Better Than Advertised:
Improved Collision-Resistance Guarantees for MD-Based Hash Functions

Mihir Bellare Joseph Jaeger Julia Len

UC San Diego
Hash Functions

$H : \{0, 1\}^* \rightarrow \{0, 1\}^n$

Central usage: Certificates

Main Security Goal: Collision resistance (CR)

Hard to find distinct messages with the same hash in time less than $2^{n/2}$, the time of a birthday attack.
Hash Functions

any size

\[M \rightarrow H \rightarrow H(M) \]

fixed size

\[H : \{0, 1\}^* \rightarrow \{0, 1\}^n \]

Central usage: Certificates

\[M \rightarrow H \rightarrow \text{Sign} \rightarrow \text{Signature} \]

Main Security Goal: Collision resistance (CR)

Hard to find distinct messages with the same hash in time less than \(2^{n/2}\), the time of a birthday attack.

<table>
<thead>
<tr>
<th>Generation</th>
<th>(H)</th>
<th>(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>MD4, MD5</td>
<td>128</td>
</tr>
<tr>
<td>2nd</td>
<td>SHA-1, SHA-256,</td>
<td>160, 256, 512</td>
</tr>
<tr>
<td></td>
<td>SHA-512</td>
<td></td>
</tr>
<tr>
<td>3rd</td>
<td>SHA3-224, SHA3-256,</td>
<td>224, 256, 384, 512</td>
</tr>
<tr>
<td></td>
<td>SHA3-384, SHA3-512</td>
<td></td>
</tr>
</tbody>
</table>
Hash Functions

any size M \rightarrow H \rightarrow \text{fixed size} \rightarrow H(M)

$H : \{0, 1\}^* \rightarrow \{0, 1\}^n$

Central usage: Certificates

M \rightarrow H \rightarrow Sign \rightarrow Signature

Main Security Goal: Collision resistance (CR)

Hard to find distinct messages with the same hash in time less than $2^{n/2}$, the time of a birthday attack.
Hash Functions

any size

\[M \rightarrow H \rightarrow H(M) \]

\[H : \{0, 1\}^* \rightarrow \{0, 1\}^n \]

Central usage: Certificates

\[M \rightarrow H \rightarrow \text{Sign} \rightarrow \text{Signature} \]

Main Security Goal: Collision resistance (CR)

Hard to find distinct messages with the same hash in time less than \(2^{n/2} \), the time of a birthday attack.
Hash Functions

any size \(M \) → \(H \) → fixed size \(H(M) \)

\(H : \{0, 1\}^* \rightarrow \{0, 1\}^n \)

Central usage: Certificates

\(M \) → \(H \) → Sign → Signature

secret key

Main Security Goal: Collision resistance (CR)

Hard to find distinct messages with the same hash in time less than \(2^{n/2} \), the time of a birthday attack.

Collisions in \(H \) lead to certificate forgery. SHA-1 collision leading to browsers no longer accepting SHA-1-based certificates.

Central usage: Certificates

\(H(M) \)

Main Security Goal: Collision resistance (CR)

Hard to find distinct messages with the same hash in time less than \(2^{n/2} \), the time of a birthday attack.

Collisions in \(H \) lead to certificate forgery. SHA-1 collision leading to browsers no longer accepting SHA-1-based certificates.

Main Security Goal: Collision resistance (CR)

Hard to find distinct messages with the same hash in time less than \(2^{n/2} \), the time of a birthday attack.

Collisions in \(H \) lead to certificate forgery. SHA-1 collision leading to browsers no longer accepting SHA-1-based certificates.

Main Security Goal: Collision resistance (CR)

Hard to find distinct messages with the same hash in time less than \(2^{n/2} \), the time of a birthday attack.

Collisions in \(H \) lead to certificate forgery. SHA-1 collision leading to browsers no longer accepting SHA-1-based certificates.

Main Security Goal: Collision resistance (CR)

Hard to find distinct messages with the same hash in time less than \(2^{n/2} \), the time of a birthday attack.

Collisions in \(H \) lead to certificate forgery. SHA-1 collision leading to browsers no longer accepting SHA-1-based certificates.

Main Security Goal: Collision resistance (CR)

Hard to find distinct messages with the same hash in time less than \(2^{n/2} \), the time of a birthday attack.

Collisions in \(H \) lead to certificate forgery. SHA-1 collision leading to browsers no longer accepting SHA-1-based certificates.

Main Security Goal: Collision resistance (CR)

Hard to find distinct messages with the same hash in time less than \(2^{n/2} \), the time of a birthday attack.

Collisions in \(H \) lead to certificate forgery. SHA-1 collision leading to browsers no longer accepting SHA-1-based certificates.

Main Security Goal: Collision resistance (CR)

Hard to find distinct messages with the same hash in time less than \(2^{n/2} \), the time of a birthday attack.

Collisions in \(H \) lead to certificate forgery. SHA-1 collision leading to browsers no longer accepting SHA-1-based certificates.

Main Security Goal: Collision resistance (CR)

Hard to find distinct messages with the same hash in time less than \(2^{n/2} \), the time of a birthday attack.

Collisions in \(H \) lead to certificate forgery. SHA-1 collision leading to browsers no longer accepting SHA-1-based certificates.

Main Security Goal: Collision resistance (CR)

Hard to find distinct messages with the same hash in time less than \(2^{n/2} \), the time of a birthday attack.

Collisions in \(H \) lead to certificate forgery. SHA-1 collision leading to browsers no longer accepting SHA-1-based certificates.

Main Security Goal: Collision resistance (CR)

Hard to find distinct messages with the same hash in time less than \(2^{n/2} \), the time of a birthday attack.

Collisions in \(H \) lead to certificate forgery. SHA-1 collision leading to browsers no longer accepting SHA-1-based certificates.

Main Security Goal: Collision resistance (CR)

Hard to find distinct messages with the same hash in time less than \(2^{n/2} \), the time of a birthday attack.

Collisions in \(H \) lead to certificate forgery. SHA-1 collision leading to browsers no longer accepting SHA-1-based certificates.

Main Security Goal: Collision resistance (CR)

Hard to find distinct messages with the same hash in time less than \(2^{n/2} \), the time of a birthday attack.

Collisions in \(H \) lead to certificate forgery. SHA-1 collision leading to browsers no longer accepting SHA-1-based certificates.

Main Security Goal: Collision resistance (CR)

Hard to find distinct messages with the same hash in time less than \(2^{n/2} \), the time of a birthday attack.

Collisions in \(H \) lead to certificate forgery. SHA-1 collision leading to browsers no longer accepting SHA-1-based certificates.

Main Security Goal: Collision resistance (CR)

Hard to find distinct messages with the same hash in time less than \(2^{n/2} \), the time of a birthday attack.

Collisions in \(H \) lead to certificate forgery. SHA-1 collision leading to browsers no longer accepting SHA-1-based certificates.

Main Security Goal: Collision resistance (CR)

Hard to find distinct messages with the same hash in time less than \(2^{n/2} \), the time of a birthday attack.

Collisions in \(H \) lead to certificate forgery. SHA-1 collision leading to browsers no longer accepting SHA-1-based certificates.

Main Security Goal: Collision resistance (CR)

Hard to find distinct messages with the same hash in time less than \(2^{n/2} \), the time of a birthday attack.

Collisions in \(H \) lead to certificate forgery. SHA-1 collision leading to browsers no longer accepting SHA-1-based certificates.

Main Security Goal: Collision resistance (CR)

Hard to find distinct messages with the same hash in time less than \(2^{n/2} \), the time of a birthday attack.

Collisions in \(H \) lead to certificate forgery. SHA-1 collision leading to browsers no longer accepting SHA-1-based certificates.

Main Security Goal: Collision resistance (CR)

Hard to find distinct messages with the same hash in time less than \(2^{n/2} \), the time of a birthday attack.

Collisions in \(H \) lead to certificate forgery. SHA-1 collision leading to browsers no longer accepting SHA-1-based certificates.

Main Security Goal: Collision resistance (CR)

Hard to find distinct messages with the same hash in time less than \(2^{n/2} \), the time of a birthday attack.

Collisions in \(H \) lead to certificate forgery. SHA-1 collision leading to browsers no longer accepting SHA-1-based certificates.

Main Security Goal: Collision resistance (CR)

Hard to find distinct messages with the same hash in time less than \(2^{n/2} \), the time of a birthday attack.

Collisions in \(H \) lead to certificate forgery. SHA-1 collision leading to browsers no longer accepting SHA-1-based certificates.

Main Security Goal: Collision resistance (CR)

Hard to find distinct messages with the same hash in time less than \(2^{n/2} \), the time of a birthday attack.

Collisions in \(H \) lead to certificate forgery. SHA-1 collision leading to browsers no longer accepting SHA-1-based certificates.

Main Security Goal: Collision resistance (CR)

Hard to find distinct messages with the same hash in time less than \(2^{n/2} \), the time of a birthday attack.

Collisions in \(H \) lead to certificate forgery. SHA-1 collision leading to browsers no longer accepting SHA-1-based certificates.

Main Security Goal: Collision resistance (CR)

Hard to find distinct messages with the same hash in time less than \(2^{n/2} \), the time of a birthday attack.

Collisions in \(H \) lead to certificate forgery. SHA-1 collision leading to browsers no longer accepting SHA-1-based certificates.

Main Security Goal: Collision resistance (CR)

Hard to find distinct messages with the same hash in time less than \(2^{n/2} \), the time of a birthday attack.

Collisions in \(H \) lead to certificate forgery. SHA-1 collision leading to browsers no longer accepting SHA-1-based certificates.

Main Security Goal: Collision resistance (CR)

Hard to find distinct messages with the same hash in time less than \(2^{n/2} \), the time of a birthday attack.

Collisions in \(H \) lead to certificate forgery. SHA-1 collision leading to browsers no longer accepting SHA-1-based certificates.
How hash functions are built
How hash functions are built

Step 1: Design a compression function h

$$h : \{0, 1\}^{h.ml+h.cl} \rightarrow \{0, 1\}^{h.cl}$$

<table>
<thead>
<tr>
<th>H</th>
<th>$h.ml$</th>
<th>$h.cl$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD5</td>
<td>512</td>
<td>128</td>
</tr>
<tr>
<td>SHA-1</td>
<td>512</td>
<td>160</td>
</tr>
<tr>
<td>SHA-256</td>
<td>512</td>
<td>256</td>
</tr>
<tr>
<td>SHA-512</td>
<td>1024</td>
<td>512</td>
</tr>
</tbody>
</table>
How hash functions are built

Step 1: Design a compression function \(h \)

Step 2: Convert \(h \) into a CR hash \(H \) function via the MD transform

\[
\begin{align*}
 m & \rightarrow h \\
 c & \rightarrow h \\
 h : \{0, 1\}^{h.ml + h.cl} & \rightarrow \{0, 1\}^{h.cl}
\end{align*}
\]
How hash functions are built

Step 1: Design a compression function \(h \)

Step 2: Convert \(h \) into a CR hash \(H \) function via the MD transform

Classical Theorem: \([\text{Me},\text{Da}]\) \(h \text{ CR} \Rightarrow H \text{ CR} \)
Step 1: Design a compression function h
Step 2: Convert h into a CR hash function H via the MD transform

Classical Theorem: $[\text{Me, Da}]$
h CR $\Rightarrow H$ CR

Problem: We haven’t done so well in designing CR hash functions.

- Corollary of Classical Theorem: H not CR $\Rightarrow h$ not CR
- So compression functions of MD5 and SHA-1 are NOT CR
Step 1: Design a compression function h
Step 2: Convert h into a CR hash function H via the MD transform

Classical Theorem: [Me, Da] h CR $\Rightarrow H$ CR

Problem: We haven’t done so well in designing CR hash functions.

- Corollary of Classical Theorem: H not CR $\Rightarrow h$ not CR
- So compression functions of MD5 and SHA-1 are NOT CR

Question: Can we weaken the assumption on h?

Desired Theorem: h is X-secure $\Rightarrow H$ CR

For some choice of X that is WEAKER than CR.
Step 1: Design a compression function h

Step 2: Convert h into a CR hash function H via the MD transform

Classical Theorem: [Me, Da]

h CR \Rightarrow H CR

Problem: We haven’t done so well in designing CR hash functions.

- Corollary of Classical Theorem: H not CR \Rightarrow h not CR
- So compression functions of MD5 and SHA-1 are NOT CR

Question: Can we weaken the assumption on h?

Desired Theorem:

h is X-secure \Rightarrow H CR

For some choice of X that is WEAKER than CR.

Our Answer: YES, $X = CCR$

Constrained Collision-Resistance.
We will define this and show it is weaker than CR.
Step 1: Design a compression function h
Step 2: Convert h into a CR hash function H via the MD transform

Our Theorem 1: h CCR $\Rightarrow H$ CR
Our Theorem 2: There exist h that are CCR but not CR

Classical Theorem: [Me, Da]
h CR $\Rightarrow H$ CR

Assumption-minimization paradigm of theoretical cryptography
But in a practical context
Step 1: Design a compression function h

Step 2: Convert h into a CR hash function H via the MD transform

Our Theorem 1: h CCR \Rightarrow H CR

Our Theorem 2: There exist h that are CCR but not CR

Classical Theorem: [Me, Da] h CR \Rightarrow H CR

Assumption-minimization paradigm of theoretical cryptography
But in a practical context

Potential Benefits: CCR may be easier to get right than CR
Step 1: Design a compression function h

Step 2: Convert h into a CR hash function H via the MD transform

Our Theorem 1: h CCR $\Rightarrow H$ CR

Our Theorem 2: There exist h that are CCR but not CR

Classical Theorem: [Me, Da]
h CR $\Rightarrow H$ CR

Assumption-minimization paradigm of theoretical cryptography
But in a practical context

Potential Benefits: CCR may be easier to get right than CR

Better than Advertised: The MD transform does more than previously understood: It can promote weaker-than-CR compression functions into CR hash functions.
Assumption-minimization paradigm of theoretical cryptography
But in a practical context

Potential Benefits: CCR may be easier to get right than CR

Better than Advertised: The MD transform does more than previously understood: It can promote weaker-than-CR compression functions into CR hash functions.

Security amplification: The MD transform “amplifies” or “boosts” security by turning a weaker-than-CR compression functions into a CR hash function.
Contributions

Our Theorem 1: \(h \) CCR \(\Rightarrow \) \(H \) CR

Our Theorem 2: There exist \(h \) that are CCR but not CR

These results are obtained via a general framework

- Parameterized version of MD: \(H = \text{MD}[h, \text{Split}, S] \)
- RS Security framework: Yields both old and new definitions of security for \(h \)
Contributions

Our Theorem 1: h CCR $\Rightarrow H$ CR

Our Theorem 2: There exist h that are CCR but not CR

These results are obtained via a **general framework**

- Parameterized version of MD: $H = \text{MD}[h, \text{Split}, S]$
- RS Security framework: Yields both old and new definitions of security for h

The framework

- Allows us to formalize and prove folklore results
- Is used to prove some new results
- Is pedagogically valuable in unifying results in the area
Contributions

Our Theorem 1: \(h \text{ CCR} \Rightarrow H \text{ CR} \)

Our Theorem 2: There exist \(h \) that are CCR but not CR

These results are obtained via a **general framework**
- Parameterized version of MD: \(H = \text{MD}[h, \text{Split}, S] \)
- RS Security framework: Yields both old and new definitions of security for \(h \)

The framework
- Allows us to formalize and prove folklore results
- Is used to prove some new results
- Is pedagogically valuable in unifying results in the area

Some of our other results
- We give an MD variant that is more efficient than MD
- Memory-efficient reductions
- Various separations and counter-examples
1. **We don’t design CCR compression functions.**
 But existing candidates include the compression functions of SHA256, SHA512
Caveats and FAQ

1. **We don’t design CCR compression functions.**
 But existing candidates include the compression functions of SHA256, SHA512

2. **MD5 and SHA-1 do not have CCR compression functions.**
 We can’t fix broken hash functions.
Caveats and FAQ

1. **We don’t design CCR compression functions.**
 But existing candidates include the compression functions of SHA256, SHA512

2. **MD5 and SHA-1 do not have CCR compression functions.**
 We can’t fix broken hash functions.

3. **Our work is ONLY about CR of \(H \), not other attributes** such as indifferentiability.
 Although hash functions have many usages, CR is central due to certificates.
Caveats and FAQ

1. **We don’t design CCR compression functions.** But existing candidates include the compression functions of SHA256, SHA512

2. **MD5 and SHA-1 do not have CCR compression functions.** We can’t fix broken hash functions.

3. Our work is **ONLY about CR of** H, **not other attributes** such as indifferentiability. Although hash functions have many usages, CR is central due to certificates.

4. For the result that: h is X-secure implies H is CR we said that $X = \text{CCR}$ suffices. **Q:** Is there an X weaker than CCR for which the result holds? **A:** **YES,** and our framework allows us to define such properties X. But the gains from further weakening the assumption X are moot …
We don’t design CCR compression functions. But existing candidates include the compression functions of SHA256, SHA512.

MD5 and SHA-1 do not have CCR compression functions. We can’t fix broken hash functions.

Our work is ONLY about CR of H, not other attributes such as indifferentiability. Although hash functions have many usages, CR is central due to certificates.

For the result that: \(h \) is X-secure implies \(H \) is CR we said that \(X = \text{CCR} \) suffices.

Q: Is there an X weaker than CCR for which the result holds?

A: YES, and our framework allows us to define such properties X. But the gains from further weakening the assumption X are moot …

A lot of our work formalizes, extends and unifies folklore or known results. Nothing we do is technically hard.
The MD Framework

Splitting function $\text{Split}: D \rightarrow (\{0, 1\}^{h.ml})^*$

Set of starting points $S \subseteq \{0, 1\}^{h.cl}$

$$H = \text{MD}[h, \text{Split}, S]$$

<table>
<thead>
<tr>
<th>H</th>
<th>h</th>
<th>Split</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD5</td>
<td>md5</td>
<td>$M \parallel 1 \parallel 0\ldots0 \parallel \langle</td>
<td>M</td>
</tr>
<tr>
<td>SHA-1</td>
<td>sha1</td>
<td>$M \parallel 1 \parallel 0\ldots0 \parallel \langle</td>
<td>M</td>
</tr>
<tr>
<td>SHA-256</td>
<td>sha256</td>
<td>$M \parallel 1 \parallel 0\ldots0 \parallel \langle</td>
<td>M</td>
</tr>
<tr>
<td>SHA-512</td>
<td>sha512</td>
<td>$M \parallel 1 \parallel 0\ldots0 \parallel \langle</td>
<td>M</td>
</tr>
</tbody>
</table>
The MD Framework

Splitting function $\text{Split} : D \rightarrow (\{0, 1\}^{h.ml})^*$

Set of starting points $S \subseteq \{0, 1\}^{h.cl}$

$H = \text{MD}[h, \text{Split}, S]$

<table>
<thead>
<tr>
<th>H</th>
<th>h</th>
<th>Split</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD5</td>
<td>md5</td>
<td>$M \parallel 1 \parallel 0\ldots0 \parallel \langle</td>
<td>M\rangle_{64}$</td>
</tr>
<tr>
<td>SHA-1</td>
<td>sha1</td>
<td>$M \parallel 1 \parallel 0\ldots0 \parallel \langle</td>
<td>M\rangle_{64}$</td>
</tr>
<tr>
<td>SHA-256</td>
<td>sha256</td>
<td>$M \parallel 1 \parallel 0\ldots0 \parallel \langle</td>
<td>M\rangle_{64}$</td>
</tr>
<tr>
<td>SHA-512</td>
<td>sha512</td>
<td>$M \parallel 1 \parallel 0\ldots0 \parallel \langle</td>
<td>M\rangle_{128}$</td>
</tr>
</tbody>
</table>
The MD Framework

Splitting function $\text{Split} : D \rightarrow (\{0, 1\}^{h.ml})^*$

Set of starting points $S \subseteq \{0, 1\}^{h.cl}$

$$H = \text{MD}[h, \text{Split}, S]$$

Table: Different Hash Functions

<table>
<thead>
<tr>
<th>H</th>
<th>h</th>
<th>Split</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD5</td>
<td>md5</td>
<td>$M | 1 | 0\ldots0 | \langle</td>
<td>M</td>
</tr>
<tr>
<td>SHA-1</td>
<td>sha1</td>
<td>$M | 1 | 0\ldots0 | \langle</td>
<td>M</td>
</tr>
<tr>
<td>SHA-256</td>
<td>sha256</td>
<td>$M | 1 | 0\ldots0 | \langle</td>
<td>M</td>
</tr>
<tr>
<td>SHA-512</td>
<td>sha512</td>
<td>$M | 1 | 0\ldots0 | \langle</td>
<td>M</td>
</tr>
</tbody>
</table>
The MD Framework

Splitting function \(\text{Split} : D \rightarrow \{0, 1\}^{h\.ml} \)^*

\[
H = \text{MD}[h, \text{Split}, S]
\]

Diagram:
- \(M \) is input
- \(\text{Split} \) function
- \(m[1] m[2] \ldots m[n] \) output

Set of starting points: \(S \subseteq \{0, 1\}^{h\.cl} \)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Split</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(H)</td>
<td>(h)</td>
<td>(\text{Split})</td>
<td>(S)</td>
</tr>
<tr>
<td>MD5</td>
<td>md5</td>
<td>(M \parallel 1 \parallel 0\ldots0 \parallel \langle</td>
<td>M</td>
</tr>
<tr>
<td>SHA-1</td>
<td>sha1</td>
<td>(M \parallel 1 \parallel 0\ldots0 \parallel \langle</td>
<td>M</td>
</tr>
<tr>
<td>SHA-256</td>
<td>sha256</td>
<td>(M \parallel 1 \parallel 0\ldots0 \parallel \langle</td>
<td>M</td>
</tr>
<tr>
<td>SHA-512</td>
<td>sha512</td>
<td>(M \parallel 1 \parallel 0\ldots0 \parallel \langle</td>
<td>M</td>
</tr>
</tbody>
</table>
The MD Framework

Splitting function $\text{Split} : D \rightarrow (\{0, 1\}^h)^*$

$H = \text{MD}[h, \text{Split}, S]$

Set of starting points $S \subseteq \{0, 1\}^h$

<table>
<thead>
<tr>
<th>H</th>
<th>h</th>
<th>Split</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD5</td>
<td>md5</td>
<td>$M \parallel 1 \parallel 0 ... \parallel \langle</td>
<td>M</td>
</tr>
<tr>
<td>SHA-1</td>
<td>sha1</td>
<td>$M \parallel 1 \parallel 0 ... \parallel \langle</td>
<td>M</td>
</tr>
<tr>
<td>SHA-256</td>
<td>sha256</td>
<td>$M \parallel 1 \parallel 0 ... \parallel \langle</td>
<td>M</td>
</tr>
<tr>
<td>SHA-512</td>
<td>sha512</td>
<td>$M \parallel 1 \parallel 0 ... \parallel \langle</td>
<td>M</td>
</tr>
</tbody>
</table>
The MD Framework

Splitting function $\text{Split} : D \rightarrow (\{0, 1\}^{h.ml})^*$

Set of starting points $S \subseteq \{0, 1\}^{h.cl}$

$$H = \text{MD}[h, \text{Split}, S]$$

<table>
<thead>
<tr>
<th>H</th>
<th>h</th>
<th>Split</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD5</td>
<td>md5</td>
<td>$M \parallel 1 \parallel 0\ldots0 \parallel \langle</td>
<td>M</td>
</tr>
<tr>
<td>SHA-1</td>
<td>sha1</td>
<td>$M \parallel 1 \parallel 0\ldots0 \parallel \langle</td>
<td>M</td>
</tr>
<tr>
<td>SHA-256</td>
<td>sha256</td>
<td>$M \parallel 1 \parallel 0\ldots0 \parallel \langle</td>
<td>M</td>
</tr>
<tr>
<td>SHA-512</td>
<td>sha512</td>
<td>$M \parallel 1 \parallel 0\ldots0 \parallel \langle</td>
<td>M</td>
</tr>
</tbody>
</table>
The MD Framework

Splitting function \(\text{Split} : D \rightarrow (\{0, 1\}^{h.ml})^* \)

Set of starting points \(S \subseteq \{0, 1\}^{h.cl} \)

\[
H = \text{MD}[h, \text{Split}, S]
\]

<table>
<thead>
<tr>
<th>(H)</th>
<th>(h)</th>
<th>(\text{Split})</th>
<th>(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD5</td>
<td>md5</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>SHA-1</td>
<td>sha1</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>SHA-256</td>
<td>sha256</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>SHA-512</td>
<td>sha512</td>
<td>M</td>
<td></td>
</tr>
</tbody>
</table>
Possible conditions on Split

Suffix-free

After you apply Split on two distinct messages, neither resulting vector is a suffix of the other.

Typical suffix-free encoding of M (such as in SHA-256):

$$\text{Split}(M) \rightarrow m[1] \quad m[2] \quad m[3]$$

Injective

After you apply Split on two distinct messages, you get two distinct vectors.

$$\text{Split}(M) \rightarrow m[1] \quad m[2]$$

Split (M) is one block shorter, so hashing uses one less call to the compression function. **Faster!**
<table>
<thead>
<tr>
<th></th>
<th>To win, A must find</th>
<th>such that</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>$(m_1, c_1) \neq (m_2, c_2)$</td>
<td>$h(m_1, c_1) = h(m_2, c_2)$</td>
</tr>
<tr>
<td>CCR</td>
<td>$(m_1, c_1) \neq (m_2, c_2)$</td>
<td>$h(m_1, c_1) = h(m_2, c_2)$</td>
</tr>
<tr>
<td></td>
<td>$(m'_1, c'_1), (m'_2, c'_2)$</td>
<td>$c_1 \in {s, h(m'_1, c'_1)}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$c_2 \in {s, h(m'_2, c'_2)}$</td>
</tr>
<tr>
<td>Pre</td>
<td>(m, c)</td>
<td>$h(m, c) = s$</td>
</tr>
<tr>
<td></td>
<td>To win, \mathcal{A} must find</td>
<td>such that</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>CR</td>
<td>$(m_1, c_1) \neq (m_2, c_2)$</td>
<td>$h(m_1, c_1) = h(m_2, c_2)$</td>
</tr>
<tr>
<td>CCR</td>
<td>$(m_1, c_1) \neq (m_2, c_2)$</td>
<td>$h(m_1, c_1) = h(m_2, c_2)$</td>
</tr>
<tr>
<td></td>
<td>$(m'_1, c'_1), (m'_2, c'_2)$</td>
<td>$c_1 \in {s, h(m'_1, c'_1)}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$c_2 \in {s, h(m'_2, c'_2)}$</td>
</tr>
<tr>
<td>Pre</td>
<td>(m, c)</td>
<td>$h(m, c) = s$</td>
</tr>
</tbody>
</table>

![Diagram](attachment:image.png)
<table>
<thead>
<tr>
<th></th>
<th>To win, \mathcal{A} must find</th>
<th>such that</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>$(m_1, c_1) \neq (m_2, c_2)$</td>
<td>$h(m_1, c_1) = h(m_2, c_2)$</td>
</tr>
<tr>
<td>CCR</td>
<td>$(m_1, c_1) \neq (m_2, c_2)$</td>
<td>$h(m_1, c_1) = h(m_2, c_2)$</td>
</tr>
<tr>
<td></td>
<td>$(m_1', c_1'), (m_2', c_2')$</td>
<td>$c_1 \in {s, h(m_1', c_1')}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$c_2 \in {s, h(m_2', c_2')}$</td>
</tr>
<tr>
<td>Pre</td>
<td>(m, c)</td>
<td>$h(m, c) = s$</td>
</tr>
</tbody>
</table>

Diagram:

```
\begin{align*}
& m_1' \\
& h \\
& c_1' \\
& m_2' \\
& h \\
& c_2' \\
& y \\
& m_1 \\
& h \\
& c_1 \\
& m_2 \\
& h \\
\end{align*}
```
<table>
<thead>
<tr>
<th></th>
<th>To win, \mathcal{A} must find</th>
<th>such that</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>$(m_1, c_1) \neq (m_2, c_2)$</td>
<td>$h(m_1, c_1) = h(m_2, c_2)$</td>
</tr>
<tr>
<td>CCR</td>
<td>$(m_1, c_1) \neq (m_2, c_2)$</td>
<td>$h(m_1, c_1) = h(m_2, c_2)$</td>
</tr>
<tr>
<td></td>
<td>$(m'_1, c'_1), (m'_2, c'_2)$</td>
<td>$c_1 \in {s, h(m'_1, c'_1)}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$c_2 \in {s, h(m'_2, c'_2)}$</td>
</tr>
<tr>
<td>Pre</td>
<td>(m, c)</td>
<td>$h(m, c) = s$</td>
</tr>
</tbody>
</table>

![Diagram](image)
<table>
<thead>
<tr>
<th></th>
<th>To win, \mathcal{A} must find</th>
<th>such that</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>$(m_1, c_1) \neq (m_2, c_2)$</td>
<td>$h(m_1, c_1) = h(m_2, c_2)$</td>
</tr>
<tr>
<td>CCR</td>
<td>$(m_1, c_1) \neq (m_2, c_2)$</td>
<td>$h(m_1, c_1) = h(m_2, c_2)$</td>
</tr>
<tr>
<td></td>
<td>$(m'_1, c'_1), (m'_2, c'_2)$</td>
<td>$c_1 \in {s, h(m'_1, c'_1)}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$c_2 \in {s, h(m'_2, c'_2)}$</td>
</tr>
<tr>
<td>Pre</td>
<td>(m, c)</td>
<td>$h(m, c) = s$</td>
</tr>
</tbody>
</table>

Pre

![Pre Diagram](image-url)
The RS Security Framework

In the previous slide we defined CR, CCR, and Pre. We give a general definitional framework that yields these and other definitions.

Our definition of security for a compression function h is parameterized by a relation

$$R : \{0, 1\}^* \times \{0, 1\}^* \rightarrow \{\text{true, false}\}$$

and a set $S \subseteq \{0, 1\}^*$

For R_{cr} we have $s \equiv \varepsilon$.

Game $G^{RS}_h(\mathcal{A})$

$s \leftarrow S$; $out \leftarrow \mathcal{A}(s)$

Return $R(s, out)$

$R(s, out)$

starting value

string that adversary outputs
The RS Security Framework

In the previous slide we defined CR, CCR, and Pre.
We give a general definitional framework that yields these and other definitions.

Our definition of security for a compression function h is parameterized by a relation

$$R : \{0, 1\}^* \times \{0, 1\}^* \rightarrow \{\text{true, false}\}$$

and a set $S \subseteq \{0, 1\}^*$

For R_{cr} we have $s = \varepsilon$.

<table>
<thead>
<tr>
<th>R</th>
<th>out</th>
<th>$R(s, out)$ returns true iff</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{cr}</td>
<td>$((m_1, c_1), (m_2, c_2))$</td>
<td>$h(m_1, c_1) = h(m_2, c_2)$</td>
<td>Collision resistance</td>
</tr>
<tr>
<td>R_{ccc}</td>
<td>$((m_1, c_1), (m_2, c_2), ((m'_1, c'_1), (m'_2, c'_2)))$</td>
<td>$R_{cr}(\varepsilon, ((m_1, c_1), (m_2, c_2))) \wedge (c_1 \in {s, h(m'_1, c'_1)}) \wedge (c_2 \in {s, h(m'_2, c'_2)})$</td>
<td>Constrained CR</td>
</tr>
<tr>
<td>R_{pre}</td>
<td>(m, c)</td>
<td>$h(m, c) = s$</td>
<td>Pre-image resistance</td>
</tr>
</tbody>
</table>
Results

Typically, \(S = \{s\} \) is a singleton set.

<table>
<thead>
<tr>
<th>If Split is</th>
<th>and (h) is</th>
<th>then (H = MD[h,\text{Split},S]) is</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Suffix-free</td>
<td>CR</td>
<td>CR</td>
<td>Known [Me,Da], reproved</td>
</tr>
<tr>
<td>2 Suffix-free</td>
<td>CCR</td>
<td>CR</td>
<td></td>
</tr>
<tr>
<td>3 Injective</td>
<td>CCR and Pre</td>
<td>CR</td>
<td>Folklore for CR and Pre [AnSt11]</td>
</tr>
</tbody>
</table>
Typically, $S = \{s\}$ is a singleton set.

<table>
<thead>
<tr>
<th>If Split is</th>
<th>and h is</th>
<th>then $H = MD[h, \text{Split}, S]$ is</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Suffix-free</td>
<td>CR</td>
<td>CR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Known [Me, Da], reproved</td>
</tr>
<tr>
<td>2</td>
<td>Suffix-free</td>
<td>CCR</td>
<td>CR</td>
</tr>
<tr>
<td>3</td>
<td>Injective</td>
<td>CCR and Pre</td>
<td>CR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Folklore for CR and Pre [AnSt11]</td>
</tr>
</tbody>
</table>
Typically, $S = \{s\}$ is a singleton set.

<table>
<thead>
<tr>
<th></th>
<th>If Split is</th>
<th>and h is</th>
<th>then $H = MD[h, \text{Split}, S]$ is</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Suffix-free</td>
<td>CR</td>
<td>CR</td>
<td>Known [Me,Da], reproofed</td>
</tr>
<tr>
<td>2</td>
<td>Suffix-free</td>
<td>CCR</td>
<td>CR</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Injective</td>
<td>CCR and Pre</td>
<td>CR</td>
<td>Folklore for CR and Pre [AnSt11]</td>
</tr>
</tbody>
</table>

![Diagram showing relationships between CR, CCR, and CCR + Pre](image-url)
Results

Typically, $S = \{s\}$ is a singleton set.

<table>
<thead>
<tr>
<th>If Split is</th>
<th>and h is</th>
<th>then $H = MD[h, \text{Split}, S]$ is</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Suffix-free</td>
<td>CR</td>
<td>CR</td>
<td>Known [Me,Da], reproved</td>
</tr>
<tr>
<td>2 Suffix-free</td>
<td>CCR</td>
<td>CR</td>
<td></td>
</tr>
<tr>
<td>3 Injective</td>
<td>CCR and Pre</td>
<td>CR</td>
<td>Folklore for CR and Pre [AnSt11]</td>
</tr>
</tbody>
</table>

Typically, $S = \{s\}$ is a singleton set.
Results

Typically, \(S = \{s\} \) is a singleton set.

<table>
<thead>
<tr>
<th>If Split is</th>
<th>and (h) is</th>
<th>then (H = \text{MD}[h,\text{Split},S]) is</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Suffix-free</td>
<td>CR</td>
<td>CR</td>
<td>Known [Me, Da], reproved</td>
</tr>
<tr>
<td>2 Suffix-free</td>
<td>CCR</td>
<td>CR</td>
<td></td>
</tr>
<tr>
<td>3 Injective</td>
<td>CCR and Pre</td>
<td>CR</td>
<td>Discussed in the rest of this talk</td>
</tr>
</tbody>
</table>

Typically, \(S = \{s\} \) is a singleton set.

\[S = \{s\} \]

Discussed in the rest of this talk.
Theorem
Let Split be a suffix-free splitting function. Given an adversary \mathcal{A}_H, we define \mathcal{A}_h such that

$$\text{Adv}^{cr}_H(\mathcal{A}_H) \leq \text{Adv}^{R_{ccr}}_h(\mathcal{A}_h)$$

The time complexity of \mathcal{A}_h is approximately that of \mathcal{A}_H plus the time to compute H. The memory complexity of \mathcal{A}_h is the maximum of the memory complexity of \mathcal{A}_H and term linear in the length of the output of \mathcal{A}_H.

Proof uses the back-tracking paradigm of [Me,Da] but constructs a CCR-violating adversary rather than a CR-violating one.
Theorem

Let Split be a suffix-free splitting function. Given an adversary \mathcal{A}_H, we define \mathcal{A}_h such that

$$\text{Adv}^{\text{cr}}_H(\mathcal{A}_H) \leq \text{Adv}^{\text{RccrS}}_h(\mathcal{A}_h)$$

The time complexity of \mathcal{A}_h is approximately that of \mathcal{A}_H plus the time to compute H.

The memory complexity of \mathcal{A}_h is the maximum of the memory complexity of \mathcal{A}_H and term linear in the length of the output of \mathcal{A}_H.

Proof uses the back-tracking paradigm of [Me,Da] but constructs a CCR-violating adversary rather than a CR-violating one.
Theorem

Let Split be a suffix-free splitting function. Given an adversary A_H, we define A_h such that

$$\text{Adv}^\text{cr}_H(A_H) \leq \text{Adv}^R_{\text{cr}}(A_h)$$

The time complexity of A_h is approximately that of A_H plus the time to compute H. The memory complexity of A_h is the maximum of the memory complexity of A_H and term linear in the length of the output of A_H.

Proof uses the back-tracking paradigm of [Me,Da] but constructs a CCR-violating adversary rather than a CR-violating one.
Theorem

Let \(\text{Split} \) be a suffix-free splitting function. Given an adversary \(A_H \), we define \(A_h \) such that

\[
\text{Adv}^\text{cr}_H(A_H) \leq \text{Adv}^\text{RccrS}_h(A_h)
\]

The time complexity of \(A_h \) is approximately that of \(A_H \) plus the time to compute \(H \). The memory complexity of \(A_h \) is the maximum of the memory complexity of \(A_H \) and term linear in the length of the output of \(A_H \).

Proof uses the back-tracking paradigm of [Me,Da] but constructs a CCR-violating adversary rather than a CR-violating one.

Diagram

The diagram illustrates the back-tracking paradigm described in the proof. It shows the process of constructing \(A_h \) from \(A_H \), highlighting the states and transitions involved in the splitting process.

Julia Len

14

UCSD
Theorem

Let Split be a suffix-free splitting function. Given an adversary \mathcal{A}_H, we define \mathcal{A}_h such that

$$\text{Adv}_H^{cr}(\mathcal{A}_H) \leq \text{Adv}_h^{R_{ccrS}}(\mathcal{A}_h)$$

The time complexity of \mathcal{A}_h is approximately that of \mathcal{A}_H plus the time to compute H. The memory complexity of \mathcal{A}_h is the maximum of the memory complexity of \mathcal{A}_H and term linear in the length of the output of \mathcal{A}_H.

Proof uses the back-tracking paradigm of [Me,Da] but constructs a CCR-violating adversary rather than a CR-violating one.
Theorem

Let Split be a suffix-free splitting function. Given an adversary \mathcal{A}_H, we define \mathcal{A}_h such that

$$\text{Adv}_{H}^{cr}(\mathcal{A}_H) \leq \text{Adv}_{h}^{R_{ccr}}(\mathcal{A}_h)$$

The time complexity of \mathcal{A}_h is approximately that of \mathcal{A}_H plus the time to compute H. The memory complexity of \mathcal{A}_h is the maximum of the memory complexity of \mathcal{A}_H and term linear in the length of the output of \mathcal{A}_H.

Proof uses the back-tracking paradigm of [Me,Da] but constructs a CCR-violating adversary rather than a CR-violating one.
Theorem

Let Split be a suffix-free splitting function. Given an adversary A_H, we define A_h such that

$$\text{Adv}^{cr}(A_H) \leq \text{Adv}^{R_{ccr}}_h(A_h)$$

The time complexity of A_h is approximately that of A_H plus the time to compute H. The memory complexity of A_h is the maximum of the memory complexity of A_H and term linear in the length of the output of A_H.

Proof uses the back-tracking paradigm of [Me,Da] but constructs a CCR-violating adversary rather than a CR-violating one.
Closer look at memory complexity

Theorem Same as above, except:
The memory complexity of A_h is the maximum of the memory complexity of A_H and
a small constant.

adversary $A_h(s)$

\[
\begin{align*}
(M_1, M_2) & \leftarrow A_H(s, \epsilon) \\
 m_1 & \leftarrow \text{Split}(M_1) ; m_2 \leftarrow \text{Split}(M_2) ; n_1 \leftarrow |m_1| ; n_2 \leftarrow |m_2| \\
c_1[1] & \leftarrow s ; c_2[1] \leftarrow s; n \leftarrow \min(n_1, n_2) \\
\end{align*}
\]

If $(n_1 > n_2)$ then

For $i = 1, \ldots, n_1 - n_2$ do $c_1[i + 1] \leftarrow h(m_1[i], c_1[i])$

If $(n_2 > n_1)$ then

For $i = 1, \ldots, n_2 - n_1$ do $c_2[i + 1] \leftarrow h(m_2[i], c_2[i])$

For $i = 1, \ldots, n$ do

\[
\begin{align*}
m_1 & \leftarrow m_1[n_1 - n + i]; c_1 \leftarrow c_1[n_1 - n + i] \\
m_2 & \leftarrow m_2[n_2 - n + i]; c_2 \leftarrow c_2[n_2 - n + i] \\
c'_1 & \leftarrow h(m_1, c_1) \\
c'_2 & \leftarrow h(m_2, c_2) \\
\end{align*}
\]

If $(c'_1 = c'_2)$ and $(m_1, c_1) \neq (m_2, c_2)$ then

\[
\begin{align*}
a_1 & \leftarrow (m_1[n_1 - n + i - 1], c_1[n_1 - n + i - 1]) \\
a_2 & \leftarrow (m_2[n_2 - n + i - 1], c_2[n_2 - n + i - 1]) \\
\text{Return } ((m_1, c_1), (m_2, c_2), a_1, a_2) \\
\end{align*}
\]

\[
\begin{align*}
c_1[n_1 - n + i + 1] & \leftarrow c'_1 \\
c_2[n_2 - n + i + 1] & \leftarrow c'_2 \\
\end{align*}
\]

Return ⊥

ACFK17: “memory tightness is important”

Natural reduction was *not* memory tight.
Closer look at memory complexity

Theorem Same as above, except:
The memory complexity of A_h is the maximum of the memory complexity of A_H and a small constant.

adversary $A_h(s)$

$(M_1, M_2) \leftarrow A_H(s, \varepsilon)$

$m_1 \leftarrow \text{Split}(M_1)$; $m_2 \leftarrow \text{Split}(M_2)$; $n_1 \leftarrow |m_1|$; $n_2 \leftarrow |m_2|$

$c_1[1] \leftarrow s$; $c_2[1] \leftarrow s$; $n \leftarrow \min(n_1, n_2)$

If $(n_1 > n_2)$ then

For $i = 1, \ldots, n_1 - n_2$ do $c_1[i + 1] \leftarrow h(m_1[i], c_1[i])$

If $(n_2 > n_1)$ then

For $i = 1, \ldots, n_2 - n_1$ do $c_2[i + 1] \leftarrow h(m_2[i], c_2[i])$

For $i = 1, \ldots, n$ do

$m_1 \leftarrow m_1[n_1 - n + i]$; $c_1 \leftarrow c_1[n_1 - n + i]$

$m_2 \leftarrow m_2[n_2 - n + i]$; $c_2 \leftarrow c_2[n_2 - n + i]$

$c_1' \leftarrow h(m_1, c_1)$

$c_2' \leftarrow h(m_2, c_2)$

If $(c_1' = c_2')$ and $(m_1, c_1) \neq (m_2, c_2)$ then

$a_1 \leftarrow (m_1[n_1 - n + i - 1], c_1[n_1 - n + i - 1])$

$a_2 \leftarrow (m_2[n_2 - n + i - 1], c_2[n_2 - n + i - 1])$

Return $((m_1, c_1), (m_2, c_2), a_1, a_2)$

$c_1[n_1 - n + i + 1] \leftarrow c_1'$

$c_2[n_2 - n + i + 1] \leftarrow c_2'$

Return \perp

ACFK17: “memory tightness is important”

Natural reduction was *not* memory tight.
Closer look at memory complexity

Theorem Same as above, except:
The memory complexity of A_h is the maximum of the memory complexity of A_H and a small constant.

\[
\begin{align*}
&\text{adversary } A_h(s) \\
&(M_1, M_2) \leftarrow A_H(s, \epsilon) \\
&m_1 \leftarrow \text{Split}(M_1); m_2 \leftarrow \text{Split}(M_2); n_1 \leftarrow |m_1|; n_2 \leftarrow |m_2| \\
&c_1[1] \leftarrow s; c_2[1] \leftarrow s; n \leftarrow \min(n_1, n_2) \\
&\text{If } (n_1 > n_2) \text{ then} \\
&\quad \text{For } i = 1, \ldots, n_1 - n_2 \text{ do } c_1[i + 1] \leftarrow h(m_1[i], c_1[i]) \\
&\text{If } (n_2 > n_1) \text{ then} \\
&\quad \text{For } i = 1, \ldots, n_2 - n_1 \text{ do } c_2[i + 1] \leftarrow h(m_2[i], c_2[i]) \\
&\text{For } i = 1, \ldots, n \text{ do} \\
&\quad m_1 \leftarrow m_1[n_1 - n + i]; c_1 \leftarrow c_1[n_1 - n + i] \\
&\quad m_2 \leftarrow m_2[n_2 - n + i]; c_2 \leftarrow c_2[n_2 - n + i] \\
&\quad c'_1 \leftarrow h(m_1, c_1) \\
&\quad c'_2 \leftarrow h(m_2, c_2) \\
&\text{If } (c'_1 = c'_2) \text{ and } (m_1, c_1) \neq (m_2, c_2) \text{ then} \\
&\quad a_1 \leftarrow (m_1[n_1 - n + i - 1], c_1[n_1 - n + i - 1]) \\
&\quad a_2 \leftarrow (m_2[n_2 - n + i - 1], c_2[n_2 - n + i - 1]) \\
&\quad \text{Return } ((m_1, c_1), (m_2, c_2), a_1, a_2) \\
&c_1[n_1 - n + i + 1] \leftarrow c'_1 \\
&c_2[n_2 - n + i + 1] \leftarrow c'_2 \\
&\text{Return } \bot
\end{align*}
\]

ACFK17: “memory tightness is important”

Natural reduction was *not* memory tight.
Theorem Same as above, except:
The memory complexity of A_h is the maximum of the memory complexity of A_H and a small constant.

ACFK17: “memory tightness is important”

Natural reduction was not memory tight.
Theorem Same as above, except:
The memory complexity of A_h is the maximum of the memory complexity of A_H and a small constant.

ACFK17: “memory tightness is important”

Natural reduction was *not* memory tight.
Theorem Same as above, except:
The memory complexity of \mathcal{A}_h is the maximum of the memory complexity of \mathcal{A}_H and a small constant.

ACFK17: “memory tightness is important”

Natural reduction was *not* memory tight.
CCR is strictly weaker than CR

We show this by defining a CCR but not CR secure compression function:

\[h : \{0, 1\}^{h.ml} \times \{0, 1\}^{h.cl} \rightarrow \{0, 1\}^{h.cl} \]

Assumptions
1. Split is suffix-free
2. \(h \) has access to a CR function \(h' : \{0, 1\}^{h.ml} \times \{0, 1\}^{h.cl} \rightarrow \{0, 1\}^{h.cl-1} \)
3. \(S = \{0, 1\}^{h.cl} \setminus \{1\|0^{h.cl-1}, 1^2\|0^{h.cl-2}\} \)

Claims
1. \(h \) is CCR
2. \(h \) is **not** CR
3. \(H = MD[h, \text{Split}, S] \) **is** CR

\[h(m, c) \]

If \((m, c) \in \{(0^{h.ml}, 1\|0^{h.cl-1}), (1^{h.ml}, 1^2\|0^{h.cl-2})\} \)
- Return \(1^{h.cl} \)
- Return \(0\|h'(m, c) \)
CCR is strictly weaker than CR

We show this by defining a CCR but not CR secure compression function:

\[h : \{0, 1\}^{h.ml} \times \{0, 1\}^{h.cl} \rightarrow \{0, 1\}^{h.cl} \]

Assumptions
1. Split is suffix-free
2. \(h \) has access to a CR function \(h' : \{0, 1\}^{h.ml} \times \{0, 1\}^{h.cl} \rightarrow \{0, 1\}^{h.cl-1} \)
3. \(S = \{0, 1\}^{h.cl} \setminus \{1^{h.cl-1}, 1^2 \| 0^{h.cl-2}\} \)

Claims
1. \(h \) is CCR
2. \(h \) is not CR
3. \(H = \text{MD}[h, \text{Split}, S] \) is CR

\[h(m, c) \]
If \((m, c) \in \{(0^{h.ml}, 1 \| 0^{h.cl-1}), (1^{h.ml}, 1^2 \| 0^{h.cl-2})\}\)
Return \(1^{h.cl}\)
Return \(0 \| h'(m, c)\)
CCR is strictly weaker than CR

We show this by defining a CCR but not CR secure compression function:

\[h : \{0, 1\}^{h.ml} \times \{0, 1\}^{h.cl} \rightarrow \{0, 1\}^{h.cl} \]

Assumptions
1. Split is suffix-free
2. \(h \) has access to a CR function \(h' : \{0, 1\}^{h.ml} \times \{0, 1\}^{h.cl} \rightarrow \{0, 1\}^{h.cl-1} \)
3. \(S = \{0, 1\}^{h.cl} \setminus \{1||0^{h.cl-1}, 1^2||0^{h.cl-2}\} \)

Claims
1. \(h \) is CCR
2. \(h \) is not CR
3. \(H = MD[h, Split, S] \) is CR

\[
\begin{align*}
 h(m, c) \\
 \text{If } (m, c) \in \{(0^{h.ml}, 1||0^{h.cl-1}), (1^{h.ml}, 1^2||0^{h.cl-2})\} \\
 \quad \text{Return } 1^{h.cl} \\
 \text{Return } 0 || h'(m, c)
\end{align*}
\]
CCR is strictly weaker than CR

We show this by defining a CCR but not CR secure compression function:

$$h : \{0, 1\}^{h.ml} \times \{0, 1\}^{h.cl} \rightarrow \{0, 1\}^{h.cl}$$

Assumptions

1. Split is suffix-free
2. h has access to a CR function $h' : \{0, 1\}^{h.ml} \times \{0, 1\}^{h.cl} \rightarrow \{0, 1\}^{h.cl-1}$
3. $S = \{0, 1\}^{h.cl} \setminus \{1\|0^{h.cl-1}, 1^2\|0^{h.cl-2}\}$

Claims

1. h is CCR
2. h is not CR
3. $H = \text{MD}[h, \text{Split}, S]$ is CR

$h(m, c)$

If $(m, c) \in \{(0^{h.ml}, 1\|0^{h.cl-1}), (1^{h.ml}, 1^2\|0^{h.cl-2})\}$

Return $1^{h.cl}$

Return $0\| h'(m, c)$

Diagram:

```
S  ↦  h  ↦  h  ↦  ...  ↦  h
  ↘   ↘   ↘   ↘   ↘
  m[1] m[2] m[n] h'
  ↗   ↗   ↗   ↗   ↗
  0\| h'(m[1], c[1])
```
CCR is strictly weaker than CR

We show this by defining a CCR but not CR secure compression function:

\[h : \{0, 1\}^{h.ml} \times \{0, 1\}^{h.cl} \rightarrow \{0, 1\}^{h.cl} \]

Assumptions

1. Split is suffix-free
2. \(h \) has access to a CR function \(h' : \{0, 1\}^{h.ml} \times \{0, 1\}^{h.cl} \rightarrow \{0, 1\}^{h.cl-1} \)
3. \(S = \{0, 1\}^{h.cl} \setminus \{1\}^{h.cl-1} \cup \{2\}^{h.cl-2} \)

Claims

1. \(h \) is CCR
2. \(h \) is **not** CR
3. \(H = \text{MD}[h, \text{Split, } S] \) is CR

\[
\begin{align*}
h(m, c) \\
\text{If } (m, c) \in \{(0^{h.ml}, 1 \parallel 0^{h.cl-1}), (1^{h.ml}, 1^2 \parallel 0^{h.cl-2})\} \\
\text{Return } 1^{h.cl} \\
\text{Return } 0 \parallel h'(m, c)
\end{align*}
\]
CCR is strictly weaker than CR

We show this by defining a CCR but not CR secure compression function:

\[h : \{0, 1\}^{h.ml} \times \{0, 1\}^{h.cl} \rightarrow \{0, 1\}^{h.cl} \]

Assumptions

1. Split is suffix-free
2. \(h \) has access to a CR function \(h' : \{0, 1\}^{h.ml} \times \{0, 1\}^{h.cl} \rightarrow \{0, 1\}^{h.cl-1} \)
3. \(S = \{0, 1\}^{h.cl} \setminus \{1||0^{h.cl-1}, 1^2||0^{h.cl-2}\} \)

Claims

1. \(h \) is CCR
2. \(h \) is **not** CR
3. \(H = \text{MD}[h, \text{Split}, S] \) is CR

\[h(m, c) \]

- If \((m, c) \in \{(0^{h.ml}, 1||0^{h.cl-1}), (1^{h.ml}, 1^2||0^{h.cl-2})\}\)
 - Return \(1^{h.cl}\)
 - Return \(0||h'(m, c)\)

\[S \xrightarrow{\$} s \xrightarrow{\bullet} s \xrightarrow{\bullet} \ldots \rightarrow s \]

\[0||h'(m[1], c[1]) \quad 0||h'(m[2], c[2]) \quad 0||h'(m[n-1], c[n-1]) \]
CCR is strictly weaker than CR

We show this by defining a CCR but not CR secure compression function:

\[h : \{0, 1\}^{h.ml} \times \{0, 1\}^{h.cl} \rightarrow \{0, 1\}^{h.cl} \]

Assumptions
1. Split is suffix-free
2. \(h \) has access to a CCR function \(h' : \{0, 1\}^{h.ml} \times \{0, 1\}^{h.cl} \rightarrow \{0, 1\}^{h.cl-1} \)
3. \(S = \{0, 1\}^{h.cl} \setminus \{1||0^{h.cl-1}, 1^2||0^{h.cl-2}\} \)

Claims
1. \(h \) is CCR
2. \(h \) is not CR
3. \(H = \text{MD}[h, \text{Split}, S] \) is CR

\[
\begin{align*}
&h(m, c) \\
&\text{If } (m, c) \in \{(0^{h.ml}, 1||0^{h.cl-1}), (1^{h.ml}, 1^2||0^{h.cl-2})\} \\
&\quad \text{Return } 1^{h.cl} \\
&\text{Return } 0||h'(m, c)
\end{align*}
\]
Recall: using an injective splitting function could potentially save an extra call to \(h \). This could lead to efficiency gains in the performance of the MD transform.

Theorem

Let \(\text{Split} \) be an injective splitting function. Given an adversary \(\mathcal{A}_H \) we define adversaries \(\mathcal{A}_h \) and \(\mathcal{B}_h \) such that

\[
\text{Adv}^{\text{cr}}_H(\mathcal{A}_H) \leq \text{Adv}^{\text{R}}_{\text{ccr}}(\mathcal{A}_h) + \text{Adv}^{\text{R}}_{\text{pre}}(\mathcal{B}_h)
\]

The time complexities of \(\mathcal{A}_h \) and \(\mathcal{B}_h \) are that of \(\mathcal{A}_H \) plus the time to compute \(H \) on its output. The memory complexities of \(\mathcal{A}_h \) and \(\mathcal{B}_h \) are the maximum of that of \(\mathcal{A}_H \) and a small constant.

[AnSt11] informally state similar result for CR.
Speeding up MD

Recall: using an injective splitting function could potentially save an extra call to h. This could lead to efficiency gains in the performance of the MD transform.

Theorem
Let Split be an injective splitting function. Given an adversary A_H we define adversaries A_h and B_h such that

$$\text{Adv}^{\text{cr}}_H(A_H) \leq \text{Adv}^{R_{ccrS}}_h(A_h) + \text{Adv}^{R_{preS}}_h(B_h)$$

The time complexities of A_h and B_h are that of A_H plus the time to compute H on its output. The memory complexities of A_h and B_h are the maximum of that of A_H and a small constant.

- \[H(M) \]
- \[H(M) \]
- \[H(M) \]
- \[H(M) \]
Recall: using an injective splitting function could potentially save an extra call to h. This could lead to efficiency gains in the performance of the MD transform.

Theorem

Let Split be an injective splitting function. Given an adversary A_H we define adversaries A_h and B_h such that

$$\text{Adv}^\text{cr}_H(A_H) \leq \text{Adv}^\text{Rccr}_h(A_h) + \text{Adv}^\text{Rpre}_h(B_h)$$

The time complexities of A_h and B_h are that of A_H plus the time to compute H on its output. The memory complexities of A_h and B_h are the maximum of that of A_H and a small constant.

Case 1: This is s.

![Diagram](image)
Speeding up MD

Recall: using an injective splitting function could potentially save an extra call to h. This could lead to **efficiency gains** in the performance of the MD transform.

Theorem

Let Split be an injective splitting function. Given an adversary A_H we define adversaries A_h and B_h such that

$$\text{Adv}_{H}^{cr}(A_H) \leq \text{Adv}_{h}^{R_{ccr}}(A_h) + \text{Adv}_{h}^{R_{pre}}(B_h)$$

The time complexities of A_h and B_h are that of A_H plus the time to compute H on its output. The memory complexities of A_h and B_h are the maximum of that of A_H and a small constant.

Case 1: This is s.

Case 2: This is a collision in h somewhere here.
Summary
Summary

- We defined a framework for the MD transform that allows us to formalize results and unify and simplify the area.
Summary

• We defined a framework for the MD transform that allows us to formalize results and unify and simplify the area.

• We defined a new security property for compression functions called **constrained collision resistance** (CCR) and showed that a CCR compression function will result in a CR hash function.
Summary

• We defined a framework for the MD transform that allows us to formalize results and unify and simplify the area.

• We defined a new security property for compression functions called constrained collision resistance (CCR) and showed that a CCR compression function will result in a CR hash function.

• We defined the RS-security framework in order to describe classical definitions and specify new variants of definitions.
Summary

• We defined a framework for the MD transform that allows us to formalize results and unify and simplify the area.

• We defined a new security property for compression functions called constrained collision resistance (CCR) and showed that a CCR compression function will result in a CR hash function.

• We defined the RS-security framework in order to describe classical definitions and specify new variants of definitions.

• We looked at memory complexity by explicitly giving reductions. In addition, we gave alternate reduction algorithms that were more memory tight. This allows us to more easily address memory complexity.
Summary

• We defined a framework for the MD transform that allows us to formalize results and unify and simplify the area.

• We defined a new security property for compression functions called \textit{constrained collision resistance} (CCR) and showed that a CCR compression function will result in a CR hash function.

• We defined the RS-security framework in order to describe classical definitions and specify new variants of definitions.

• We looked at memory complexity by explicitly giving reductions. In addition, we gave alternate reduction algorithms that were more memory tight. This allows us to \textit{more easily address memory complexity}.

• We showed how the MD transform can be made \textit{more efficient} by using an \textit{injective splitting function}. In particular, if the splitting function is injective, the compression function is CCR, and it is hard to find a pre-image for s, then the hash function will be CR.