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Abstract—A key-value store (KVS) offers functions for
storing and retrieving values associated with unique keys.
KVSs have become the most popular way to access Internet-
scale “cloud” storage systems. We present an efficient wait-free
algorithm that emulates multi-reader multi-writer storage from
a set of potentially faulty KVS replicas in an asynchronous en-
vironment. Our implementation serves an unbounded number
of clients that use the storage concurrently. It tolerates crashes
of a minority of the KVSs and crashes of any number of clients.
Our algorithm minimizes the space overhead at the KVSs and
comes in two variants providing regular and atomic semantics,
respectively. Compared with prior solutions, it is inherently
scalable and allows clients to write concurrently.

Because of the limited interface of a KVS, textbook-style
solutions for reliable storage either do not work or incur a
prohibitively large storage overhead. Our algorithm maintains
two copies of the stored value per KVS in the common
case, and we show that this is indeed necessary. If there are
concurrent write operations, the maximum space complexity
of the algorithm grows in proportion to the point contention.
A series of simulations explore the behavior of the algorithm,
and benchmarks obtained with KVS cloud-storage providers
demonstrate its practicality.

I. INTRODUCTION

A. Motivation

In the recent years, the key-value store (KVS) abstraction
has become the most popular way to access Internet-scale
“cloud” storage systems. Such systems provide storage and
coordination services for online platforms [1], [2], [3], [4],
ranging from web search to social networks, but they are also
available directly as products with Amazon S3, Microsoft
Azure Storage, Rackspace hosting, and many others.

A KVS offers a range of simple functions for manipula-
tion of unstructured data objects, called values, each one
identified by a unique key. While different services and
systems offer various extensions to the KVS interface, the
common denominator of existing KVS services implements
an associative array: A client may store a value by associat-
ing the value with a key, retrieve a value associated with a
key, list the keys that are currently associated, and remove
a value associated with a key.

This work is motivated by the idea of enhancing the de-
pendability of cloud services by connecting multiple clouds
to an intercloud or a cloud-of-clouds. Although existing

KVS services provide high availability and reliability us-
ing replication internally, a KVS service is managed by
one provider; many common components (and thus failure
modes) affect its operation. A problem with any such
component may lead to service outage or even to data
being lost, as witnessed during an Amazon S3 incident [5],
Google’s temporary loss of email data [6], and Amazon’s
recent service disruption [7]. As a remedy, a client may in-
crease data reliability by replicating it among several storage
providers (all offering a KVS interface), using the guarantees
offered by robust distributed storage algorithms [8], [9].
Data replication across different clouds is a topic of active
research [10], [11], [12], [13].

B. Problem

Our data replication scheme relies on multiple providers
of raw storage, called base objects here, and emulates a
single, more reliable shared storage abstraction, which we
model as a read/write register. A register represents the
most basic form of storage, from which a KVS service
or more elaborate abstractions may be constructed. The
emulated register tolerates asynchrony, concurrency, and
faults among the clients and the base objects. For increased
parallelism, the clients do not communicate with each other
for coordination, and they may not even be aware of each
other.

Many well-known robust distributed storage algorithms
exist (for an overview see [14]). They all use versioning [15],
whereby each stored value is associated with a logical
timestamp. For instance, with the multi-writer variant of
the register emulation by Attiya et al. [9], the base objects
perform custom computation depending on the timestamp, in
order to identify and to retain only the newest written value.
Without this an old-new overwrite problem might occur
when a slow write request with an old value and a small
timestamp reaches a base object after the latter has already
updated its state to a newer value with a higher timestamp.
On the other hand, one might let each client use its own
range of timestamps and retain all versions of a written value
at the KVSs [16], [17], but this approach is overly expensive
in the sense that it requires as many base objects as there
are clients. If periodic garbage collection (GC) is introduced
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to reduce the consumed storage space, one may face a GC
racing problem, whereby a client attempts to retrieve a value
associated with a key that has become obsolete and was
removed.

C. Contribution

We provide a robust, asynchronous, and space-efficient
emulation of a register over a set of KVSs, which may fail
by crashing. Our formalization of a key-value store (KVS)
object represents the common denominator among existing
commercial KVSs, which renders our approach feasible in
practice. Inspired by Internet-scale systems, the emulation is
designed for an unbounded number of clients and supports
multiple readers and writers (MRMW). The algorithm is
wait-free [18] in the sense that all operations invoked by
a correct client eventually complete. It is also optimally
resilient, i.e., tolerates the failure of any minority of the
KVSs and of any number of clients.

We give two variations of the emulation. Our basic algo-
rithm emulates a register with regular semantics in the multi-
writer model [19]. It does not require read operations to write
to the KVSs. Precluding readers from writing is practically
appealing, since the clients may belong to different domains
and not all readers may have write privileges for the shared
memory. But it also poses a challenge because of the GC
racing problem. Our solution stores the same value twice
in every KVS: (1) under an eternal key, which is never
removed by a garbage collector, and therefore is vulnerable
to an old-new overwrite and (2) under a temporary key,
named according to the version; obsolete temporary keys are
garbage-collected by write operations, which makes these
keys vulnerable to the GC racing problem. The algorithm
for reading accesses the values in the KVSs according to a
specific order, which guarantees that every read terminates
eventually despite concurrent write operations. In a sense,
the eternal and temporary copies complement each other
and, together, guarantee the desirable properties of our
emulation outlined above.

We then present an extension that emulates an atomic
register [20]. It uses the standard approach of having the
readers write back the returned value [9]. This algorithm
requires read operations to write, but this is necessary [20],
[21].

Our emulations maintain only two copies of the stored
value per KVS in the common case (i.e., failure-free exe-
cutions without concurrent operations). We show that this
is also necessary. In the worst case, a stored value exists
in every KVS once for every concurrent write operation, in
addition to the one stored under the eternal key. Hence, our
emulations have optimal space complexity.

Even though it is well-known how to implement a shared,
robust multi-writer register from simpler storage primitives
such as unreliable single-writer registers [21], our algorithm

is the first to achieve an emulation from KVSs with the
minimum necessary space overhead.

Note that some of the available KVSs export proprietary
versioning information. However, one cannot exploit this for
a data replication algorithm before the format and seman-
tics of those versions has been harmonized. Another KVS
prototype allows to execute client operations [22], but this
technique is far from commercial deployment. We believe
that some KVSs may also support atomic “read-modify-
write” operations at some future time, thereby eliminating
the problem addressed here. But until these extensions are
deployed widely and have been standardized, our algorithm
represents the best possible solution for minimizing space
overhead of data replication on KVSs.

Last but not least, we simulate the algorithm with practical
network parameters for exploring its properties. The results
demonstrate that in realistic cases, our algorithm seldom
increases the duration of read operations beyond the optimal
duration. Furthermore, the algorithm scales to many con-
current writers without incurring any slowdown. We have
also implemented our approach and report on benchmarks
obtained with cloud-storage providers; they confirm the
practicality of the algorithm.

Roadmap: The rest of the paper is organized as follows.
We discuss related work in Section II and introduce the
system model in Section III. In Section IV, we provide
two robust algorithms that use KVS objects to emulate a
read/write register. Section V analyzes the correctness of the
algorithms and Section VI establishes bounds on their space
usage. In Section VII we describe simulations of specific
properties of the algorithms, and in Section VIII we report
on benchmarks obtained with an implementation. For lack
of space, detailed proofs have been omitted here and can be
found in the full version [23].

II. RELATED WORK

There is a rich body of literature on robust register
emulations that provide guarantees similar to ours. However,
virtually all of them assume read-modify-write functional-
ities, that is, they rely on atomic computation steps at the
base objects. These include the single-writer multi-reader
(SWMR) atomic wait-free register implementation of Attiya
et al. [9], its dynamic multi-writer counterparts by Lynch
and Shvartsman [24], [25] and Englert and Shvartsman [26],
wait-free simulations of Jayanti et al. [27], low-latency
atomic wait-free implementations of Dutta et al. [28] and
Georgiou et al. [29], and the consensus-free versions of
Aguilera et al. [30]. These solutions are not directly ap-
plicable to our model where KVSs are used as base objects,
due to the old-new overwrite problem.

Notable exceptions that are applicable in our KVS context
are SWMR regular register emulation by Gafni and Lam-
port [16] and its Byzantine variant by Abraham et al. [17]
that use registers as base objects. However, transforming



these SWMR emulations to support a large number of
writers is inefficient: standard register transformations [21],
[14] that can be used to this end require at least as many
SWMR regular registers as there are clients, even if there are
no faults. This is prohibitively expensive in terms of space
complexity and effectively limits the number of supported
clients. Chockler and Malkhi [31] acknowledge this issue
and propose an algorithm that supports an unbounded num-
ber of clients (like our algorithm). However, their method
uses base objects (called “active disks”) that may carry
out computations. In contrast, our emulation leverages the
operations in the KVS interface, which is more general than
a register due to its list and remove operations, and supports
an unbounded number of clients. Ye et al. [32] overcome
the GC racing problem by having the readers “reserve” the
versions they intend to read, by storing extra values that
signal to the garbage collector not to remove the version
being read. This approach requires readers to have write
access, which is not desirable.

Two recent works share our goal of providing robust
storage from KVS base objects. Abu-Libdeh et al. [10]
propose RACS, an approach that casts RAID techniques
to the KVS context. RACS uses a model different from
ours and basically relies on a proxy between the clients
and the KVSs, which may become a bottleneck and single
point-of-failure. In a variant that supports multiple proxies,
the proxies communicate directly with each other for syn-
chronizing their operations. Bessani et al. [13] propose a
distributed storage system, called DepSky, which employs
erasure coding and cryptographic tools to store data on
KVS objects prone to Byzantine faults. However, the basic
version of DepSky allows only a single writer and thereby
circumvents the problems addressed here. An extension
supports multiple writers through a locking mechanism that
determines a unique writer using communication among the
clients. In comparison, the multi-writer versions of RACS
and DepSky both serialize write operations, whereas our
algorithm allows concurrent write operations from multiple
clients in a wait-free manner. Therefore, our solution scales
easily to a large number of clients.

III. MODEL

A. Executions

The system is comprised of multiple clients and (base)
objects. We model them as I/O automata [33], which contain
state and potential transitions that are triggered by actions.
The interface of an I/O automaton is determined by external
(input and output) actions. A client may invoke an operation1

on an object (with an output action of the client automaton
that is also an input action of the object automaton). The
object reacts to this invocation, possibly involving state

1For simplicity, we refer to an operation when we should be referring
to operation execution.

transitions and internal actions, and returns a response (an
output action of the object that is also an input action of
the client). This completes the operation. We consider an
asynchronous system, i.e., there are no timing assumptions
that relate invocations and responses. (Consult [33], [21] for
details.)

Clients and objects may fail by stopping, i.e., crashing,
which we model by a special action stop. When stop
occurs at automaton A, all actions of A become disabled
indefinitely and A no longer modifies its state. A client or
base object that does not fail is called correct.

An execution σ of the system is a sequence of invocations
and responses. We define a partial order among the opera-
tions. An operation o1 precedes another operation o2 (and
o2 follows o1) if the response of o1 precedes the invocation
of o2 in σ. We denote this by o1 ≺σ o2. The two operations
are concurrent if neither of them preceded the other. An
operation o is pending in an execution σ if σ contains
the invocation of o but not its response; otherwise the
operation is complete. An execution σ is well-formed if every
subsequence thereof that contains only the invocations and
responses of one client on one object consists of alternating
invocations and responses, starting with an invocation. A
well-formed execution σ is sequential if every prefix of σ
contains at most one pending operation; in other words,
in a sequential execution, the response of every operation
immediately follows its invocation.

A real-time sequential permutation π of an execution σ
is a sequential execution that contains all operations that are
invoked in σ and only those operations and in which for
any two operations o1 and o2 such that o1 ≺σ o2, it holds
o1 ≺π o2.

A sequential specification of some object O is a prefix-
closed set of sequential executions containing operations
on O. It defines the desired behavior of O. A sequential
execution π is legal with respect to the sequential definition
of O if the subsequence of σ containing only operations on
O lies in the sequential specification of O.

Finally, an object implementation is wait-free if it even-
tually responds to an invocation by a correct client [34].

B. Register Specifications

Sequential Register: A register [20] is an object that
supports two operations: one for writing a value v ∈ V ,
denoted by write(v), which returns ACK, and one for reading
a value, denoted by read(), which returns a value in V . The
sequential specification of a register requires that every read
operation returns the value written by the last preceding
write operation in the execution, or the special value ⊥
if no such operation exists. For simplicity, our description
assumes that every distinct value is written only once.

Registers may exhibit different semantics under concur-
rent access, as described next.



Multi-Reader Multi-Writer Regular Register: The fol-
lowing semantics describe a multi-reader multi-writer reg-
ular register (MRMW-regular), adapted from [19]. A
MRMW-regular register only guarantees that different read
operations agree on the order of preceding write operations.

Definition 1 (MRMW-regular register). A well-formed
execution σ of a register is MRMW-regular if there exists a
sequential permutation π of the operations in σ as follows:
for each read operation r in σ, let πr be a subsequence
of π containing r and those write operations that do not
follow r in σ; furthermore, let σr be the subsequence of σ
containing r and those write operations that do not follow it
in σ; then πr is a legal real-time sequential permutation of
σr. A register is MRMW-regular if all well-formed executions
on that register are MRMW-regular.

Atomic Register: A stronger consistency notion for a
concurrent register object than regular semantics is atomic-
ity [20], also called linearizability [18]. In short, atomicity
stipulates that it should be possible to place each operation at
a singular point (linearization point) between its invocation
and response.

Definition 2 (Atomicity). A well-formed execution σ of a
concurrent object is atomic (or linearizable), if σ can be
extended (by appending zero or more responses) to some
execution σ′, such that there is a legal real-time sequential
permutation π of σ′. An object is atomic if all well-formed
executions on that object are atomic.

C. Key-Value Store

A key-value store (KVS) object is an associative array that
allows storage and retrieval of values in a set X associated
with keys in a set K. The size of the stored values is typically
much larger than the length of a key, so the values in X
cannot be translated to elements of K and be stored as keys.

A KVS supports four operations: (1) Storing a value x as-
sociated with a key key (denoted put(key, x)), (2) retrieving
a value x associated with a key (x← get(key)), which may
also return FAIL if key does not exist, (3) listing the keys
that are currently associated (list← list()), and (4) removing
a value associated with a key (remove(key)).

Our formal sequential specification of the KVS object
is given in Algorithm 1. This implementation maintains in
a variable live the set of associated keys and values. The
space complexity of a KVS at some time during an execution
is given by the number of associated keys, that is, by the
value |live|.

D. Register Emulation

The system is comprised of a finite set of clients and a
set of n atomic wait-free KVSs as base objects. Each client
is named with a unique identifier from an infinite ordered
set ID. The KVS objects are numbered 1, . . . , n. Initially,

Algorithm 1: Key-value store object i
1 state
2 live ⊆ K×X , initially ∅
3 On invocation puti(key, value)
4 live← (live \ {〈key, x〉 |x ∈ X}) ∪ 〈key, value〉
5 return ACK

6 On invocation geti(key)
7 if ∃x : 〈key, x〉 ∈ live then
8 return x
9 else

10 return FAIL

11 On invocation removei(key)
12 live← live \ {〈key, x〉 |x ∈ X}
13 return ACK

14 On invocation listi()
15 return {key | ∃x : 〈key, x〉 ∈ live}

the clients do not know the identities of other clients or the
total number of clients.

Our goal is to have the clients emulate a MRMW-
regular register and an atomic register using the KVS base
objects [33]. The emulations should be wait-free and tolerate
that any number of clients and any minority of the KVSs
may crash. Furthermore, an emulation algorithm should
associate only few keys to values in every KVS (i.e., have
low space complexity).

IV. ALGORITHM

A. Pseudo Code Notation

Our algorithm is formulated using functions that execute
the register operations. They perform computation steps,
invoke operations on the base objects, and may wait for such
operations to complete. To simplify the pseudo code, we
imagine there are concurrent execution “threads” as follows.
When a function concurrently executes a block, it performs
the same steps and invokes the same operations once for
each KVS base object in parallel. An algorithm proceeds
past a concurrently statement as indicated by a termination
property; in all our algorithms, this condition requires that
the block completes for a majority of base objects.

In order to maintain a well-formed execution, the sys-
tem implicitly keeps track of pending operations at the
base objects. Relying on this state, every instruction to
concurrently execute a code block explicitly waits for a
base object to complete a pending operation, before its
“thread” may invoke another operation. This convention
avoids cluttering the pseudo code with state variables and
complicated predicates that have the same effect.

B. MRMW-Regular Register

We present an algorithm for implementing a MRMW-
regular register, where read operations do not store data
at the KVSs.

Inspired by previous work on fault-tolerant register em-
ulations, our algorithm makes use of versioning. Clients



associate versions with the values they store in the KVSs.
In each KVS there may be several values stored at any time,
with different versions. Roughly speaking, when writing a
value, a client associates it with a version that is larger than
the existing versions, and when reading a value, a client tries
to retrieve the one associated with the largest version [9].
Since a KVS cannot perform computations and atomically
store one version and remove another one, values associated
with obsolete versions may be left around. Therefore our
algorithm explicitly removes unused values, in order to
reduce the space occupied at a KVS.

A version is a pair2 〈seq, id〉 ∈ N0 × ID, where the first
number is a sequence number and the second is the identity
of the client that created the version and used it to store a
value. When comparing versions with the < operator and
using the max function, we respect the lexicographic order
on pairs. We assume that the key space of a KVS is the
version space, i.e., K = N0 × ID, and that the value space
of a KVS allows clients to store either a register value from
V or a version and a value in (N0 × ID)× V .3

At the heart of our algorithm lies the idea of using
temporary keys, which are created and later removed at the
KVSs, and an eternal key, denoted ETERNAL, which is never
removed. Both represent a register value and its associated
version. When a client writes a value to the emulated
register, it determines the new version to be associated with
the value, accesses a majority of the KVSs, and stores the
value and version twice at every KVS — once under a
new temporary key, named according to the version, and
once under the eternal key, overwriting its current value.
The data stored under a temporary key directly represents
the written value; data stored under the eternal key contains
the register value and its version. The writer also performs
garbage collection of values stored under obsolete temporary
keys, which ensures the bound on space complexity.

1) Read: When a client reads from the emulated register
through algorithm regularRead (Algorithm 3), it obtains a
version and a value from a majority of the KVSs and returns
the value associated with the largest obtained version.

To obtain such a pair from a KVS i, the reader invokes
a function getFromKVS(i) (shown in Algorithm 2). It first
determines the currently largest stored version, denoted by
ver0, through a snapshot of temporary keys with a list
operation.

Then the reader enters a loop, from which it only exits
after finding a value associated with a version that is at least
ver0. It first attempts to retrieve the value under the key
representing the largest version. If the key exists, the reader

2We denote by N0 the set {0, 1, 2, . . . }.
3In other words, X = V∪(N0×ID)×V . Alternatively one may assume

that there exists a one-to-one transformation from the version space to the
KVS key space, and from the set of values written by the clients to the
KVS value space. In practical systems, where K and X are strings, this
assumptions holds.

has found a suitable value. However, this step may fail due to
the GC racing problem, that is, because a concurrent writer
has removed the particular key between the times when the
client issues the list and the get operations.

In this case, the reader retrieves the version/value pair
stored under the eternal key. As the eternal key is stored first
by a writer and never removed, it exists always after the first
write to the register. If the retrieved version is greater than
or equal to ver0, the reader returns this value. However, if
this version is smaller than ver0, an old-new overwrite has
occurred, and the reader starts another iteration of the loop.

This loop terminates after a bounded number of iterations:
Note that an iteration is not successful only if a GC race and
an old-new overwrite have both occurred. But a concurrent
writer that may cause an old-new overwrite must have
invoked its write operation before the reader issued the
first list operation on some KVS. Thus, the number of
loop iterations is bounded by the number of clients that
concurrently execute a write operation in parallel to the read
operation (i.e., the point contention of write operations).

Algorithm 2: Retrieve a legal version-value pair
1 function getFromKVS(i)
2 list← listi() \ ETERNAL
3 if list = ∅ then
4 return 〈〈0,⊥〉,⊥〉
5 ver0 ← max(list)
6 while True do
7 val← geti(max(list))
8 if val 6= FAIL then
9 return 〈max(list), val〉

10 〈ver, val〉 ← geti(ETERNAL)
11 if ver ≥ ver0 then
12 return 〈ver, val〉
13 list← listi() \ ETERNAL

Algorithm 3: Client c MRMW-regular read operation
1 function regularReadc()
2 results← ∅
3 concurrently for each 1 ≤ i ≤ n, until a majority completes
4 if an op. is pending at KVS i then wait for a response
5 result← getFromKVS(i)
6 results← results ∪ {result}
7 return val such that 〈ver, val〉 ∈ results and ver′ ≤ ver for any

〈ver′, val′〉 ∈ results

2) Write: A client writes a value to the register using
algorithm regularWrite (Algorithm 5). First, the client lists
the temporary keys in each base object and determines the
largest version found in a majority of them. It increments
this version and obtains a new version to be associated with
the written value.

Then the client stores the value and the new version in all
KVSs using a function putInKVS, shown in Algorithm 4,
which also performs garbage collection. It first lists the
existing keys and removes obsolete temporary keys, i.e.,



all temporary keys excluding the one corresponding to the
maximal version. Subsequently the function stores the value
and the version under the eternal key. To store the value
under a temporary key, the algorithm checks whether the
new version is larger than the maximal version of an existing
key. If yes, it also stores the new value under the temporary
key corresponding to the new version and removes the key
holding the previous maximal version.

Once the function putInKVS finishes for a majority of the
KVSs, the algorithm for writing to the register completes.
It is important for ensuring termination of concurrent read
operations that the writer first stores the value under the
eternal key and later under the temporary key.

Algorithm 4: Store a value and a given version
1 function putInKVS(i, verw, valw)
2 list← listi()
3 obsolete← {v | v ∈ list ∧ v 6= ETERNAL ∧ v < max(list)}
4 foreach ver ∈ obsolete do
5 removei(ver)
6 puti(ETERNAL, 〈verw, valw〉)
7 if verw > max(list) then
8 puti(verw, valw)
9 removei(max(list))

Algorithm 5: Client c MRMW-regular write operation
1 function regularWritec(valw)
2 results← {〈0,⊥〉}
3 concurrently for each 1 ≤ i ≤ n, until a majority completes
4 if an op. is pending at KVS i then wait for a response
5 list← listi()
6 results← results ∪ list
7 〈seqmax, idmax〉 ← max(results)
8 verw ← 〈seqmax + 1, c〉
9 concurrently for each 1 ≤ i ≤ n, until a majority completes

10 if an op. is pending at KVS i then wait for a response
11 putInKVS(i, verw, valw)
12 return ACK

C. Atomic Register

The atomic register emulation results from extending the
algorithm for emulating the regular register. Atomicity is
achieved by having a client write back its read value before
returning it, similar to the write-back procedure of Attiya et
al. [9].

The write operation is the same as before, implemented
by function regularWrite (Algorithm 5). The read opera-
tion is implemented by function atomicRead (Algorithm 6).
Its first phase is unchanged from before and obtains the value
associated with the maximal version found among a majority
of the KVSs. Its second phase duplicates the second phase
of the regularWrite function, which stores the versioned
value to a majority of the KVSs.

Algorithm 6: Client c atomic read operation
1 function atomicReadc()
2 results← ∅
3 concurrently for each 1 ≤ i ≤ n, until a majority completes
4 if an op. is pending at KVS i then wait for a response
5 result← getFromKVS(i)
6 results← results ∪ {result}
7 choose 〈ver, val〉 ∈ results such that ver′ ≤ ver for any

〈ver′, val′〉 ∈ results
8 concurrently for each 1 ≤ i ≤ n, until a majority completes
9 if an op. is pending at KVS i then wait for a response

10 putInKVS(i, ver, val)
11 return val

V. CORRECTNESS

In this section we sketch the arguments for correctness of
the MRMW-regular register. The correctness of the atomic
register follow analogously. Details and complete proofs are
available in a technical report.

We say a read operation reads a version ver when the
returned value has been associated with ver (Algorithm 3
line 7), and a write operation writes a version ver when an
induced put operation stores a value under a temporary key
corresponding to ver (Algorithm 5 line 11).

Safety: Consider any execution σ̄ of the algorithm,
the induced execution σ of the KVSs (in terms of KVS
operations), and a real-time sequential permutation π of σ.
Denote by πi the sequence of actions from π that occur at
some KVS replica i.

We first establish that for every KVS, the maximums of
the versions returned by consecutive list operations cannot
decrease, despite the fact that write operations also remove
versions.

Lemma 1 (KVS version monotonicity). Consider a KVS i,
a write operation w that writes version ver, and some
operation puti in πi induced by w with a temporary key.
Then the response of any operation listi in πi that follows
puti contains at least one temporary key that corresponds
to a version equal to or larger than ver.

The next step ensures that the versions of the emulated
read and write operations respect the partial order of the
operations in the execution. It holds because read and write
operations always access a majority of the KVSs, and hence
every two operations access at least one common KVS.

Lemma 2 (Partial order). In an execution σ̄ of the algo-
rithm, the versions of the read and write operations in σ̄
respect the partial order of the operations in σ̄:
a) When a write operation w writes a version vw and a

subsequent (in σ̄) read operation r reads a version vr,
then vw ≤ vr.

b) When a write operation w1 writes a version v1 and a
subsequent write operation w2 writes a version v2, then
v1 < v2.



We may now construct a sequential permutation π̄ of an
execution σ̄ by ordering all write operations of σ̄ according
to their versions and then adding all read operations after
their matching write operations; concurrent read operations
are added after after their respective writes in the same order
as in σ̄. The safety of the MRMW-regular register follows.

Theorem 3 (MRMW-regular safety). Every well-formed
execution σ̄ of the MRMW-regular register emulation in
Algorithms 3 and 5 is MRMW-regular.

Liveness: The write routine obviously completes in
finite time. The critical element is the read operation, for
which we include a detailed proof.

Lemma 4 (Wait-free read). Every read operation com-
pletes in finite time.

Proof: We argue that when a client c invokes
getFromKVS for a correct KVS i, it returns in finite time.
Algorithm 2 first obtains a list list of all temporary keys
from KVS i and returns if no such key exists. If some
temporary key is found, it determines the corresponding
largest version ver0 and enters a loop.

Towards a contradiction, assume that client c never exits
the loop in some execution σ̄ and consider the induced
execution σ of the KVSs.

We examine one iteration of the loop. Note that its
operations are wait-free and the iteration terminates. Prior
to starting the iteration, the client determines list from an
operation listi. In line 8 the algorithm attempts to retrieve
the value associated with key vc = max(list) through
an operation getc(vc). This returns FAIL and the client
retrieves the eternal key with an operation getc(ETERNAL).
We observe that listc ≺σ getc(vc) ≺σ getc(ETERNAL).

Since getc(vc) fails, some client must have removed
it from the KVS with a remove(vc) operation. Applying
Lemma 1 to version vc now implies that prior to the
invocation of getc(vc), there exists a temporary key in KVS i
corresponding to a version vd > vc that was stored by a
client d. Denote the operation that stored vd by putd(vd).
Combined with the previous observation, we conclude that
listc ≺σ putd(vd) ≺σ getc(vc) ≺σ getc(ETERNAL).

Furthermore, according to Algorithm 4, client d has
stored a tuple containing vd > vc under the eternal key
prior to putd(vd) with an operation putd(ETERNAL). But
the subsequent getc(ETERNAL) by client c returns a value
containing a version smaller than vc. Hence, there must
be an extra client e writing concurrently, and its version-
value pair has overwritten vd and the associated value under
the eternal key. This means that operation pute(ETERNAL)
precedes getc(ETERNAL) in σ and stores a version ve < vc.
Note that pute(ETERNAL) occurs exactly once for KVS i
during the write by e.

As client e also uses Algorithm 5 for writing, its results
variable must contain the responses of list operations from

a majority of the KVSs. Denote by liste its list operation
whose response contains the largest version, as determined
by e. Let list0c denote the initial list operation by c that
determined ver0 in Algorithm 2 (line 5). We conclude that
liste precedes list0c in σ. Summarizing the partial-order con-
straints on e, we have liste ≺σ list0c ≺σ pute(ETERNAL) ≺σ
getc(ETERNAL).

Thus, in one iteration of the loop by reader c, some
client d concurrently writes to the register. An extra client e
has invoked a write operation before list0c and irrevocably
makes progress after d invokes a write operation. Therefore,
client e may cause at most one extra iteration of the loop
by the reader. Since there are only a finite number of such
clients, client c eventually exits the loop, and the lemma
follows.

VI. EFFICIENCY

We discuss the space complexity of the algorithms in
this section. Note how the algorithm for writing performs
garbage collection on a KVS before storing a temporary
key in the KVS. This is actually necessary for bounding the
space at the KVS, since the putInKVS function is called
concurrently for all KVSs and may be aborted for some of
them. If the algorithm would remove the obsolete temporary
keys after storing the value, the function may be aborted
just before garbage collection. In this way, many obsolete
keys might be left around and permantly occupy space at
the KVS.

We provide upper bounds on the space usage in Sec-
tion VI-A and continue in Section VI-B with a lower
bound. The time complexity of our emulations follows from
analogous arguments.

A. Maximal Space Complexity

It is obvious from Algorithm 5 that when a write
operation runs in isolation (i.e., without any concurrent
operations) and completes the putInKVS function on a
set C of more than n/2 correct KVSs, then every KVS
in C stores only the eternal key and one temporary key.
Every such KVS has space complexity two. When there are
concurrent operations, the space complexity may increase by
one for every concurrent write operation, i.e., by the point
contention of writes, because every write operation may add
an additional temporary key. The formal proof is found in
the full version.

Theorem 5. The space complexity of the MRMW-regular
register emulation at any KVS is at most two plus the point
contention of concurrent write operations.

The same bound can be shown for the atomic register
emulation, except here read operations may also increase
the space complexity.



B. Minimal Space Complexity

Theorem 6. In every emulation of a safe MRMW-register
from KVS base objects, there exists some KVS with space
complexity two.

Proof: Toward a contradiction, suppose that every KVS
stores only one key at any time.

Note that a client in an algorithm may access a KVS in
an arbitrary way through the KVS interface. For modeling
the limit on the number of stored values at a KVS, we
assume that every put operation removes all previously
stored keys and retains only the one stored by put. A client
might still “compress” the content of a KVS by listing all
keys, retrieving all stored values, and storing a representation
of those values under one single key. In every emulation
algorithm for the write operation, the client executes w.l.o.g.
a “final” put operation on a KVS (if there is no such put,
we add one at the end).

Note a client might also construct the key to be used
in a put operation from values that it retrieved before. For
instance, a client might store multiple values by simply using
them as the key in put operations with empty values. This
is allowed here and strengthens the lower bound. (Clearly, a
practical KVS has a limit on the size of a key but the formal
model does not.)

Since operations are executed asynchronously and can be
delayed, a client may invoke an operation at some time,
at some later time the object (KVS) executes the operation
atomically, and again at some later time the client receives
the response.

In every execution of an operation with more than n/2
correct KVSs it is possible that all operations of some client
invoked on less than n/2 KVSs are delayed until after one
or more client operations complete.

Consider now an execution with three KVSs, denoted a,
b, and c. Consider three executions α, β, and γ that involve
three clients cu, cx, and cr.

Execution α: Client cx invokes write(x) and com-
pletes; let T 0

α be the point in time after that; suppose the
final put operation from cx on KVS b is delayed until after
T 0
α; then b executes this put; let T 1

α be the time after that;
suppose the corresponding response from b to cx is delayed
until the end of the execution.

Subsequently, after T 1
α, client cr invokes read and com-

pletes with responses from b and c; all operations from cr
to a are delayed until the end of the execution. Operation
read returns x according to the register specification.

Execution β: Client cx invokes write(x) and com-
pletes, exactly as in α; let T 0

β (= T 0
α) be the time after

that; suppose the final put operation from cx on KVS b is
delayed until the end of the execution.

Subsequently, after T 0
β , client cu invokes write(u) and

completes; let T 1
β be the time after that; all operations from

cu to KVS c are delayed until the end of the execution.

Subsequently, after T 1
β , client cr invokes read and com-

pletes; all operations from cr to a are delayed until the end
of the execution. Operation read by cr returns u according
to the register specification.

Execution γ: Client cx invokes write(x) and com-
pletes, exactly as in β; let T 0

γ (= T 0
β ) be the time after

that; suppose the final put operation from cx to KVS b is
delayed until some later point in time.

Subsequently, after T 0
γ , client cu invokes write(u) and

completes, exactly as in β; let T 1
γ (= T 1

β ) be the time after
that; all operations from cu to KVS c are delayed until the
end of the execution.

Subsequently, after T 1
γ , the final put operation from cx to

KVS b induced by operation write(x) is executed at KVS b;
let T 2

γ be the time after that; suppose the corresponding
response from KVS b to cx is delayed until the end of the
execution.

Subsequently, after T 2
γ , client cr invokes read and com-

pletes; all operations from cr to KVS a are delayed until
the end of the execution. The read by cr returns u by
specification. But the states of KVSs b and c at T 2

γ are the
same as their states in α at T 1

α, hence, cr returns x as in α,
which contradicts the specification of the register.

VII. SIMULATION

To assess the properties of the algorithm, we analyze it
through simulations under realistic conditions in this section.
In particular, we demonstrate the scalability properties of
our approach and compare it with a single-writer replication
approach. In Section VIII, we also assert the accuracy of the
simulator by comparing its output with that of experiments
run with an implementation of the algorithm, which accessed
actual KVS cloud-storage providers over the Internet.

We have built a dedicated event-driven simulation frame-
work in Python for this task. The simulator models our
algorithm for clients (Algorithms 2, 3, 4, and 5) and for
KVS replicas (Algorithm 1). In each simulation run, one or
more clients perform read and write operations using our
register emulation.

A. Simulation Setup

The simulated system contains a varying number of clients
and three KVS replicas. The time for a client to execute a
KVS operation consists of three parts: (1) the time for the
invocation message to reach a KVS replica; (2) the time for
a KVS to execute the operation, always assumed to be 0;
and (3) the time for the response message to reach the client.
Message delays (1) and (3) are influenced by two factors:
first, the network latency of the client, which we model as a
random variable with exponential distribution with a given
mean; and, second, by the size of the transferred value and
the available network bandwidth. We assume that metadata
is always of negligible size and consider only the size of the
stored values.
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Figure 1. Simulation of the average duration of read operations shown
with one concurrent writer accessing the KVS replicas at varying network
latencies. The mean network latency of the reader is 100 ms; only when
the writer has a much smaller latency does the read operations take longer
than the expected minimum of 400 ms.

As the base case for our explorations, we use a network
latency with a mean of 100 ms. Unless stated differently,
the network available to every client has 1 MBps bandwidth
and the data size is small, namely 500 bytes.

The simulator drives the algorithm through read and
write operations of the clients. Clients issue operations in a
closed-loop manner: each client issues a new request only
after it has received a response for the previous request.
For measuring a statistic like the average duration of read
and write operations, a run is simulated for some time,
the number of completed operations is counted, and the
average of the statistic per operation is output. The runs
are sufficiently long to produce a reliable average.

B. Read Duration

Latency: A read operation takes at least two operations
on the KVSs: an initial list, followed by at least one iteration
of the loop in Algorithm 2. More iterations are needed only
in the presence of concurrent write operations.

To observe this behavior, we run the simulation with a
single writer and one reader. The two network latencies for
the reader have a mean of 100 ms each. We vary the two
network latencies of the writer from 2 ms to 100 ms in
increments of 2 ms, to investigate a higher rate of write
operations than read operations. Every average is computed
from a simulation running for 40 s.

The average duration of the read operations is shown in
Figure 1. As two network roundtrips are needed by every
read, the minimum expected duration is 400 ms. We note
that only when the writer’s network latency is about 20 ms
or less, will read operations take noticeably longer than their
minimal duration. This corresponds to a writer that operates
at least five times faster than the reader. However, an average
read operation never exceeds 600 ms.

Data size: The second parameter that affects the read
duration behavior is the data transfer time. We have already
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Figure 2. Simulation of the average duration of read operations as a
function of the data size. For small values, the network latency dominates;
for large value, the duration converges to the time for transferring the data.

seen that for small values, read operations take longer than
their minimal duration only in the presence of very fast write
operations.

For this simulation, we let a fast writer with 1 ms mean
network latency run concurrently to the reader. We vary the
data size from 1 KB to 10 MB by multiplicative increments
and simulate 16 data points for every 10-fold increase in
size. We compare the average read duration of our algorithm
to the theoretical lower bound, which is achieved by a non-
robust algorithm that retrieves the value from one KVS.

The result is depicted in Figure 2. It shows that for small
sizes, the network latency dominates the time for reading.
Here, the read duration corresponds to the time needed for
about three network roundtrips and matches the simulation
of the reader’s latency with much faster concurrent writes
described previously. With larger sizes, the data transfer time
becomes dominant, the write operations take longer, and the
probability that the reader runs extra iterations of its loop
decreases. For a data size of about 400 KB or more, our
algorithm converges to the lower bound. This is because the
value is transferred from the KVS only once, and the data
transfer time dominates the operation duration.

C. Write Duration

This simulation addresses the scalability of write oper-
ations in the presence of multiple concurrent writers. We
use a medium data size of 1 MB to illustrate the critical
issue of write contention. With shorter values, the put
operations finish quickly and we have not experienced much
contention in preliminary simulations. For comparison we
also simulate the performance of single-writer replication
approaches, which have been considered in the related
literature about data replication for cloud storage [10], [13].
These approaches provide the multi-writer capability by
agreeing on a schedule with a single writer at any given
time. In effect, this causes serial writes.

The network latencies for all writers are 100 ms; data size
of 1 MB incurs a delay of 1 s because of the bandwidth
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with serialized operations is shown for comparison.
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Figure 4. Simulation of the maximal space usage depending on the number
of concurrent writers. The upper bound is the number of writers plus two
according to Theorem 5.

constraint, which is imposed on the connection from every
writer to the KVS replicas. Figure 3 shows the average
duration of write operations invoked concurrently by a pool
of clients, which grows from 1 to 50 clients. The averages
are obtained by running the simulations for 30 s. The
single-writer algorithm models write serialization through
agreement, where we ignore the cost of reaching agreement.

For this simulation we use a batched garbage collec-
tion scheme, where a writing client invokes all remove
operations concurrently. Although such a parallelization is
impossible in our formal model, it is a practical optimization
feasible with all KVS services we encountered.

The figure shows how the average duration of a write in
our algorithm remains constant, even with many writers. In
contrast, the time for writing in the single-writer approach
obviously grows linearly with the number of concurrent
writers.

D. Space Usage

To gain insight in the storage overhead, we measure the
maximal space used at any KVS depending on the number
of concurrently writing clients. The data size is 500 bytes,

and the simulations are run for 50 s.
Figure 4 shows the maximal space usage at a KVS, where

the number of concurrent writers increases from 1 to 50.
Space usage is normalized to multiples of the data size.
The upper bound from Theorem 5, given by the number
of concurrent writers plus two, is included for comparison.
The simulation shows that this bound is pessimistic and that
the space used in practice is much smaller.

Further investigations show that the average space usage
lies in the range of 2–5 in this simulation. This behavior can
be explained by referring to the write algorithm. Concurrent
writers indeed leave a large number of temporary keys
behind, but the next writer removes all of them during
garbage collection. As the time until removal is relatively
short, the average space usage is small.

VIII. IMPLEMENTATION

A. Benchmarks

To evaluate the performances of read and write oper-
ations on cloud-storage KVSs in practice, we have im-
plemented the algorithm in Java. The implementation uses
the jclouds library (http://www.jclouds.org/), which supports
more than a dozen practical KVS services.

Every client is initialized with a list of n accounts of KVS
cloud-storage providers. The client library buffers operations
on the KVSs as required by our model. Specifically, when a
read or a write operation triggers a series of operations on
the KVSs, these are appended to a dedicated FIFO queue for
each one of the n KVSs; for each KVS, the implementation
fetches the first operation from its queue and executes it as
soon as the preceding one terminates.

The benchmark uses n = 3 KVS providers: Amazon
S3, Microsoft Azure Storage, and Rackspace Cloudfiles.
The client performs two write operations with the same
key (so as to trigger the deletion of the first version) for
1000 different keys in closed-loop mode, followed by as
many read operations with the keys written previously. We
have instrumented the code to measure the completion time
of the individual list, put, get, and remove operations as
well as the duration of the read and write operations. The
benchmark explores a data size ranging from 1 KiB to 10000
KiB in ten-fold increments.

Figures 5 and 6 show the results of the benchmark.
Closer investigation of these times reveals that the duration
of read operations is equal to the duration of the second-
slowest get plus the duration of the second-slowest list. The
reason is that the reader only waits for responses from a
majority of the providers, and hence ignores the slowest
response here. As for write operations, we observe that their
duration equals twice the duration of the second-slowest
put operation plus the duration of the second-slowest list.
We also notice that read and write operations are faster
than the slowest get and put operations: this can be seen
in Figure 5, where Amazon S3 get operations are much
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slower than read operations for 10000 KiB data size, and in
Figure 6, where Cloudfiles put operations are slightly slower
than write operations for 1000 KiB input files.

B. Comparison of Simulation and Benchmarks

To compare the simulations with the behavior of the
implemented system, we run an experiment with three KVS
replicas and one client that performs 1000 write operations
followed 1000 read operations. The data size is 2 MB. The
same scenario is simulated with parameters set to values that
were obtained from the experiment.

In particular, the simulation uses the same model as
described before, with exponentially distributed network
latencies for KVS operations. We measured the network la-
tency of KVS operations excluding the time for data transfer.
We assume that the invocation and response latencies of
the simulated operations are symmetric and set their mean
to half of the measured network latency. Furthermore, we
determined the bandwidth of every KVS provider from the
measurements of put and get operations.

For get and put, the mean network latency for the KVSs
is set to 39.4 ms, 90.4 ms, and 81.2 ms, respectively. For
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Figure 7. Comparison of the duration of read and write operations for the
real system (solid lines) and the simulated system (dotted lines). The graph
shows a histogram of the operation durations for 1000 read operations
(centered at about 1200 ms) and 1000 write operations (centered at about
1800 ms).

list, the mean network latency is 36.5 ms, 181.1 ms, and
130.9 ms; and for remove, network latency is 18.5 ms,
100 ms, and 59.5 ms. The bandwidth limitations for the
providers are 6.67 MBps, 2.33 MBps, and 1.5 MBps,
respectively.

Figure 7 compares the durations of read and write
operations in the experiment and the simulation. The graphs
show a good match between the experimental system and the
simulation. This reinforces the confidence in the simulation
results.

IX. CONCLUSION

This paper investigates how to build robust storage ab-
stractions from unreliable key-value store (KVS) objects,
as commonly provided by distributed cloud-storage systems
over the Internet. We provide an emulation of a regular
register over a set of atomic KVSs; it supports an unbounded
number of clients that need not know each other and never
interact directly.

The algorithm is wait-free and robust against the crash
failure of a minority of the KVSs and of any number of
clients. The algorithm stores versioned values under two
types of keys — an eternal key that is never removed, and
temporary keys that are dynamically added and removed.
This novel mechanism allows garbage collection of obsolete
values in parallel to wait-free client operations. Simula-
tions and benchmarks with actual cloud-storage providers
demonstrate that the algorithm works well under practical
circumstances.

For ease of exposition, we have assumed atomic se-
mantics of KVSs, but practical KVSs may only provide
eventual consistency [35]. To address this question we have
run extensive experiments and never observed non-atomic
behavior; note that some cloud providers already provide
atomic operations [36]. We plan to investigate this important
issue in future work.
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