caches, as these are particularly important
to obtain good performance.

Summary of Results. Overall, our evaluation shows that,
in a variety of cases, Avenir can translate large numbers of
rules efficiently. The retargeting, emulation, and ONOS ex-
periments show that Avenir is effective at mapping to and
from a variety of programs, and demonstrate that the caching
optimizations are highly effective at reducing overheads.

7.1 Retargeting Study
Avenir allows operators to expose a single pipeline abstrac-
tion to the control plane, while implementing the forwarding
logic over a myriad of physical devices. We demonstrate this
use case via a retargeting study, where we retarget an initial
program onto a variety of different target pipelines.

The logical program logical.p4 is a simple L2-L3 pipeline
followed by a PUNT table that performs packet validation
on all headers and metadata. We describe 5 additional target
pipelines in terms of the changes to logical.p4:
(early_validate.p4) Replaces the PUNT table of logical.p4

with an ACL that can only match on addresses. Adds
a validation table prior to the L2 table that matches on

2Available at https://github.com/cornell-netlab/avenir

0 1 2 3 4 5
time (s)

0

50

100

%
 re

ac
ha

bi
lit

y

hot start
cold start
baseline

Figure 11: Proportion of all pairs of 64 hosts connected in a
star topology that have completed a successful IPv4 ping.

the validity of IPv4 and the TTL field and conditionally
applies the rest of the pipeline.

(action_decomp.p4) Decomposes the L3 table into two ta-
bles, (1) a forward table that matches on the IPv4 desti-
nation and sets the output port, (2) a rewrite table that
matches on the IPv4 destination and performs MAC
rewriting.

(metadata.p4) Instead of setting the output port, the L2 and
L3 tables set a metadata field. This metadata field is
mapped to the output port in the nexthop table, which is
applied between the L2 and L3 tables.

(double.p4) Applies all three tables in the pipeline twice.

(choice.p4) Introduces a staging table that sets a metadata
variable to select between copies of the abstract pipeline.

We used Avenir to translate 1,001 logical.p4 insertions
(1 into PUNT for TTL checking, 500 into L2 for Ethernet
destination forwarding, and 500 into L3 for IPv4 destination
forwarding and MAC rewriting). We show completion graphs
for each target in Figure 10.

There are a few things to notice. Every line has an “el-
bow” at the 50% mark on the y-axis, after which the slope
decreases. This represents the transition between parts of the
workload. The L3 insertions are slower, because the L2 table
is already populated with 500 rules, and slicing has to deal
with larger tables. Further, these rules may cause the query
template cache to miss: the second “elbow” on the metadata
line indicates where the query cache’s synthesis engine was
able to successfully abstract.

To further demonstrate the power of our template caches,
we compare our “cold-start” synthesis (solid lines), where
the caches are empty, with “hot-start” synthesis (dotted lines),
where the caches are fully populated. We achieve this by
running Avenir on the same data twice, without resetting the
caches, and logging performance for the second run. The
massive performance increase is seen in Figure 10. Network
operators concerned with nondeterministic runtimes associ-
ated with synthesis can manually populate their caches.

7.2 Network Emulation
We use Avenir to program the entries of a programmable soft-
ware switch (bmv2) running in a network emulator (mininet).
We configure 64 hosts in a star topology connected to a single

https://github.com/cornell-netlab/avenir

0 2 4 6 8 10 12 14 16
time (mins)

0

50

100

%
 c

om
pl

et
ed

Avenir
ONOS completion

Figure 12: Completion graph for mapping 40k fabric.p4 IPv6
route insertions onto bcm.p4; ONOS takes around 15 min.

switch, and install rules to establish all-pairs ping connectiv-
ity. The P4 program running on the software switch is the
simple_router.p4 program from the Bmv2 repository. The
abstract program is a modified version that joins together the
L3 rewriting and forwarding tables into one.

We generate rules required to establish all-pairs connec-
tivity into the logical program and use Avenir to synthesize
the equivalent edits into simple_router.p4. We then report the
time of the first successful ping between each pair of hosts.
We compare Avenir cold-cache run with a manually generated
sequence of rule insertions and a pre-populated hot-cache, the
results are depicted in Figure 11.

7.3 Case Study: Trellis & ONOS
Trellis [46] is a set of production-grade SDN apps running on
ONOS [2,29] to provide control plane logic for multi-purpose
L2/L3 leaf-spine fabrics of OF-DPA Broadcom switches. In-
ternally, Trellis uses an ONOS API called FlowObjective,
designed to allow portability of apps across different switches
by abstracting common L2/L3 functionalities. Trellis controls
switches by writing FlowObjectives, which are translated by
an ONOS driver into OpenFlow messages for OF-DPA tables.
Finally, OF-DPA translates OpenFlow messages to Broadcom
SDK calls to populate ASIC-specific tables.

We evaluated Avenir on real-world P4 programs that repre-
sent the outermost layers of the architecture described above.
The fabric.p4 [12] P4 program was created by the ONOS
developers to support Trellis on programmable switches. It
is designed to simplify control plane operations, and for this
reason it closely resembles the FlowObjective API. Likewise,
bcm.p4 [27] abstracts tables from the Broadcom SDK, and
was created for Stratum [45], an open source switch agent
that uses P4 to model control APIs.

We then collected 40k IPv6 route insertions into fabric.p4
corresponding to a switch reboot load test designed by ONOS
engineers. Avenir synthesized insertions into bcm.p4 that
equivalently process the IPv6 header and egress specification.

Since Avenir does not process the parser, we simulated
its behavior by manually setting the validity bit of the IPv6
header to true, and the IPv4 and MPLS headers to false. Fur-
ther, the P4 specification [7] leaves the initial values of meta-
data headers undefined; we manually zero-initialize the meta-
data fields (a behavior that can be specified for many P4

0 500 1000 1500 2000 2500 3000
bits

0

100

200

tim
e

(s
)

L2 Router
L2-L4
Router

L2/L3
tunnelling

Ethernet Frame

Figure 13: Program bits vs time to translate 100 edits. The
vertical lines estimate the sizes of common router programs.

0 50 100 150 200
keys

0
100
200
300

tim
e(
s)

Figure 14: Classifier Scaling. We fixed the number of 32-bit
output variables to 8, and varied the number of keys.

targets via a compile time flag).
Further, we modified the l3_fwd in bcm.p4 by swapping

the IPv6 matches for IPv4 matches; otherwise there wouldn’t
have been a valid translation. Finally since Avenir works with
parsed headers, we systematically renamed headers in bcm.p4
to match fabric.p4.

The results are shown in Figure 12. According to its en-
gineers, ONOS computes and installs these 40k IPv6 routes
over a period of about 15 minutes. This figure includes Trellis’
route computation logic, the translation itself and the installa-
tion of rules onto the physical target devices. Figure 12 shows
that Avenir translates these 40k routes into bcm.p4 pipeline
in just under 12 minutes. However, it is unclear what conclu-
sions to draw about overhead, because we don’t know how
ONOS’ translation logic performs. In the (unlikely) best case,
we would have no overhead. In the (also unlikely) worst case,
we would nearly double the runtime. The real performance
would likely be somewhere between these extremes.

7.4 Microbenchmarks
To assess Avenir’s scalability, we procedurally generated a
collection of microbenchmarks that explore two independent
variables, the number of 32-bit input variables I and the num-
ber of 32-bit output variables O. For simplicity, the input and
output variables sets are distinct.

The abstract pipeline has one table that matches on all of the
input variables, and assigns one of the output variables. The
target pipeline first matches on all output variables and assigns
a metadata value m. This initial staging table is followed by a
sequence of O output tables. Table i in this sequence matches
solely on m and optionally assigns an output variable.

The results are shown in Figure 13. The x-axis shows the
number of bits in the abstract program (i.e., 32(I +O)) and
the y axis shows the time in seconds to translate 100 random
abstract edits. The violins show the timing distribution marked
with median value. The variation comes from the random
generation and from the variation in I and O.

Since networking programs are usually classifier-heavy,
we also fixed the number of 32-bit output variables to 8, and
varied the size of the classifier. The results are in Figure 14.

Of course, it’s difficult to make general claims about the
scalability of Avenir’s approach, which incorporates numer-
ous heuristics. Nevertheless, it does seem that the complexity
increases exponentially with the number of bits, as is expected
for a tool that relies on a black-box solver. Target pipelines
with different structure than the regular, repeated structure in
our microbenchmarks may behave differently.

8 Limitations and Future Work
We discuss two limitations to Avenir’s methodology: the cost
of formally specificying the abstract and target pipelines, and
the run-time overheads of our heuristic search.

The biggest threat to Avenir’s use is the requirement that
pipelines be formally specified. The work required to develop
a formal specification can be significant, and there is no guar-
antee that a given specification of a pipeline will accurately
describe its run-time behavior. Of course, these concerns can
be side-stepped if the pipelines are already programmed in
P4. But more generally we would need tools for generating
specifications and testing conformance. We plan to explore
such tools in future work.

Another limitation is our use of heuristic search. The evalu-
ation shows many situations in which Avenir works efficiently,
but there are also situations in which it fails to terminate in
a reasonable time. For example, to translate from Pipe1 to
OBT in Figure 2, Avenir maintains a cross product of L2_fwd
and L3_fwd, which requires quadratic operations, and causes
incremental heursitics to fail. Expanding the effective scope
of Avenir’s search is future work. We also plan to explore op-
timal notions of synthesis—e.g., finding the smallest solution.

9 Related Work

Synthesis. Avenir is based on Sketching [39], wherein the
programmer is allowed to insert unknown “holes” into a pro-
gram that are filled using CEGIS [40]. Sketching has been
used to build a code generator for packet-processing switch
pipelines [16]. NetComplete [10] allows network operators to
express their intent by sketching parts of the intended config-
uration for refactoring or updating purposes. Our novelty is
to use sketching to synthesize control plane mappings.

Another use of synthesis is to generate implementations
from high-level specifications, e.g., stratified Datalog [11],
regular expressions with uninterpreted functions [35], first-
order logic constraints [3], and LTL [22].

P4 Verification. There are several recent projects on veri-
fying P4 program properties. Lopes et al. developed an op-
erational semantics for P4 and developed a verification tool
based on Datalog which can check program equivalence [24].
P4K presented an operational semantics for P4 using the K
framework [19]. p4pktgen uses symbolic execution to gen-
erate test cases for P4 programs [26]. ASSERT-P4 translates
P4 to a C-like representation, and then symbolically executes
the program [15]. Vera [43] uses SymNet [44] as a symbolic
execution framework to verify P4 programs. p4v [21] uses
symbolic techniques to avoid run-time source traversals.

Network Virtualization. There are many SDN controllers,
such as POX [33], NOX [17], and Open Daylight [31]. A few
of them specifically target the problem of flow rule composi-
tion, including the Frenetic language and controller [14] and
Pyretic [25]. Other efforts have focused on network virtual-
ization, i.e., mapping abstract specifications down to target
realizations, such as ONIX [20]. FlowVisor [36], CoVisor [18]
and the NetKAT compiler [38]. Among this work, Avenir is
unique in developing an approach to managing heterogeneous
abstract and target pipelines.

10 Conclusion
This paper presented Avenir, a tool that automatically syn-
thesizes control plane operations to ensure uniform behavior
across a variety of physical data planes. Avenir uses a coun-
terexample guided inductive synthesis algorithm based on
a novel application of sketches to data plane programs. Our
evaluation demonstrates that Avenir correctly synthesizes con-
trol plane operations with modest overheads.

Acknowledgments
The authors wish to thank Andy Fingerhut for suggesting
that we explore the idea of control plane synthesis, and for
many helpful discussions as we developed Avenir. Thanks
also to Charles Chan and Pier Luigi Ventre from ONF
for the discussion on their experience supporting OF-DPA
switches in ONOS and Trellis. This work is supported by
NSF GRFP grant number DGE-1650441, NSF CCF-1553168,
NSF FMiTF-1918396, DARPA HR001120C0107, and gifts
from Alibaba, Fujitsu, Infosys, and VMware.

References
[1] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-

Baptiste Jeannin, Dexter Kozen, Cole Schlesinger, and David
Walker. NetKAT: Semantic Foundations for Networks. In ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, San Diego, CA (POPL), pages 113–126, January
2014.

[2] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi,
Masayoshi Kobayashi, Toshio Koide, Bob Lantz, Brian
O’Connor, Pavlin Radoslavov, William Snow, and Guru
Parulkar. ONOS: Towards an open, distributed SDN OS. In
ACM Workshop on Hot Topics in Software Defined Networking,
Chicago, Illinois (HotSDN), pages 1–6, August 2014.

[3] Rüdiger Birkner, Dana Drachsler-Cohen, Laurent Vanbever,
and Martin T. Vechev. Config2Spec: Mining network specifi-
cations from network configurations. In Ranjita Bhagwan and
George Porter, editors, In USENIX Symposium on Networked
Systems Design and Implementation, Santa Clara, CA (NSDI),
pages 969–984, February 2020.

[4] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McK-
eown, Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin
Vahdat, George Varghese, and David Walker. P4: Programming
protocol-independent packet processors. ACM SIGCOMM
Computer Communication Review (CCR), 44(3):87–95, July
2014.

[5] Sean Choi, Boris Burkov, Alex Eckert, Tian Fang, Saman
Kazemkhani, Rob Sherwood, Ying Zhang, and Hongyi Zeng.
FBOSS: Building switch software at scale. In Proceedings of
the 2018 Conference of the ACM Special Interest Group on
Data Communication, Budapest, Hungary (SIGCOMM), pages
342–356, August 2018.

[6] P4 Language Consortium. P4Runtime. https://p4.org/
p4-runtime/, October 2017. Accessed March, 2021.

[7] P4 Language Consortium. P416 Language Specifi-
cation. https://p4.org/p4-spec/docs/P4-16-v1.0.
0-spec.pdf, 2018. Accessed March, 2021.

[8] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient
SMT solver. In Conference on Tools and Algorithms for
the Construction and Analysis of Systems, Budapest, Hungary
(TACAS), pages 337–340. Springer, March 2008.

[9] Edsger W. Dijkstra. Guarded Commands, Nondeterminacy
and Formal Derivation of Programs. Communications of the
ACM (CACM), 18(8):453–457, August 1975.

[10] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, and Mar-
tin Vechev. NetComplete: Practical Network-Wide Configura-
tion Synthesis with Autocompletion. In USENIX Symposium
on Networked Systems Design and Implementation, Renton,
WA (NSDI), pages 579–594, April 2018.

[11] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, and Mar-
tin T. Vechev. Network-Wide Configuration Synthesis. In
Rupak Majumdar and Viktor Kuncak, editors, Computer Aided
Verification, Heidelberg, Germany (CAV), volume 10427 of
Lecture Notes in Computer Science, pages 261–281, 2017.

[12] fabric.p4 source code from ONOS v2.2.2. https://github.
com/opennetworkinglab/onos/blob/2.2.2/pipelines/
fabric/impl/src/main/resources/fabric.p4, 2020.
Accessed March, 2021.

[13] Cormac Flanagan and James B Saxe. Avoiding exponential ex-
plosion: Generating compact verification conditions. In ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, London, UK (POPL), pages 193–205, 2001.

[14] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher
Monsanto, Jennifer Rexford, Alec Story, and David Walker.
Frenetic: A Network Programming Language. In ACM SIG-
PLAN International Conference on Functional Programming,
Tokyo, Japan (ICFP), pages 279–291, September 2011.

[15] Lucas Freire, Miguel Neves, Lucas Leal, Kirill Levchenko, Al-
berto Schaeffer-Filho, and Marinho Barcellos. Uncovering

Bugs in P4 Programs with Assertion-based Verification. In
ACM SIGCOMM Symposium on Software Defined Network-
ing Research, Los Angeles, CA (SOSR), pages 4:1–4:7, March
2018.

[16] Xiangyu Gao, Taegyun Kim, Michael Dean Wong, Divya
Raghunathan, Aatish Kishan Varma, Pravein Govindan Kan-
nan, Anirudh Sivaraman, Srinivas Narayana, and Aarti Gupta.
Switch Code Generation using Program Synthesis. In ACM
Special Interest Group on Data Communication, Virtual Event,
USA (SIGCOMM), pages 44–61, August 2020.

[17] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martín
Casado, Nick McKeown, and Scott Shenker. NOX: Towards an
Operating System for Networks. ACM SIGCOMM Computer
Communication Review (CCR), 38(3):105–110, July 2008.

[18] Xin Jin, Jennifer Gossels, Jennifer Rexford, and David Walker.
CoVisor: A Compositional Hypervisor for Software-Defined
Networks. In USENIX Symposium on Networked Systems
Design and Implementation, Oakland, CA (NSDI), pages 87–
101, May 2015.

[19] Ali Kheradmand and Grigore Rosu. P4K: A Formal Seman-
tics of P4 and Applications. Computing Research Repository
(CoRR), abs/1804.01468, 2018.

[20] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Strib-
ling, Leon Poutievski, Min Zhu, Rajiv Ramanathan, Yuichiro
Iwata, Hiroaki Inoue, Takayuki Hama, and Scott Shenker. Onix:
A Distributed Control Platform for Large-Scale Production Net-
works. In USENIX Conference on Operating Systems Design
and Implementation, Vancouver, BC (OSDI), pages 351–364,
October 2010.

[21] Jed Liu, William Hallahan, Cole Schlesinger, Milad Sharif,
Jeongkeun Lee, Robert Soulé, Han Wang, Călin Caşcaval, Nick
McKeown, and Nate Foster. P4V: Practical Verification for
Programmable Data Planes. In ACM Special Interest Group on
Data Communication, Budapest, Hungary (SIGCOMM), pages
490–503, August 2018.

[22] Jedidiah McClurg, Hossein Hojjat, Nate Foster, and Pavol
Cerný. Event-driven network programming. In ACM SIG-
PLAN Conference on Programming Language Design and
Implementation, Santa Barbara, CA (PLDI), pages 369–385,
2016.

[23] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru
Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker, and
Jonathan Turner. OpenFlow: Enabling Innovation in Cam-
pus Networks. SIGCOMM Computer Communication Review
(CCR), 38(2):69–74, March 2008.

[24] Nick McKeown, Dan Talayco, George Varghese, Nuno Lopes,
Nikolaj Bjørner, and Andrey Rybalchenko. Automatically
verifying reachability and well-formedness in P4 Networks.
Technical Report MSR-TR-2016-65, September 2016.

[25] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer
Rexford, and David Walker. Composing Software-Defined
Networks. In USENIX Symposium on Networked Systems
Design and Implementation, Lombard, IL (NSDI), pages 1–14,
April 2013.

https://p4.org/p4-runtime/
https://p4.org/p4-runtime/
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.pdf
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.pdf
https://github.com/opennetworkinglab/onos/blob/2.2.2/pipelines/fabric/impl/src/main/resources/fabric.p4
https://github.com/opennetworkinglab/onos/blob/2.2.2/pipelines/fabric/impl/src/main/resources/fabric.p4
https://github.com/opennetworkinglab/onos/blob/2.2.2/pipelines/fabric/impl/src/main/resources/fabric.p4

[26] Andres Nötzli, Jehandad Khan, Andy Fingerhut, Clark Barrett,
and Peter Athanas. p4pktgen: Automated Test Case Gener-
ation for P4 Programs. In ACM SIGCOMM Symposium on
SDN Research, Los Angeles, CA (SOSR), pages 5:1–5:7, March
2018.

[27] Brian O’Connor, Yi Tseng, Maximilian Pudelko, Carmelo Cas-
cone, Abhilash Endurthi, You Wang, Alireza Ghaffarkhah, De-
vjit Gopalpur, Tom Everman, Tomek Madejski, et al. Using
P4 on Fixed-Pipeline and Programmable Stratum Switches. In
ACM/IEEE Symposium on Architectures for Networking and
Communications Systems, Los Angeles, CA (ANCS), pages 1–2,
October 2019.

[28] ONOS : Open Network Operating System. https:
//github.com/opennetworkinglab/onos/commit/
b7b79af9702f03c1286b8f2f9d98e6b87b29c467. Ac-
cessed March, 2021.

[29] Open Network Operating System (ONOS) SDN controller for
SDN/NFV solutions. https://www.opennetworking.org/
onos. Accessed March, 2021.

[30] OpenConfig. https://www.openconfig.net. Accessed
March, 2021.

[31] OpenDaylight. https://www.opendaylight.org. Accessed
March, 2021.

[32] OpenFlow-Data Plane Abstraction Networking Soft-
ware. https://www.broadcom.com/products/
ethernet-connectivity/software/of-dpa. Accessed
March, 2021.

[33] The POX OpenFlow Controller. https://github.com/
noxrepo/pox/. Accessed March, 2021.

[34] QMX switches require the unicast flow being in-
stalled before multicast flow in TMAC table. https:
//github.com/opennetworkinglab/onos/commit/
45b69ab951915a4211a. Accessed March, 2021.

[35] Shambwaditya Saha, Santhosh Prabhu, and P. Madhusudan.
NetGen: synthesizing data-plane configurations for network
policies. In Jennifer Rexford and Amin Vahdat, editors, ACM
SIGCOMM Symposium on Software Defined Networking Re-
search, Santa Clara, CA (SOSR), pages 17:1–17:6, June 2015.

[36] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appen-
zeller, Martin Casado, Nick McKeown, and Guru Parulkar.

Can the Production Network Be the Testbed? In USENIX
Conference on Operating Systems Design and Implementation,
Vancouver, BC (OSDI), pages 365–378, October 2010.

[37] SLOCCount. https://dwheeler.com/sloccount/. Ac-
cessed March, 2021.

[38] Steffen Smolka, Spiridon Eliopoulos, Nate Foster, and Arjun
Guha. A Fast Compiler for NetKAT. In ACM SIGPLAN Inter-
national Conference on Functional Programming, Vancouver,
BV (2015), pages 328–341, August 2015.

[39] Armando Solar-Lezama. Program Synthesis by Sketching. PhD
thesis, 2008.

[40] Armando Solar-Lezama, Christopher Grant Jones, and
Rastislav Bodík. Sketching Concurrent Data Structures. In
ACM SIGPLAN Notices, pages 136–148, June 2008.

[41] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit
Seshia, and Vijay Saraswat. Combinatorial Sketching for Finite
Programs. In ACM Conference on Architectural Support for
Programming Languages and Operating Systems, San Jose,
CA (ASPLOS), pages 404–415, 2006.

[42] SONiC. https://azure.github.io/SONiC/. Accessed
March, 2021.

[43] Radu Stoenescu, Dragos Dumitrescu, Matei Popovici, Lorina
Negreanu, and Costin Raiciu. Debugging P4 Programs with
Vera. In ACM Special Interest Group on Data Communication,
Budapest, Hungary (SIGCOMM), pages 518–532, 2018.

[44] Radu Stoenescu, Matei Popovici, Lorina Negreanu, and Costin
Raiciu. SymNet: Scalable Symbolic Execution for Modern
Networks. In ACM Special Interest Group on Data Commu-
nication, Florianopolis, Brazil (SIGCOMM), pages 314–327,
August 2016.

[45] Stratum: enabling the era of next generation SDN. https:
//www.opennetworking.org/stratum/. Accessed March,
2021.

[46] Trellis platform brief. https://www.opennetworking.org/
wp-content/uploads/2019/09/TrellisPlatformBrief.
pdf. Accessed March, 2021.

[47] Konstantin Weitz, Stefan Heule, Waqar Mohsin, Lorenzo Vi-
cisano, and Amin Vahdat. Leveraging P4 for Fixed-Function
Switches. In P4 Workshop 2019, 2019.

https://github.com/opennetworkinglab/onos/commit/b7b79af9702f03c1286b8f2f9d98e6b87b29c467
https://github.com/opennetworkinglab/onos/commit/b7b79af9702f03c1286b8f2f9d98e6b87b29c467
https://github.com/opennetworkinglab/onos/commit/b7b79af9702f03c1286b8f2f9d98e6b87b29c467
https://www.opennetworking.org/onos
https://www.opennetworking.org/onos
https://www.openconfig.net
https://www.opendaylight.org
https://www.broadcom.com/products/ethernet-connectivity/software/of-dpa
https://www.broadcom.com/products/ethernet-connectivity/software/of-dpa
https://github.com/noxrepo/pox/
https://github.com/noxrepo/pox/
https://github.com/opennetworkinglab/onos/commit/45b69ab951915a4211a
https://github.com/opennetworkinglab/onos/commit/45b69ab951915a4211a
https://github.com/opennetworkinglab/onos/commit/45b69ab951915a4211a
https://dwheeler.com/sloccount/
https://azure.github.io/SONiC/
https://www.opennetworking.org/stratum/
https://www.opennetworking.org/stratum/
https://www.opennetworking.org/wp-content/uploads/2019/09/TrellisPlatformBrief.pdf
https://www.opennetworking.org/wp-content/uploads/2019/09/TrellisPlatformBrief.pdf
https://www.opennetworking.org/wp-content/uploads/2019/09/TrellisPlatformBrief.pdf

A Formal Details
The grammar of bit-vector expressions and boolean formulae
is described in Figure 15.

e ::= (e ∈ Expr)
| v Bit Vector
| f Field
| e− e Subtraction
| e+ e Addition
| e & e Bitwise And

b ::= (b ∈ Bool)
| tt Truth
| ff Falsehood
| e = e Equality
| e < e Inequality
| ¬b Negation
| b∧b Conjuction
| b∨b Disjunction

Figure 15: Syntax of BitVector expressions and boolean for-
mulae.

The semantics of edits are defined below

Ax(ρ) τ ,

τ{x 7→ τ(x)@[ρ]}, ∀ρ ∈ τ(x),
π1(ρ) 6= π1(ρ

′)

τ, otherwise
Dx(i) τ , τ{x 7→ τ(x)[0 : i]@τ(x)[i+1 :]}

~δ τ , δ1 ◦ · · · ◦δn τ

Instantiations. A table is populated by rows in Row. A single
row ρ = (~m, ~d,a) ∈ Row is a tuple comprising a sequence of
match values ~m, a sequence of action data ~d, and an action
index i. We write π1(ρ) = ~m, π2(ρ) for ~d, and π3(ρ) for a.

Note that our instantiations only allow exact matches on
data. This does not affect the generality of our formal re-
sults, since exact matches can easily encode ternary and lpm
matches (with untenable blowup, of course). Using these more
compact matches is an optimization we describe in Section 5.

A row is well-formed for a table t if |~m| = t.keys, i <
|t.actions|, and when t.actions[i] = λ~x. c, then |~x| = |~d|. In
practice, there are additional typing constraints regarding the
sizes of the bitvectors, but as we’ve abstracted bitvectors to
naturals in this exposition, we can set that bookkeeping aside.
We assume henceforth that all rows are well-formed for the
tables into which they are being installed.

An instantiation τ ∈ Inst is a function from table name to
sequences of rows that describes the given state of the tables
in a pipeline, i.e., given a table t, τ(t.name) gives us the se-
quence of rows in the table. We often write τ(t) as convenient
shorthand. Moving forwards we will use τ to describe instan-
tiations for abstract programs and σ to describe instances for
physical programs.

An instantiation is well-formed if every row in every table
is well-formed

Now that we have pipelines c and instantiations τ, we can
define how to combine them via the function subst(c,τ),
which produces another command with no tables in it. Ef-
fectively we replace a table t with a guarded command
that checks each row (~m, ~d, i) in sequence. A single row is
translated to the guarded command: encKeys(t.keys,~m)→
t.actions[i](~d), where the encKeys function We present this
formally in Figure 16. Since instances τ are total functions,
τ(t) will always be defined.

We call the command c′ = subst(c,τ) an instantiated
pipeline. Note that all of the table applications have been
encoded away and we have a simple loop-free command.
Interpretation. We can interpret instantiated pipelines as
functions on packets. A packet comes in and then a (possi-
bly) different packet goes out. Similar to other formalisms
of packet processing functions we define packets to be valu-
ations on the headers and metadata [1]: packets are defined
as finite maps Hdr∪Meta ⇀ (BitVec). Operations on pack-
ets pkt are the standard ones: the empty packet is written
{}; to update or set the value of h ∈ Hdr to [n]s ∈ BitVec
with h.size = s, write pkt{h 7→ [n]s}, otherwise the update
is undefined; to access the value of x, write pkt.x. The set
of defined names x in a packet pkt is denoted dom(pkt). A
packet is well-formed when it can be constructed by a series
of defined updates. In what follows, we assume all updates
are well-formed and all packets well-defined: specifically, that
Pkt the set of well-defined elements of Hdr ⇀ (BitVec).

The semantics of commands on a packet pkt are straight-
forward. The assignment operation x := e first evaluates e to
a value n in the environment defined by the packet pkt, and
then returns the packet pkt{x 7→ n}. The sequence operator
(c1;c2) is simply interpreted as functional composition: the
output of Jc1K pkt is passed into Jc2K.

The semantics of guarded commands are broken into two
cases. First, if there are no rows in the selection, i.e., if fi,
the command is interpreted as the identity function, oth-
erwise, if there is at least one row in the selection (i.e.,
if (b→ c)

−−−→
b→ c fi), then b is evaluated in the packet en-

vironment. If it evaluates to tt, then execute c, i.e., JcK pkt,
otherwise, if b evaluates to ff, we simply check the remaining
rows in the guarded command, i.e Jif

−−−→
b→ c fiK pkt.

Finally, the denotation of a table is simply its default action.
We leave the semantics of our expressions (EJ−K) and

booleans (BJ−K) undefined, as their definitions are standard.
The logical encoding uses the predicate transformer se-

mantics of GCL programs [9]. Our semantics are identical to
Dijkstra’s, with the exception of our guarded commands. Ours
are definitionally mutually exclusive, his are nondeterministic.
To remedy this we simply negate the preceding guards, and
then apply the weakest precondition function, wp.

Φ ,
∧
{h.name = x′ | h ∈ x′ fresh}

c1 ≡ c2 , wp(c1,Φ)⇔ wp(c2,Φ)

ISVALID(ϕ) , SAT(¬ϕ)

Figure 18: The verification condition for determining when
two programs implement the same function

encKeys :: List[Hdr]×List[BitVec]→ Bool

encKeys(~k,~m) ,
∧

0≤i<|t.keys| ki = mi

subst(c,τ) :: Cmd

subst(x := e,τ) , x := e
subst(c;c,τ) , subst(c,τ);subst(c,τ)
subst(if

−−−→
b→ c fi,τ) , if

−−−−−−−−−−→
b→ subst(c,τ) fi

subst(apply t,τ) ,
if

encKeys(t.keys,~m1)→ t.actions[a1](~d1)
...

encKeys(t.keys,~mn)→ t.actions[an](~dn)
fi

where (~m1, ~d1,a1), . . . ,(~mn, ~dn,an) = τ(t)

Figure 16: Semantics of Table Instances

JcK :: Pkt→ Pkt

Jx := eK pkt , pkt{x 7→ EJeK pkt}
Jc1;c2K pkt , Jc2K◦ Jc1K pkt
Jif fiK pkt , pkt
Jif (b→ c)(

−−−→
b→ c)fiK pkt

,

{
JcK pkt BJbK pkt = tt

Jif
−−−→
b→ c fiK pkt otherwise

Japply(t)K pkt , Jt.defaultK pkt

Figure 17: Semantics of programs

The verification condition is defined in Figure 18. Leverag-
ing the connection between weakest preconditions and deno-
tational semantics [9], we can define equivalence pipelines c1
and c2 by taking the weakest precondition with respect to a
particular formula Φ, which equates every header variable to
a fresh symbolic variable. The free variable will then capture
the input value of a program, and the symbolic variable will
capture the output value of the program.

As an example, consider the following command c:

if x = 1 → x := 5
tt → x := 9

fi

Then the Φ corresponding to this command is x = x′. Then
wp(c,Φ) is equivalent to

(x = 1⇒ 5 = x′)
∧(x 6= 1⇒ 9 = x′)

The variable x captures the input conditions (either x = 1 or
not), and the x′s capture the output varibles: when the input x
value is one, the output will be 5; otherwise, it will be 9.
Instrumentation The instr function formalizes how to add
holes to a table. We write else if to help delineate elements in
the selection list.

instr(t,τ,~δ,n) ,
if t.keys = ~mi∧ ?Delt.name,i = 0→ t.actions[ai](~di)

for (~mi, ~di,ai) ∈ τ(t) if D(t.name, i) 6∈~δ
else if t.keys = ~m→ t.actions[ai](~d)

for A(t.name,(~mi, ~di,ai)) ∈~δ
else if

∧
k∈t.keys k = ?kt.name, j
∧?Addt.name, j = 1
∧
∧

k≤ j ?Addt.name,k = 1
∧?ActIdt.name, j = i

→ t.action[i](
−−−−−−→
?dt.name, j,i)

for 0≤ i < |t.actions| and 0≤ j < n
fi

Figure 19: The instr function formalizes how to add holes to
a tables

B Proof of Completeness
Lemma 1 (Hits Restrict). For every program p ∈ Cmd, in-
stance σ ∈ Inst, and set of counter examples X such that for
every (χ0,χ1) ∈ X, Jsubst(p,σ)K χ0 = χ1, then there exists
σ′ such that X ⊆ Jsubst(p,σ′)K and |σ′(t)| ≤ |X | for every
t ∈ Tables(p).

Proof. Proceed by induction on the structure of p:

[(p = x := e)] Trivial because Tables(x := e) = /0 and
for every σ, subst(x := e,σ) = x := e.

[p = (p1; p2)] Assume p = p1; p2. Introduce X and σ as
above.

Decompose X across p1 and p2 such that

X1 , {(χ0,χ1) | Jsubst(p1,σ)K χ0 = χ1,χ0 ∈ π1(X)}
X2 , {(χ1,χ2) | Jsubst(p2,σ)K χ1 = χ2,χ1 ∈ π2(X1)}

Notice that X2 ◦X1 = X .

Now by the IH on p1, σ and X1 we get σ1 such that every
rule is hit by a counterexample in X1,

∀(χ0,χ1) ∈ X1,Jsubst(p1,σ1)K χ0 = χ1

and |σ1(t)| ≤ |X1| for all t ∈ Tables(p1). Similarly, by
the IH on p2, σ and X2, we get σ2 such that every rule is
hit by a counterexample in X2.

∀(χ1,χ2) ∈ X2,Jsubst(p2,σ2)K χ1 = χ2

and |σ2(t)| ≤ |X1| for all t ∈ Tables(p2).

Now we can construct σ′ such that

σ
′(t) =

{
σ1(t), if t ∈ Tables(p1)

σ2(t), if t ∈ Tables(p2)

Observe that σ|Tables(pi) = σi for i = 1,2. Now we show
the two remaining properties.

• Since X = X2 ◦ X1 is a function, we know ∀t ∈
Tables(p), |σ1(t)| ≤ |X1| ≤ |X | and |σ2(t)| ≤
|X2| ≤ |X |, and the table names in p1 and p2 are dis-
joint. Conclude that ∀t ∈ Tables(p), |σ′(t)| ≤ |X |.

• Show X ⊆ Jsubst(p1; p2,σ
′)K. Our IHs give

X1 ⊆ Jsubst(p1,σ1)K
X2 ⊆ Jsubst(p2,σ2)K

By definition,

Jsubst(p1; p2,σ
′)K

=
Jsubst(p2,σ

′)K◦ Jsubst(p1,σ
′)K

Then,

Jsubst(p2,σ
′)K◦ Jsubst(p1,σ

′)K
=

Jsubst(p2,σ2)K◦ Jsubst(p1,σ1)K

by the disjointness of table names. The result fol-
lows.

[p = if
−−−→
b→ p fi] Similar, but n-ary.

[p = apply(t)] Assume that p = apply(t) for some ta-
ble t. The corresponding rows for the table are σ(t) =
~ρ. Compute a subsequence ~ρ′ of ~ρ such that ~ρ′ con-
tains ρi iff there is some input packet in X that hits
ρi. Create an instantiation σ′ = σ{t 7→ ~ρ′}. Since
each the rules are equality matches (and hence dis-
joint), Jsubst(apply(t),σ′)K χ0 = χ1 for every (χ0,χ1)∈
X . Since some χ0 ∈ π1(X) may miss, conclude that
|σ′(t)| ≤ |X |.

Lemma 2 (Model Solution). For every p ∈ Cmd, every σ ∈
Inst, and every X ∈ Pkt2, if there exists~δ ∈ List[Edit] such
that X ⊆ Jsubst(p,~δ(σ))K, then

SAT ~δ′ = model(p,σ,X)

and
X ⊆ Jsubst(p,~δ′(σ))K

Proof. Let~δ be such that X ⊆ Jsubst(p,~δ(σ))K.
Lemma 1 gives us σ′ from~δ(σ) such that for every table

t ∈ dom(σ′), |σ′(t)| ≤ |X |, and X ⊆ Jsubst(p,σ′)K.
Construct the following witness to the query in Figure 5

?Delx,i 7→ 1,
?Addx, j 7→ 1,
?ActIdx, j 7→ a,
−−−−−−→
?kx, j 7→ m,
−−−−−−→
?dx, j,i 7→ d

∣∣∣∣∣∣∣∣∣∣
t ∈ Tables(p),
x = t.name
0≤ i < |σ(t)|,
0≤ j < |σ′(t)|
(~m, ~d,a) = σ′(t)[j]

which corresponds to the rules

dt,i , D(t, i), ∀t ∈ Tables(p), |σ(t)|> i≥ 0
at, j , A(t,σ′(t)[j]), ∀t ∈ Tables(p),0≤ j < |σ′(t)|
~δ′ , ~d ·~a

Note that ~dt is sorted from highest index to lowest index.
Observe that ~δ′(σ) =~a(~d(σ))σ =~a(·) = σ′, so we can con-
clude that ∀(χ0,χ1)∈X ,Jsubst(p,~δ′(σ))K χ0 = χ1, and we’re
done.

Theorem 6 (Completeness). For every logical program l ∈
Cmd, physical program p ∈ Cmd, logical instantiation τ ∈
Inst, physical instantiation σ ∈ Inst, sequence of physical
edits~δ ∈ List[Edit], and every set X s.t.

X ⊆ Jsubst(l,τ)K∩ Jsubst(p,~δ(σ))K,

if
∃~ε ∈ List[Edit].subst(l,τ) = subst(p,~ε(σ))

then
Ok ~δ′ = cegis(l, p,τ,σ,~δ,X)

and
subst(l,τ) = subst(p,~δ′(σ))

Proof. Proceed by induction on |Pkt\π1(X)|.
Base Case. (π1(X) = Pkt). The definition of functional

subset gives us

∀(χ1,χ2) ∈ X .Jsubst(l,τ)K χ1 = χ2 = Jsubst(p, ~δ(σ))K χ1

which reduces to

∀χ1 ∈ π1(X).Jsubst(l,τ)K χ1 = Jsubst(p,~δ(σ))K χ1.

Then by the assumption that π1(X) = Pkt, this is just

∀χ1 ∈ Pkt.Jsubst(l,τ)K χ1 = Jsubst(p,~δ(σ))K χ1

Conclude, by definition, that

subst(l,τ) = subst(l,~δ)

Inductive Step. (π1(X) ⊆ Pkt). If subst(l,τ) =

subst(p,~δ(σ)), then we’re done, so assume instead
that we have a counterexample χ = (χ0,χ1) such that

Jsubst(l,τ)K χ0 = χ1 6= Jsubst(p,~δ(σ))K

which tells us that that χ 6∈ X .
Our main assumption tells us that there is some~ε such that

subst(l,τ) = subst(p,~ε(σ))

By definition we have

∀pkt ∈ Pkt.Jsubst(l,τ)K pkt = Jsubst(p,~ε(σ))K pkt.

which, since π1({χ}∪X)⊆ Pkt, means that

∀pkt ∈ {χ}∪X .Jsubst(l,τ)K pkt = Jsubst(p,~ε(σ))K pkt,

Then Lemma 2 gives us a model ~δ′ such that

∀pkt ∈ {χ}∪X .Jsubst(l,τ)K pkt = Jsubst(p,~δ′(σ))K pkt

The result follows by IH on {χ}∪X as |{χ}∪X |> |X |.

C Proof of Completeness for Incremental Syn-
thesis

Definition 1 (Minimal Sequence). Given an instantiation τ,
a sequence of edits~δ is minimal iff for every table t ∈ dom(τ),
for every ~δ′ s.t.~δ(σ) = ~δ′(σ), |~δ| ≤ |~δ′|.

Definition 2 (Minimal Extension). Given a command c, an
instantiation τ, and a sequence of edits~δ, another sequence
~δ′ is called a minimal extension of~δ when~δ◦~δ′ is minimal.

Lemma 3 (Finite Minimal Sequences). Given a command c,
and an instantiation τ, the set of minimal sequences is finite.

Proof. Proceed by induction on the structure of c.

(h := e) There there is one minimal instatiation: [].

(c1;c2) By IHs, the set of minimal sequences correspond-
ing to c1 and τ is a finite D1, and the set of minimal se-
quences corresponding to c1 and τ is a finite D2. The set
of minimal sequences corresponding to c1;c2 is the set
of all interleaving of all sequences in D1 and sequences
of D2, which is finite.

(if
−−−→
b→ c fi) This is similar to the previous case except

nary.

(apply(t)) First we show that the space of functions that
t can represent is finite. Since t.keys is finite, and each
header in t.keys has a finite domain of values, so the
domain of matches is finite. A similar argument shows
that the domain of actions is finite, and so the domain
of functions is finite. Further for each of these functions,
there are finitely many ways of representing them (all of
the permutations of the rules).

This means that there are finitely many minimal se-
quences when τ(t) = [], simply install each of these,
with no duplicates, since removing the duplicates would
result in a smaller sequence of edits.

When τ(t) 6= [] there are also finitely many minimal
sequences. They are those that delete as few rules in τ(t)
as necessary and then install the missing rules (if any are
needed): they never delete a rule and then reinstall the
same rule, and then never install a rule only to delete it
later.

Lemma 4 (Finite Minimal Extensions). For a command c
and an instantiation τ, and a sequence of edits~δ, there are
finitely many minimal extensions of~δ.

Proof. There are finitely many minimal extensions of c and
τ. Some of those have~δ as a prefix; there are finitely many of
them.

Definition 3 (ϕ-Preclusion). For a program c, instantiation
τ, and a packet pair χ 6∈ Jsubst(c,τ)K, we say that ϕ pre-
cludes ~δ when for every ~δ′ |= ϕ that is also a prefix of ~δ,
χ 6∈ Jsubst(p,~δ(τ))K. We say that ϕ precludes a solution, when
it precludes every~δ.

Definition 4 (Zip Function). Let zip(~x, ~y) be the function
that simultaneously iterates through ~x and ~y and returns a
sequence of the element-wise pairs, i.e.,

−−→
(x,y). The function

is undefined if |~x| 6= |~y|.

Lemma 5 (Model Finding). For every logical program l,
physical program p, logical instantiation τ, phsyical instan-
tiation σ, sequence of physical edits~δ, counterexample χ ∈
Jsubst(l,τ)K \ Jsubst(p,~δ(σ))K, and formula ϕ ∈ Bool such
that for every ~δ′ |= ¬ϕ st χ ∈ Jsubst(p,~δ′(~δ(σ)))K, there is
no extension ~δ′′ such that subst(l,τ) = subst(l, ~δ′′(~δ′(~δ(σ)))),
then if there exists~ε not precluded by ϕ such that

subst(p,τ) = subst(l,~ε(~δ(σ)))

, and~δ◦~ε is minimal, then

Sat ~δ′′ = model′(p,σ,δ,χ,ϕ)

Proof. Let l, p, τ, σ,~δ, χ, and ϕ be given. Construct the fol-
lowing model for the query in model′(p,σ,δ,χ,ϕ):

We accumulate a model for every table t ∈ Tables(p). If
π1(χ) in subst(p,~ε(~δ(σ))) hits the ith row ρi, then there are
several cases

MISS If π1(χ) misses in subst(p,~δ(σ)), then add
?AddRowTot,1 7→ 1
?Actt,1 7→ ρi.action
~?kt,1 7→ ρi.keys
−−−−−−−→
?dt,ρ.action,1 7→ ρi.data

HITCORRECT If π1(χ) hits the jth row ρ j of (~δ(σ))(t)
in subst(p,~δ(σ)), and ρi = ρ j then do nothing.

HITWRONG If π1(χ) hits the jth row of (~δ(σ))(t) in
subst(p,~δ(σ)) and ρ j 6= ρi,

?AddRowTot,1 7→ 1
?Actt,1 7→ ρi.action
~?kt,1 7→ ρi.keys
−−−−−−−→
?dt,ρ.action,1 7→ ρi.data

From here we extract queries from the model as before,

sorting the deletions by decreasing index to get ~δ′′. Note that χ

hits a syntactically equivalent rule in subst(p, ~δ′′(~δ)(σ)) as in
subst(l,~ε(~δ(σ))). We conclude χ∈ Jsubst(p, ~δ′′(~δ(σ)))K

Lemma 6 (Nontrivial Models). For every physical program
p, physical instance σ, sequence of edits~δ, formula ϕ, and
counterexample χ ∈ Pkt2 such that χ 6∈ Jsubst(p,~δ(σ))K, if
Sat ~δ′′ = model′(p,σ,~δ,χ,ϕ), then ~δ′′ 6= [].

Proof. Let p ∈ Cmd, σ ∈ Inst,~δ ∈ List[Edit] and ϕ and χ ∈
Pkt2 be given. Assume Sat ~δ′′ = model′(p,σ,~δ,ϕ).

Prove the contrapositive, that if ~δ′′ = [], then χ ∈
Jsubst(p,σ)K. Assume ~δ′′ = []. Then the query in
model(p,σ,~δ,χ,ϕ) is satisfiable with all deletion and inser-
tion holes set to zero. This means that the following query is
also satisfiable (where χ = (pkt,pkt′)):

SAT
(
∀~x.ϕ∧

(−−−−−→
χ1.x = x

)
⇒ wp

(
subst(p,~δ(σ)),

(−−−−−−→
pkt′.x = x

)))
By the correspondence between wp and the denotational

semantics, conclude that χ ∈ Jsubst(p,~δ(σ))K.

Proposition 1 (Oracle Constraints). For a given physical
program p, edit sequence δ and instance σ,

HEURISTIC()⇒
∧

t∈Tables(p)

?Addt,1 = 1⇒
∧

(~m,~d,~a)∈~δ(σ)(t)

¬
(−−→

?kt,1 = m
)

and

HEURISTIC()⇒
∧

t∈Tables(p)
0≤i<|σ(t)|

(~m,~d,a)=σ(t)[i]

?Delt,i = 1⇒¬

−−−−−→
?kt,1 = m
∧?Actt,l = a
∧
−−−−−−→
?dt,a,1 = d

Lemma 7 (Reachable Edits). For every program p, instan-
tiation σ, edit sequence~δ, counterexample χ and ϕ ∈ Bool,
if

Sat ~δ′ = model′(p,σ,~δ,χ,ϕ)

then the insertions in~δ are reachable.

Proof. By Proposition 1.

Lemma 8 (Deletes Not Resurrected). For every program
p, instantiation σ, edit sequence ~δ, counterexample χ and
ϕ ∈ Bool, if

Sat ~δ′ = model′(p,σ,~δ,χ,ϕ)

then the insertions in~δ are reachable.

Proof. By Proposition 1.

Lemma 9 (Minimal Models). For every physical program p,
physical instance σ, sequence of edits~δ, formula ϕ, and coun-
terexample χ ∈ Pkt2 such that χ 6∈ Jsubst(p,σ)K, if Sat ~δ′′ =

model′(p,σ,~δ,ϕ), then~δ◦ ~δ′′ is minimal.

Proof. Let p, σ, ~δ, ϕ, χ be given. Assume Sat ~δ′′ =

model′(p,σ,~δ,ϕ).
Consider another sequence of edits ~δ′ such that there is

some σ′ such that ~δ′′(~δ(σ)) = σ′ =~δ′(σ). Show that |~δ◦ ~δ′′| ≤
|~δ′|.

We prove two propositions.

(ADD) Assume that there were some insertion δi =
A(t,ρ) ∈~δ ◦ ~δ′′ that doesn’t occur in ~δ′. If δi ∈~δ, then
ρ ∈ σ′(t). By minimality of~δ, and ρ 6∈ σ′(t). So σ′ 6=
~δ(σ), which is a contradiction. If δi ∈ ~δ′′, then ρ ∈ σ′(t),
and ρ 6∈ σ(t), because model′ always produces reachable
edits (Lemma 7). Consequently ~δ′(σ) 6= σ′ which is a
contradiction.

So we know that δi has a corresponding edit δ′j ∈ ~δ′.

Assume that there is another edit δk ∈~δ ◦~δ that corre-
sponds to δ′j. This is impossible by Lemma 7 and by the

minimality of~δ.

(DEL) Assume that there were some edit δ j = D(t, i) ∈
~δ◦~δ′′ deletes some row ρ that occurs in~δ′(σ): ie. ((δi−1◦
· · · ◦δ1)(σ))(t)[i] = ρ 6∈ σ′(t) and ρ ∈ ~δ′(σ).

If δi ∈ ~δ′′, we know, by construction, that δi deletes a
row in σ(t). Further, Lemma 8 says ~δ′(σ) 6= σ′, which is
a contradiction.

So we know that δi has a corresponding edit δ′j ∈ ~δ′.

Assume that there is another edit δk ∈~δ ◦~δ that corre-
sponds to δ′j. This is impossible because rows can only
be deleted once.

Since every edit in~δ◦ ~δ′′ has a corresponding unique edit
in δ′. Conclude that~δ◦ ~δ′′ ⊆ ~δ′. The result follows.

Lemma 10 (Completeness). For every logical program l,
every physical program p, every logical instantiation τ, every
physical instantiation σ and every sequence of physical edits
~δ, then, the following properties hold:

1. if there exists a sequence of physical edits ~δ′ such that

subst(l,τ) = subst(p,~δ′(~δ(σ)))

then
Ok ~δ′′ = verify(l, p,τ,σ,~δ)

and
subst(l,τ) = subst(p, ~δ′′(σ))

2. For every χ ∈ Jsubst(l,τ)K\ Jsubst(p,~δ(σ))K, and every
ϕ ∈ Bool such that if ~δ′ |= ¬ϕ and Jsubst(l,τ)K π1(χ) =

π2(χ) = Jsubst(p,~δ′(~δ(σ)))K π1(χ) , there is no exten-
sion ~δ′′ such that subst(l,τ) = subst(l, ~δ′′(~δ′(~δ(σ))))

then if there exists a non-empty, minimal sequence of
physical edits~ε not precluded by ϕ such that

subst(l,τ) = subst(p,~ε(~δ(σ)))

then
Ok ~δ′′ = solve(l, p,τ,σ,~δ,χ,X ,ϕ)

and
subst(l,τ) = subst(p, ~δ′′(σ))

Proof. First we justify the finiteness of our inner inductive
measure. There is a finite number of models to every model′

query, simply because there are finitely many holes, each of
which has finite domain. Since ϕ is composed of the same set
of variables, it is also finite.

Let l, p, τ and σ be given. Proceed by induction on the num-
ber of nonempty minimal extensions of~δ. Lemma 4 shows
this measure is well-formed.

BASE CASE There are no nonempty minimal extensions
of~δ. Consider each proposition separately

1. Let~ε be a nonempty sequence of edits such that
subst(l,τ) = subst(l,~ε(σ)). However, ~δ has no
nonempty minimal extensions, so subst(l,τ) =
subst(l,~δ(σ))). Entering the verify function, ob-
serve that by Theorem 1 CheckSat(subst(l,τ) 6≡
subst(l,~δ(σ))) will be UNSAT, and we’re done by
Theorem 4.

2. Vacuous, there is no such~ε.

INDUCTIVE STEP There are nonempty minimal exten-
sions of~δ.

First we prove proposition 2 by strong induction on the
number of models for ϕ.

BASE CASE There are no models for ϕ, i.e., ϕ is unsatis-
fiable. Consequently, the call to model′ fails to pro-
duce a model. This is a contradiction by Lemma 5.

INDUCTIVE STEP There are n models for ϕ Let X and
χ be given. Assume~ε exists such that subst(l,τ) =
subst(p,~ε(~δ(σ))).
Now, we get a model by calling
model′(p,σ,~δ,χ,ϕ), and there are two cases.

i. Assume the result is UNSAT. This is a contra-
diction by Lemma 5.

ii. Assume the result is Sat ~δ′′. By Lemma 6, |~δ′′|
is nonempty. Consider two cases:
Case 1. Assume there exists some extension
of~δ◦ ~δ′′ that is a solution. Then the outer IH
proves that the verify call produces a solution.
Case 2. Assume there is no extension of~δ◦ ~δ′′
that is a solution. Then verify(l, p,τ,σ,~δ◦ ~δ′′)

returns Fail. Then, since ~δ′′ |= ϕ, and~δ 6|= ¬~δ,
the number of models for ϕ∧¬~δ′′ is strictly
less than n. Further, we know that there is an
way to extend~δ that is a solution, namely~ε.
We also know that~ε isn’t precluded by ϕ, by
assumption, finally we also know that~ε isn’t
precluded by ¬~δ′′, because of our assumption
that~δ ◦ ~δ′′ cannot be extended to a solution.
These final conditions witness the precondi-
tions of the inner IH, which proves the result.

X

Now prove proposition 1. Let~ε be such that

subst(l,τ) = subst(l,~ε(~δ(σ)))

There are two cases, either subst(l,τ) = subst(l,~δσ) or not.
In the former case, we are done by Theorem 1. In the latter,
we will get a counterexample χ (by Theorem 1), such that

χ 6∈ subst(l,τ)∩ subst(l,~δ(σ))

Then the result follows as a special case of the preceeding
proof of proposition 2.

	Introduction
	Background and Motivation
	Control Plane Synthesis
	Basic Definitions and Verification
	Synthesizing Candidates via Sketches
	Counterexample-Guided Search
	Synthesis Algorithm
	Formal Properties

	A Scalable Solution: Incremental Synthesis
	Single Counterexample-Guided Search
	Incremental Synthesis Algorithm
	Formal Properties

	Heuristics and Optimizations
	Exploiting Incrementality
	Model-Finding Heuristics

	Implementation
	Evaluation
	Retargeting Study
	Network Emulation
	Case Study: Trellis & ONOS
	Microbenchmarks

	Limitations and Future Work
	Related Work
	Conclusion
	Formal Details
	Proof of Completeness
	Proof of Completeness for Incremental Synthesis

