
Context Discovery and Commitment Attacks
How to Break CCM, EAX, SIV, and More

Sanketh Menda, Julia Len, Paul Grubbs, and Thomas Ristenpart

Eurocrypt 2023

Authenticated Encryption with Associated Data (AEAD)

C = AEAD.Enc(K,N,A,M)

K, N, A K, N, A
Context:
• Key K
• Nonce N (e.g., random IV or counter)
• Associated data A (e.g., network header)

Sender Recipient

2

Standardized
1. AES-GCM
2. ChaCha20/Poly1305
3. AES-GCM-SIV

Provably Secure
1. Confidentiality
2. Authenticity

Meddler-in-the-middle

Can observe and manipulate.

Shared out of band.

Recent Attacks on AEAD

3

These attacks work in new threat models!

These attacks exploit lack of key commitment:
An adversary can find keys K1, K2 and ciphertext

C s.t. C can be decrypted under both keys

Context Commitment Security [BH22]

4

Context
committing

Key
committing

For AEAD, computationally efficient to find
 (K1, N1 , A1), (K2, N2, A2) and C
such that decryption
 M1 ← AEAD.Dec(K1, N1, A1, C)
 M2 ←	AEAD.Dec(K2, N2, A2, C)
succeeds.

Commitment Attacks (Before this Paper)

Scheme Key Committing Context Committing
GCM [GLR17, DGRW19]
AES-SIV
CCM
EAX
OCB3 [ADGKLS20]
PaddingZeros [ADGKLS20]
KeyHashing [ADGKLS20]
CAU-C1 [BH22]

5

6

Commitment Attacks (After this Paper)

Scheme Key Committing Context Committing
GCM [GLR17, DGRW19]
AES-SIV
CCM
EAX
OCB3 [ADGKLS20]
PaddingZeros [ADGKLS20]
KeyHashing [ADGKLS20]
CAU-C1 [BH22]

7 = new result

New granular framework for context commitment

Key commitment attack against the original SIV mode

New context commitment security notion: context discovery

Context discovery attacks against GCM, OCB3, EAX, CCM, SIV

Our Contributions

8

New granular framework for context commitment

Key commitment attack against the original SIV mode

New context commitment security notion: context discovery

Context discovery attacks against GCM, OCB3, EAX, CCM, SIV

Our Contributions

9

Don’t we already have committing security definitions?

10

definitions

definitions definitions

definition

https://xkcd.com/927/

Ambiguity in Key Commitment Definitions

11

[FOR17] doesn’t mention associated data, and
implicitly requires the same nonce.

[GLR17] allows different associated data, but still
implicitly requires the same nonce.

[LGR20] requires same nonces and associated data.

12

Granular Framework for Context Committing Security

For AEAD, computationally efficient to find
 (K1, N1, A1), (K2, N2, A2) and C
such that decryption
 M1	← AEAD.Dec(K1, N1, A1, C)
 M2 ←	AEAD.Dec(K2, N2, A2, C)
succeeds.

For AEAD, computationally efficient to find
 (K1, N1, A1), (K2, N2, A2) and C
such that
 P((K1, N1, A1), (K2, N2, A2)) for predicate P
and decryption
 M1	← AEAD.Dec(K1, N1, A1, C)
 M2 ←	AEAD.Dec(K2, N2, A2, C)
succeeds.

Granular Framework for Context Committing Security
Step 1: Arbitrary Predicates

13

For AEAD, computationally efficient to find
 (K1, N1, A1), (K2, N2, A2) and C
such that
 P((K1, N1, A1), (K2, N2, A2)) for predicate P
and decryption
 M1	← AEAD.Dec(K1, N1, A1, C)
 M2 ←	AEAD.Dec(K2, N2, A2, C)
succeeds.

Granular Framework for Context Committing Security
Step 1: Arbitrary Predicates

14

Notion Predicate

Context
Commitment (K1, N1 , A1) ≠ (K2, N2, A2)

For AEAD, computationally efficient to find
 (K1, N1, A1), (K2, N2, A2) and C
such that
 P((K1, N1, A1), (K2, N2, A2)) for predicate P
and decryption
 M1	← AEAD.Dec(K1, N1, A1, C)
 M2 ←	AEAD.Dec(K2, N2, A2, C)
succeeds.

Granular Framework for Context Committing Security
Step 1: Arbitrary Predicates

15

Notion Predicate

Context
Commitment (K1, N1 , A1) ≠ (K2, N2, A2)

CMT-k K1 ≠ K2

CMT-n N1 ≠ N2

CMT-a A1 ≠ A2

Pe
rm

iss
iv

e

For AEAD, computationally efficient to find
 (K1, N1, A1), (K2, N2, A2) and C
such that
 P((K1, N1, A1), (K2, N2, A2)) for predicate P
and decryption
 M1	← AEAD.Dec(K1, N1, A1, C)
 M2 ←	AEAD.Dec(K2, N2, A2, C)
succeeds.

Granular Framework for Context Committing Security
Step 1: Arbitrary Predicates

16

Notion Predicate

Context
Commitment (K1, N1 , A1) ≠ (K2, N2, A2)

CMT-k K1 ≠ K2

CMT-n N1 ≠ N2

CMT-a A1 ≠ A2

CMT-k* K1 ≠ K2 ∧ (N1 , A1) = (N2, A2)

CMT-n* N1 ≠ N2 ∧ (K1 , A1) = (K2, A2)

CMT-a* A1 ≠ A2 ∧ (K1 , N1) = (K2, N2)

Pe
rm

iss
iv

e
Re

st
ric

tiv
e

For AEAD, given
K1, K2 ←	 𝟎, 𝟏 𝒌	 [target selection]

computationally efficient to find
 (K1, N1, A1), (K2, N2, A2) and C
such that
 P((K1, N1, A1), (K2, N2, A2)) for predicate P
and decryption
 M1	← AEAD.Dec(K1, N1, A1, C)
 M2 ←	AEAD.Dec(K2, N2, A2, C)
succeeds.

Granular Framework for Context Committing Security
Step 2: Target Selection

17

$

Notion Predicate

Context
Commitment (K1, N1 , A1) ≠ (K2, N2, A2)

CMT-k K1 ≠ K2

CMT-n N1 ≠ N2

CMT-a A1 ≠ A2

CMT-k* K1 ≠ K2 ∧ (N1 , A1) = (N2, A2)

CMT-n* N1 ≠ N2 ∧ (K1 , A1) = (K2, A2)

CMT-a* A1 ≠ A2 ∧ (K1 , N1) = (K2, N2)

Pe
rm

iss
iv

e
Re

st
ric

tiv
e

For AEAD, given
C	← AEAD.Enc(K1, N1, A1, M1) [target selection]

and not given
 K1, N1, A1 [target hiding]
computationally efficient to find
 (K2, N2, A2)
such that
 P((K1, N1, A1), (K2, N2, A2)) for predicate P
and decryption
 M1	← AEAD.Dec(K1, N1, A1, C)
 M2 ←	AEAD.Dec(K2, N2, A2, C)
succeeds.

Granular Framework for Context Committing Security
Step 2: Target Selection

18

Notion Predicate

Context
Commitment (K1, N1 , A1) ≠ (K2, N2, A2)

CMT-k K1 ≠ K2

CMT-n N1 ≠ N2

CMT-a A1 ≠ A2

CMT-k* K1 ≠ K2 ∧ (N1 , A1) = (N2, A2)

CMT-n* N1 ≠ N2 ∧ (K1 , A1) = (K2, A2)

CMT-a* A1 ≠ A2 ∧ (K1 , N1) = (K2, N2)

Pe
rm

iss
iv

e
Re

st
ric

tiv
e

For AEAD, given
C	← AEAD.Enc(K1, N1, A1, M1) [target selection]

and not given
 K1, N1, A1 [target hiding]
computationally efficient to find
 (K2, N2, A2)
such that
 P((K1, N1, A1), (K2, N2, A2)) for predicate P
and decryption
 M1	← AEAD.Dec(K1, N1, A1, C)
 M2 ←	AEAD.Dec(K2, N2, A2, C)
succeeds.

Granular Framework for Context Committing Security
Step 2: Target Selection

19

Notion Predicate

Context
Commitment (K1, N1 , A1) ≠ (K2, N2, A2)

CMT-k K1 ≠ K2

CMT-n N1 ≠ N2

CMT-a A1 ≠ A2

CMT-k* K1 ≠ K2 ∧ (N1 , A1) = (N2, A2)

CMT-n* N1 ≠ N2 ∧ (K1 , A1) = (K2, A2)

CMT-a* A1 ≠ A2 ∧ (K1 , N1) = (K2, N2)

Pe
rm

iss
iv

e
Re

st
ric

tiv
e

This looks like preimage resistance.

New granular framework for context commitment

Key commitment attack against the original SIV mode

New context commitment security notion: context discovery

Context discovery attacks against GCM, OCB3, EAX, CCM, SIV

Our Contributions

20

New granular framework for context commitment

Key commitment attack against the original SIV mode

New context commitment security notion: context discovery

Context discovery attacks against GCM, OCB3, EAX, CCM, SIV

Our Contributions

21

SIV vs. GCM for CMT-k* attacks

GCM uses a highly-structured polynomial MAC

Finding CMT-k* attack is easy: this is just solving a
simple system of 2 linear equations

22

Recall: CMT-k* means nonces and associated data of both contexts must be the same

SIV does not use a polynomial MAC so we can’t adapt
the attacks we already have…

The Original SIV Mode

1. Use CTR mode with key K2 to
decrypt the ciphertext and recover
message.

2. Recompute the “synthetic IV” from
the message using S2V[CMAC] with
key K1.

3. Compare this computed synthetic IV
with that stored as part of the
ciphertext:

a) If they are different, then
reject.

b) Otherwise, return message.

23

For simplicity, we assume no associated data

CTR mode with “synthetic IV” in
ciphertext as initial counter

[RS07] https://web.cs.ucdavis.edu/~rogaway/papers/siv.pdf

C = C’ || IV

The Original SIV Mode

1. Use CTR mode with key K2 to
decrypt the ciphertext and recover
message.

2. Recompute the “synthetic IV” from
the message using S2V[CMAC] with
key K1.

3. Compare this computed synthetic IV
with that stored as part of the
ciphertext:

a) If they are different, then
reject.

b) Otherwise, return message.

24

For simplicity, we assume no associated data

[RS07] https://web.cs.ucdavis.edu/~rogaway/papers/siv.pdf

The Original SIV Mode

1. Use CTR mode with key K2 to
decrypt the ciphertext and recover
message.

2. Recompute the “synthetic IV” from
the message using S2V[CMAC] with
key K1.

3. Compare this computed synthetic IV
with that stored as part of the
ciphertext:

a) If they are different, then
reject.

b) Otherwise, return message.

25

For simplicity, we assume no associated data

[RS07] https://web.cs.ucdavis.edu/~rogaway/papers/siv.pdf

CMT-k* attack on SIV

26

For simplicity, we’ll consider 1-block ciphertexts with no associated data or nonce

Goal: Find two keys (K1, K2)	≠	(K1’, K2’) and ciphertext C (of the form C’ || IV) so
that decryption of C under both keys succeeds
Ø This means that the computed synthetic IV’s match the stored IV that is part of

ciphertext C

𝐼𝑉 = 𝐶𝑀𝐴𝐶 𝐾1, 𝐶!⊕𝐸"# 𝐼𝑉 = 𝐶𝑀𝐴𝐶 𝐾1!, 𝐶!⊕𝐸"#! 𝐼𝑉

CMT-k* attack on SIV

27

For simplicity, we’ll consider 1-block ciphertexts with no associated data or nonce

Goal: Find two keys (K1, K2)	≠	(K1’, K2’) and ciphertext C ←C’ || IV such that:

𝐸#$%$ 𝐼𝑉 ⊕ 2 ⋅ 𝐸#$ 0& ⊕𝐸#$ 2 ⋅ 𝐸#$ 0& ⊕𝐸#' 𝐼𝑉

	 ⊕ 𝐸#$!
%$ 𝐼𝑉 ⊕ 2 ⋅ 𝐸#$! 0& ⊕𝐸#$! 2 ⋅ 𝐸#$! 0& ⊕𝐸#'! 𝐼𝑉 = 0&

If we model block cipher E as an ideal cipher, then this looks very close to the
Generalized Birthday Problem!

CMT-k* attack on SIV: Using Generalized Birthday Problem

28

For simplicity, we’ll consider 1-block ciphertexts with no associated data or nonce

4-list Birthday Problem:
Given lists L1, L2, L3, L4 of elements drawn uniformly and independently at random
from 0,1 $, find x1	∈	L1, x2	∈	L2, x3	∈	L3, x4	∈	L4 s.t. x1 ⊕ x2 ⊕ x3 ⊕ x4 = 0n

Wagner gives the k-tree algorithm to solve this in 𝑂(2$/&) space and time [W02]

𝐸!"#" 𝐼𝑉 ⊕ 2 ⋅ 𝐸!" 0$ ⊕𝐸!" 2 ⋅ 𝐸!" 0$ ⊕𝐸!% 𝐼𝑉

	 ⊕ 𝐸!"!
#" 𝐼𝑉 ⊕ 2 ⋅ 𝐸!"! 0$ ⊕𝐸!"! 2 ⋅ 𝐸!"! 0$ ⊕𝐸!%! 𝐼𝑉 = 0$

𝐹!(𝐾1)⊕ 𝐹"(𝐾2)⊕ 𝐹#(𝐾1$) ⊕ 𝐹%(𝐾2$) = 0&

	

Problem: These
values are not

drawn uniformly
and independently

at random from
0,1 $

CMT-k* attack on SIV: Using Generalized Birthday Problem

29

For simplicity, we’ll consider 1-block ciphertexts with no associated data or nonce

• We show that we can upper bound the distinguishability between the
distribution formed by the values chosen to make the list and uniformly
random distribution

• We then show we can apply Wagner’s k-tree algorithm with the distributions
we have and still have high probability of finding collisions

• We show that with high probability we can find a collision in time ~253, making
it practical and sufficiently damaging to rule out SIV as suitable for contexts
where key commitment matters

New granular framework for context commitment

Key commitment attack against the original SIV mode

New context commitment security notion: context discovery

Context discovery attacks against GCM, OCB3, EAX, CCM, SIV

Our Contributions

30

New granular framework for context commitment

Key commitment attack against the original SIV mode

New context commitment security notion: context discovery

Context discovery attacks against GCM, OCB3, EAX, CCM, SIV

Our Contributions

31

For AEAD, given
C	← AEAD.Enc(K1, N1, A1, M1) [target selection]

and not given
 K1, N1, A1 [target hiding]
computationally efficient to find
 (K2, N2, A2)
such that
 P((K1, N1, A1), (K2, N2, A2)) for predicate P
and decryption
 M1	← AEAD.Dec(K1, N1, A1, C)
 M2 ←	AEAD.Dec(K2, N2, A2, C)
succeeds. 32

Notion Predicate

Context
Commitment (K1, N1 , A1) ≠ (K2, N2, A2)

CMT-k K1 ≠ K2

CMT-n N1 ≠ N2

CMT-a A1 ≠ A2

CMT-k* K1 ≠ K2 ∧ (N1 , A1) = (N2, A2)

CMT-n* N1 ≠ N2 ∧ (K1 , A1) = (K2, A2)

CMT-a* A1 ≠ A2 ∧ (K1 , N1) = (K2, N2)

Pe
rm

iss
iv

e
Re

st
ric

tiv
e

This looks like preimage resistance.

Revisiting the Framework for Context Committing Security

CDY Security
For AEAD, given

 C [target selection]

computationally efficient to find

 K, N, A

such that decryption

 M	←	AEAD.Dec(K, N, A, C)

succeeds.

33

Context Discoverability Security

CDY Security
For AEAD, given

 C [target selection]

computationally efficient to find

 K, N, A

such that decryption

 M	←	AEAD.Dec(K, N, A, C)

succeeds.

34

Context Discoverability Security

• Context Discoverability security is to Context
Committing security for AEAD as preimage
resistance is to collision-resistance for hash
functions

• We also show that if an AEAD scheme is “context
compressing” (meaning: ciphertexts are
decryptable under more than one context), then
Context Committing security implies Context
Discoverability security

• We show Context Discoverability attacks for CCM,
EAX, SIV, GCM, and OCB3

• Context Discoverability allows us to better
communicate attacks and threat models

Conclusion

35

Full version available on eprint:
https://ia.cr/2023/526

Scheme Key Committing Context Committing
GCM [GLR17, DGRW19]
AES-SIV
CCM
EAX
OCB3 [ADGKLS20]
PaddingZeros [ADGKLS20]
KeyHashing [ADGKLS20]
CAU-C1 [BH22]

 = new result

https://ia.cr/2023/526

[W02] David Wagner. A Generalized Birthday Problem.
https://www.iacr.org/archive/crypto2002/24420288/24420288.pdf

[FOR17] Pooya Farshim, Claudio Orlandi, and Răzvan Roşie. Security of Symmetric Primitives under Incorrect
Usage of Keys. ia.cr/2017/288

[GLR17] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. Message franking via committing authenticated
encryption. ia.cr/2017/664

[DGRW19] Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and Joanne Woodage. Fast message franking:
From invisible salamanders to encryptment. ia.cr/2019/016

[LGR20] Julia Len, Paul Grubbs, and Thomas Ristenpart. Partitioning Oracle Attacks. ia.cr/2020/1491

[ADGKLS20] Ange Albertini, Thai Duong, Shay Gueron, Stefan Kölbl, Atul Luykx, and Sophie Schmieg. How to
Abuse and Fix Authenticated Encryption Without Key Commitment. ia.cr/2020/1456

[BH22] Mihir Bellare and Viet Tung Hoang. Efficient schemes for committing authenticated encryption.
ia.cr/2022/268

[RS07] Philip Rogaway and Thomas Shrimpton. The SIV Mode of Operation for Deterministic Authenticated-
Encryption (Key Wrap) and Misuse-Resistant Nonce-Based Authenticated-Encryption.
https://web.cs.ucdavis.edu/~rogaway/papers/siv.pdf

References

36

