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Authenticated Encryption with Associated Data (AEAD)

C = AEAD.Enc(K,N,A,M)

K, N, A K, N, A
Context:
• Key K
• Nonce N (e.g., random IV or counter)
• Associated data A (e.g., network header)

Sender Recipient
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Standardized
1. AES-GCM
2. ChaCha20/Poly1305
3. AES-GCM-SIV

Provably Secure
1. Confidentiality
2. Authenticity

Meddler-in-the-middle

Can observe and manipulate.

Shared out of band.



Recent Attacks on AEAD
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These attacks work in new threat models!

These attacks exploit lack of key commitment: 
An adversary can find keys K1, K2 and ciphertext 

C s.t. C can be decrypted under both keys



Context Commitment Security [BH22]
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Context 
committing

Key 
committing

For AEAD, computationally efficient to find
 (K1, N1 , A1), (K2, N2, A2) and  C
such that decryption
  M1 ← AEAD.Dec(K1, N1, A1, C)
  M2 ←	AEAD.Dec(K2, N2, A2, C)
succeeds.



Commitment Attacks (Before this Paper)

Scheme Key Committing Context Committing
GCM [GLR17, DGRW19]
AES-SIV
CCM
EAX
OCB3 [ADGKLS20]
PaddingZeros [ADGKLS20]
KeyHashing [ADGKLS20]
CAU-C1 [BH22]
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7 = new result



New granular framework for context commitment

Key commitment attack against the original SIV mode

New context commitment security notion: context discovery

Context discovery attacks against GCM, OCB3, EAX, CCM, SIV

Our Contributions
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Don’t we already have committing security definitions?
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definitions

definitions definitions

definition

https://xkcd.com/927/



Ambiguity in Key Commitment Definitions
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[FOR17] doesn’t mention associated data, and 
implicitly requires the same nonce.

[GLR17] allows different associated data, but still 
implicitly requires the same nonce.

[LGR20] requires same nonces and associated data.
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Granular Framework for Context Committing Security

For AEAD, computationally efficient to find
 (K1, N1, A1), (K2, N2, A2) and  C
such that decryption
  M1	← AEAD.Dec(K1, N1, A1, C)
  M2 ←	AEAD.Dec(K2, N2, A2, C)
succeeds.



For AEAD, computationally efficient to find
 (K1, N1, A1), (K2, N2, A2) and  C
such that 
      P((K1, N1, A1), (K2, N2, A2)) for predicate P
and decryption
  M1	← AEAD.Dec(K1, N1, A1, C)
  M2 ←	AEAD.Dec(K2, N2, A2, C)
succeeds.

Granular Framework for Context Committing Security
Step 1: Arbitrary Predicates
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Notion Predicate

Context 
Commitment (K1, N1 , A1) ≠ (K2, N2, A2)
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Notion Predicate

Context 
Commitment (K1, N1 , A1) ≠ (K2, N2, A2)

CMT-k K1 ≠ K2

CMT-n N1 ≠ N2

CMT-a A1 ≠ A2
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For AEAD, given
K1, K2 ←	 𝟎, 𝟏 𝒌	 [target selection]

computationally efficient to find
 (K1, N1, A1), (K2, N2, A2) and  C
such that 
      P((K1, N1, A1), (K2, N2, A2)) for predicate P
and decryption
  M1	← AEAD.Dec(K1, N1, A1, C)
  M2 ←	AEAD.Dec(K2, N2, A2, C)
succeeds.

Granular Framework for Context Committing Security
Step 2: Target Selection
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For AEAD, given
C	← AEAD.Enc(K1, N1, A1, M1)   [target selection]

and not given
 K1, N1, A1 [target hiding]
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Notion Predicate

Context 
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This looks like preimage resistance.
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SIV vs. GCM for CMT-k* attacks

GCM uses a highly-structured polynomial MAC

Finding CMT-k* attack is easy: this is just solving a 
simple system of 2 linear equations

22

Recall: CMT-k* means nonces and associated data of both contexts must be the same

SIV does not use a polynomial MAC so we can’t adapt 
the attacks we already have…



The Original SIV Mode

1. Use CTR mode with key K2 to 
decrypt the ciphertext and recover 
message. 

2. Recompute the “synthetic IV” from 
the message using S2V[CMAC] with 
key K1.

3. Compare this computed synthetic IV 
with that stored as part of the 
ciphertext: 

a) If they are different, then 
reject. 

b) Otherwise, return message. 

23

For simplicity, we assume no associated data

CTR mode with “synthetic IV” in 
ciphertext as initial counter

[RS07] https://web.cs.ucdavis.edu/~rogaway/papers/siv.pdf

C = C’ || IV
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CMT-k* attack on SIV
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For simplicity, we’ll consider 1-block ciphertexts with no associated data or nonce

Goal: Find two keys (K1, K2)	≠	(K1’, K2’)  and ciphertext C (of the form C’ || IV) so 
that decryption of C under both keys succeeds 
Ø This means that the computed synthetic IV’s match the stored IV that is part of 

ciphertext C

𝐼𝑉 = 𝐶𝑀𝐴𝐶 𝐾1, 𝐶!⊕𝐸"# 𝐼𝑉 = 𝐶𝑀𝐴𝐶 𝐾1!, 𝐶!⊕𝐸"#! 𝐼𝑉



CMT-k* attack on SIV
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For simplicity, we’ll consider 1-block ciphertexts with no associated data or nonce

Goal: Find two keys (K1, K2)	≠	(K1’, K2’)  and ciphertext C ←C’ || IV such that:

𝐸#$%$ 𝐼𝑉 ⊕ 2 ⋅ 𝐸#$ 0& ⊕𝐸#$ 2 ⋅ 𝐸#$ 0& ⊕𝐸#' 𝐼𝑉

	 ⊕ 𝐸#$!
%$ 𝐼𝑉 ⊕ 2 ⋅ 𝐸#$! 0& ⊕𝐸#$! 2 ⋅ 𝐸#$! 0& ⊕𝐸#'! 𝐼𝑉 = 0& 

If we model block cipher E as an ideal cipher, then this looks very close to the 
Generalized Birthday Problem!



CMT-k* attack on SIV: Using Generalized Birthday Problem
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For simplicity, we’ll consider 1-block ciphertexts with no associated data or nonce

4-list Birthday Problem:
Given lists L1, L2, L3, L4 of elements drawn uniformly and independently at random 
from 0,1 $, find x1	∈	L1, x2	∈	L2, x3	∈	L3, x4	∈	L4 s.t. x1 ⊕ x2 ⊕ x3 ⊕ x4 = 0n

Wagner gives the k-tree algorithm to solve this in 𝑂(2$/&) space and time [W02]

𝐸!"#" 𝐼𝑉 ⊕ 2 ⋅ 𝐸!" 0$ ⊕𝐸!" 2 ⋅ 𝐸!" 0$ ⊕𝐸!% 𝐼𝑉

	 ⊕ 𝐸!"!
#" 𝐼𝑉 ⊕ 2 ⋅ 𝐸!"! 0$ ⊕𝐸!"! 2 ⋅ 𝐸!"! 0$ ⊕𝐸!%! 𝐼𝑉 = 0$ 

𝐹!(𝐾1)⊕ 𝐹"(𝐾2)⊕ 𝐹#(𝐾1$) ⊕ 𝐹%(𝐾2$) = 0&

	

Problem: These 
values are not 

drawn uniformly 
and independently 

at random from 
0,1 $



CMT-k* attack on SIV: Using Generalized Birthday Problem
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For simplicity, we’ll consider 1-block ciphertexts with no associated data or nonce

• We show that we can upper bound the distinguishability between the 
distribution formed by the values chosen to make the list and uniformly 
random distribution

• We then show we can apply Wagner’s k-tree algorithm with the distributions 
we have and still have high probability of finding collisions

• We show that with high probability we can find a collision in time ~253, making 
it practical and sufficiently damaging to rule out SIV as suitable for contexts 
where key commitment matters
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For AEAD, given
C	← AEAD.Enc(K1, N1, A1, M1)   [target selection]

and not given
 K1, N1, A1 [target hiding]
computationally efficient to find
 (K2, N2, A2) 
such that 
      P((K1, N1, A1), (K2, N2, A2)) for predicate P
and decryption
  M1	← AEAD.Dec(K1, N1, A1, C)
  M2 ←	AEAD.Dec(K2, N2, A2, C)
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Notion Predicate

Context 
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This looks like preimage resistance.

Revisiting the Framework for Context Committing Security



CDY Security
For AEAD, given

 C [target selection]

computationally efficient to find 

 K, N, A

such that decryption

 M	←	AEAD.Dec(K, N, A, C)

succeeds.

33

Context Discoverability Security



CDY Security
For AEAD, given

 C [target selection]

computationally efficient to find 

 K, N, A

such that decryption

 M	←	AEAD.Dec(K, N, A, C)

succeeds.

34

Context Discoverability Security

• Context Discoverability security is to Context 
Committing security for AEAD as preimage 
resistance is to collision-resistance for hash 
functions

• We also show that if an AEAD scheme is “context 
compressing” (meaning: ciphertexts are 
decryptable under more than one context), then 
Context Committing security implies Context 
Discoverability security

• We show Context Discoverability attacks for CCM, 
EAX, SIV, GCM, and OCB3

• Context Discoverability allows us to better 
communicate attacks and threat models



Conclusion
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Full version available on eprint:
https://ia.cr/2023/526

Scheme Key Committing Context Committing
GCM [GLR17, DGRW19]
AES-SIV
CCM
EAX
OCB3 [ADGKLS20]
PaddingZeros [ADGKLS20]
KeyHashing [ADGKLS20]
CAU-C1 [BH22]

 = new result
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