Amortizing Secure Computation with Penalties

Iddo Bentov
Cornell University

Ranjit Kumaresan
MIT

CCS 2016
Takeaway message

- A new variant of off-chain channels:
- Off-chain channels are useful not only for (micro) payments.
 - Instantaneous fair exchange (of verifiable data), with penalties
 - Instantaneous fair secure computation, with penalties.
Takeaway message

- A new variant of off-chain channels:
 - Off-chain channels are useful not only for (micro) payments.
 - Instantaneous fair exchange (of verifiable data), with penalties
 - Instantaneous fair secure computation, with penalties.

How expressive should the scripting language be?

- New use-case for an opcode that verifies arbitrary signatures.
- Different use-cases for this opcode:
 - lottery-based micropayments [Pass, shelat: CCS15]
 - anonymous transactions [Heilman, Baldiviatsi, Goldberg: FC16]
Secure multiparty computation (MPC) / secure function evaluation (SFE)

Parties P_1, P_2, \ldots, P_n with inputs x_1, x_2, \ldots, x_n send messages to each other, and wish to securely compute $f(x_1, x_2, \ldots, x_n)$.

Example of SFE:

\[
x_i = (sk_i, c) \\
sk = sk_1 \oplus sk_2 \oplus \cdots \oplus sk_n \\
f(x_1, x_2, \ldots, x_n) = \text{decrypt}(sk, c)
\]

Reactive MPC: think of poker cards
Fairness: if any party receives the output, then all honest parties must receive the output.

"Security with abort" is possible

- Secure MPC is possible [Yao86, GMW87, ...]
 - Security: correctness, privacy, independence of inputs, fairness
 - Even with dishonest majority, in the computational setting.

Full security is impossible

- Fair MPC is impossible [Cle86]
 - \(r \)-round 2-party coin toss protocol is susceptible to \(\Omega(1/r) \) bias.
 - \(\Rightarrow \) no fair protocol for XOR, barring gradual release [...]

Impossibility of fair MPC in the standard communication model
Overview

This presentation

1. Impose fairness for any SFE, without an honest majority.
2. For 2 parties, ℓ sequential executions of (different) fair SFE with only two F^*_{CR} invocations, instead of $\Omega(\ell)$ invocations.
3. For n parties and r-rounds reactive MPC, $O(n^2r)$ invocations.

Not in this presentation

- Secure cash distribution (e.g., poker).
Formal model that incorporates coins

Functionality F versus functionality F^* with coins

- If party P_i has some secret s_0 and sends it to party P_j, then both P_i and P_j will have the string s_0.
- If party P_i has coins(x) and sends $y < x$ coins to party P_j, then P_i will have coins$(x - y)$ and P_j will have extra coins(y).

- With Bitcoin: the parties only send strings, but miners do PoW so that the coin transfers become irreversible.
Formal model that incorporates coins

Functionality F_2 versus functionality F^* with coins

- If party P_i has some secret s_0 and sends it to party P_j, then both P_i and P_j will have the string s_0.
- If party P_i has coins(x) and sends $y < x$ coins to party P_j, then P_i will have coins($x - y$) and P_j will have extra coins(y).

- With Bitcoin: the parties only send strings, but miners do PoW so that the coin transfers become irreversible.
- Ideally, all the parties deem coins to be valuable assets.
- Sending coins(x) may require a broadcast that reveals at least the amount x and pseudonyms (not in ZK/anon cryptocurrency).
- We provide simulation based proofs (not in this talk).
Claim-or-Refund for two parties P_s, P_r (implicit in [Max11],[BBSU12])

The \mathcal{F}_{CR}^* Claim-or-Refund ideal functionality

1. The sender P_s deposits (locks) her coins(q) while specifying a time bound τ and a circuit $\phi(\cdot)$.
2. The receiver P_r can claim (gain possession) of the coins(q) by publicly revealing a witness w that satisfies $\phi(w) = 1$.
3. If P_r didn’t claim within time τ, coins(q) are refunded to P_s.

How to realize \mathcal{F}_{CR}^* via Bitcoin

- Old version: using “timelock” transactions.
- New version: OP_CHECKLOCKTIMEVERIFY (abbrv. CLTV) enables \mathcal{F}_{CR}^* directly, avoiding transaction malleability attacks.
F*\textsubscript{CR} via Bitcoin with CLTV (operational since \(\approx\) December 2015)

Pseudocode: \(pk_S, pk_R, h_0, \tau\) are hardcoded

if \((\text{block}\# > \tau)\) then

\(P_s\) can spend the coins\((q)\) by signing with \(sk_s\)

else

\(P_r\) can spend the coins\((q)\) by

signing with \(sk_r\)

AND

supplying \(w\) such that \(\text{Hash}(w) = h_0\) \[\text{this is } \phi(.)\]

Bitcoin script

```
IF <timeout> CHECKLOCKTIMEVERIFY OP_DROP <pk_s>
CHECKSIGVERIFY ELSE HASH256 <h_0> EQUALVERIFY <pk_r>
CHECKSIGVERIFY ENDFI
```
Fairness with penalties (non-reactive)

Definition of fair secure multiparty computation with penalties

- An honest party never has to pay any penalty
- If a party aborts after learning the output and doesn’t deliver output to honest parties \Rightarrow every honest party is compensated
Definition of fair secure multiparty computation with penalties

- An honest party never has to pay any penalty
- If a party aborts after learning the output and doesn’t deliver output to honest parties \(\Rightarrow \) every honest party is compensated

Outline of \(F^*_f \) – fairness with penalties for any function \(f \)

- \(P_1, \ldots, P_n \) with \(x_1, \ldots, x_n \) run secure unfair SFE for \(f \) that
 1. Computes random \(y_1 \oplus y_2 \oplus \cdots \oplus y_n = y \) for \(y = f(x_1, \ldots, x_n) \)
 2. Computes \(\text{Tags} = (\text{com}(y_1), \ldots, \text{com}(y_n)) = (\text{hash}(y_1), \ldots, \text{hash}(y_n)) \)
 3. Delivers \((y_i, \text{Tags})\) to every \(P_i \)

- \(P_1, \ldots, P_n \) deposit coins and run fair exchange with penalties to swap the \(y_i \)'s among themselves.
Fair exchange in the $\mathcal{F}_{\text{CR}}^*$-hybrid model - the ladder construction

"Abort" attack:
P₂ claims without depositing

Fair exchange:
P₁ claims by revealing $w₁$
⇒ P₂ can claim by revealing $w₂$

Malicious coalition:
Coalition P₁, P₂ obtain $w₃$ from P₃
P₂ doesn't claim the top transaction
P₃ isn't compensated
Fair exchange in the \mathcal{F}^*_CR-hybrid model - the ladder construction (contd.)

Fair exchange:

Bottom two levels:

P_1, P_2 get compensated by P_3

Top two levels:

P_3 gets her refunds by revealing w_3

Full ladder:

<table>
<thead>
<tr>
<th>Roof Deposits.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_1 \xrightarrow{T_1 \land \cdots \land T_n \ q, \tau_n} P_n$</td>
</tr>
<tr>
<td>$P_2 \xrightarrow{T_1 \land \cdots \land T_n \ q, \tau_n} P_n$</td>
</tr>
<tr>
<td>\vdots</td>
</tr>
<tr>
<td>$P_{n-2} \xrightarrow{T_1 \land \cdots \land T_n \ q, \tau_n} P_n$</td>
</tr>
<tr>
<td>$P_{n-1} \xrightarrow{T_1 \land \cdots \land T_n \ q, \tau_n} P_n$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ladder Deposits.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_n \xrightarrow{T_1 \land \cdots \land T_{n-1} \ (n-1)q, \tau_{n-1}} P_{n-1}$</td>
</tr>
<tr>
<td>$P_{n-1} \xrightarrow{T_1 \land \cdots \land T_{n-2} \ (n-2)q, \tau_{n-2}} P_{n-2}$</td>
</tr>
<tr>
<td>\vdots</td>
</tr>
<tr>
<td>$P_3 \xrightarrow{T_1 \land T_2 \ 2q, \tau_2} P_2$</td>
</tr>
<tr>
<td>$P_2 \xrightarrow{T_1 \ q, \tau_1} P_1$</td>
</tr>
</tbody>
</table>

Figure 6: Roof and Ladder deposit phases for fair reconstruction.
Comparison with other ways to achieve fairness

Gradual release
- Release the output bit by bit...
- Even with only 2 parties, the number of rounds depends on a security parameter.
- Complexity blowup because the protocol must ensure that the parties don’t release junk bits.
- Assumptions on the computational power of the parties, sequential puzzles to avoid parallelization.

Fairness with penalties
- With Bitcoin, the PoW miners do all the heavy lifting.
- Still, we don’t want to wait for on-chain PoW confirmations...
Amortized protocol – what we achieve

- Unbounded number of sequential MPC executions, with **off-chain** fair exchange (with penalties) of the outputs, as long as all parties are honest.
- Resembles optimistic fair exchange, but with no trusted party.

Main idea

Since the (commitments to the) output values are not known in advance, the \mathcal{F}^*_CR on-chain transactions require the parties to reveal signatures of indexed messages.
The general case: amortized reactive secure-MPC

- Multistage protocol: after each stage of the computation some intermediate outputs are revealed to the parties.
 - Example: the top card of the deck is revealed to all parties.
- One-shot protocol is not the natural formulation:
 - A circuit that takes into account all the possible variables is highly inefficient.
 - Those variables may depend on external events (say, you receive a phone call regarding an unrelated financial loss).
- ⇒ must be dropout-tolerant:
 - After a stage that reveals information, corrupt parties must be penalized if they abort.
 - In fact, the corrupt parties must be penalized unless they continue the next stage of the computation.
Ingredient #1: see-saw construction (2-party m-rounds illustration)

Roof deposit.

$$
P_1 \xrightarrow{TT_{m,2}} P_2 \\
q,\tau_{m,2} \quad (T_{x_{m,2}})
$$

See-saw deposits. For $r = m - 1$ to 1:

$$
P_2 \xrightarrow{TT_{r+1,1}} P_1 \\
2q,\tau_{r+1,1} \quad (T_{x_{r+1,1}})
$$

$$
P_1 \xrightarrow{TT_{r,2}} P_2 \\
2q,\tau_{r,2} \quad (T_{x_{r,2}})
$$

Floor deposit.

$$
P_2 \xrightarrow{TT_{1,1}} P_1 \\
q,\tau_{1,1} \quad (T_{x_{1,1}})$$
Ingredient #2: circuits that verify signed data

- On-chain \mathcal{F}^*_CR circuits that verify a signed transcript of an execution.

- For a feasibility result, consider signatures that are created inside the secure computation.

\[
\begin{align*}
\phi_{j,i}^{\text{lock}}(TT, id, \sigma; mvk) &= tv_{i-1}^{(id)}(TT) \land \text{SigVerify}(mvk, (j, i, id), \sigma) \\
\phi_i^{(id)}(TT, id; mvk) &= tv_i^{(id)}(TT) \\
\phi_{j,i}^{\text{unlock}}(TT, id, \sigma; mvk) &= tv_i^{(id)}(TT) \land \text{SigVerify}(mvk, (j, i, id), \sigma)
\end{align*}
\]

where $TT = (T_1^{(id_1)}, \sigma_1^{(id_1)}) \parallel \cdots \parallel (T_i^{(id_i)}, \sigma_i^{(id_i)})$ and $tv_i^{(id)}(TT) = 1$ iff

- $id_1 = \cdots = id_i \geq id$.

- for all $j \leq i$: $T_j^{(id_j)}$ is a message of the form (j, id_j, \ast) and $\sigma_j^{(id_j)}$ is a valid signature on $T_j^{(id_j)}$ under msk.
Ladder Deposits. For $i = n - 1$ down to 1:

- **Rung unlock:** For $j = n$ down to $i + 1$:

 \[
P_j \xrightarrow{\phi_{j,i}^{\text{unlock}}} P_i
 \]

- **Rung climb:**

 \[
P_{i+1} \xrightarrow{\phi_i} P_i
 \]

- **Rung lock:** For each $j = n$ down to $i + 1$:

 \[
P_i \xrightarrow{\phi_{j,i}^{\text{lock}}} P_j
 \]
Amortized reactive secure MPC - summary

<table>
<thead>
<tr>
<th>Work</th>
<th>Case</th>
<th>\mathcal{F}_{CR}^* calls</th>
<th>Max deposit</th>
<th>Script comp.†</th>
<th>Round comp.*</th>
<th>Assump.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crypto14</td>
<td>One-shot</td>
<td>$O(n\ell)$</td>
<td>$O(nq)$</td>
<td>$O(n^2z\ell)$</td>
<td>$O(n\ell)$</td>
<td>owf, \mathcal{F}_{OT}</td>
</tr>
<tr>
<td>CCS16</td>
<td>One-shot</td>
<td>$O(n\ell)$</td>
<td>$O(nq)$</td>
<td>$O(n\lambda\ell)$</td>
<td>$O(n\ell)$</td>
<td>RO, \mathcal{F}_{OT}</td>
</tr>
<tr>
<td>Ours</td>
<td>One-shot</td>
<td>$O(n^2)$</td>
<td>$O(nq)$</td>
<td>$O(n^3z)$</td>
<td>$O(n)$</td>
<td>owf, \mathcal{F}_{OT}</td>
</tr>
<tr>
<td>CCS15</td>
<td>Reactive</td>
<td>$O(n^2r)$</td>
<td>$O(nq)$</td>
<td>$O(n^2T\ell)$</td>
<td>$O(nr)$</td>
<td>etdp</td>
</tr>
<tr>
<td>CCS16</td>
<td>Reactive</td>
<td>$O(nr\ell)$</td>
<td>$O(nr^2q)$</td>
<td>$O(nT\ell)$</td>
<td>$O(nr\ell)$</td>
<td>etdp</td>
</tr>
<tr>
<td>Ours</td>
<td>Reactive</td>
<td>$O(n^2r)$</td>
<td>$O(nrq)$</td>
<td>$O(n^2T)$</td>
<td>$O(nr)$</td>
<td>etdp</td>
</tr>
</tbody>
</table>

Table: n: number of parties; q: penalty amount; z: length of output of f (we assume $z \gg \lambda$); λ: computational security parameter; T (resp. r): size of transcript (resp. number of rounds) of an n-party secure computation protocol that implements f in the plain model; owf: one-way functions; \mathcal{F}_{OT}: ideal oblivious transfer; RO: random oracle; $etdp$: enhanced trapdoor permutations; Note that ℓ is a parameter, thus our costs *per execution* tend to zero as ℓ grows. The ‘*’ in the round complexity column means that the values in the column refer to the “on-chain round complexity.” The “off-chain round complexity” of our protocol is $O(n\ell)$ in the one-shot case and $O(nr\ell)$ in the reactive case.
Amortized protocol for 2 parties

Note: this is a portion from a followup work.

Preparation:

1. P_1 make an $\mathcal{F}_{\text{CR}}^*$ transaction to P_2 with q coins, timeout τ_1, and circuit $\phi_1(m_1, m_2, H_1, H_2, S_1, S_2)$ that
 - Parses $H_1 = (i, h_1)$, $H_2 = (j, h_2)$
 - Verifies $i = j$, $m_1 \neq m_2$, $\text{Hash}(m_1) = h_1$, $\text{Hash}(m_2) = h_2$
 - Verifies signatures: $\text{SigVerify}_{pk_1}(H_1, S_1)$, $\text{SigVerify}_{pk_1}(H_2, S_2)$

2. P_2 make an $\mathcal{F}_{\text{CR}}^*$ transaction to P_1 with q coins, timeout $\tau_2 < \tau_1$, and circuit $\phi_2(m, H, S_1, S_2)$ that
 - Parses $H = (\text{__}, h)$ and verifies that $\text{Hash}(m) = h$
 - Verifies signatures: $\text{SigVerify}_{pk_1}(H, S_1)$, $\text{SigVerify}_{pk_2}(H, S_2)$
Executions:

3 Until time τ_2, P_1 and P_2 execute any number of SFE invocations with functions $f_i(x_1, x_2), i = 1, 2, \ldots$, such that
 - $y_i = f_i(x_{i,1}, x_{i,2})$, and $m_{i,1} \oplus m_{i,2} = y_i$ are additive shares of y_i.
 - Commitments: $h_{i,1} = \text{Hash}(m_{i,1}), h_{i,2} = \text{Hash}(m_{i,2})$
 - P_1's output is $(m_{i,1}, h_{i,1}, h_{i,2})$, P_2's output is $(m_{i,2}, h_{i,1}, h_{i,2})$.

4 Then, for each execution i,
 - Denote $H_{i,1} = (i, h_{i,1}), H_{i,2} = (i, h_{i,2})$.
 - P_1 sends $S_{i,1,2} = \text{Sign}_{sk_1}(H_{i,2})$ to P_2.
 - P_2 runs $\text{SigVerify}_{pk_1}(H_{i,2}, S_{i,1,2})$, and sends $S_{i,2,1} = \text{Sign}_{sk_2}(H_{i,1})$ to P_1.
 - P_1 sends $m_{i,1}$ to P_2, and waits for a short timeout to receive $m_{i,2}$ from P_2.
 - If $m_{i,2}$ was not received, P_1 redeems q coins by revealing $S_{i,1,1} = \text{Sign}_{sk_1}(H_{i,1})$ to satisfy ϕ_2.
 - P_2 can now use $(S_{i,1,1}, S_{i,1,2})$ with $m_{i,2}$ to redeem q coins too.
Amortized protocol for 2 parties - order of events

P_1 needs $m, S_1(\text{Hash}(m)), S_2(\text{Hash}(m))$ to collect the money.

P_2 needs $m_1, m_2, S_1(i, \text{Hash}(m_1)), S_1(i, \text{Hash}(m_2))$ to collect.

What if P_2 aborts instead of sending m_2?

P_1 reveals $m_1, S_1(\text{Hash}(m_1))$ with $S_2(i, \text{Hash}(m_1))$ to collect.

P_2 reveals m_2 with $m_1, S_1(\text{Hash}(m_1)), S_1(i, \text{Hash}(m_2))$ to recoup.
Amortized protocol for 2 parties - properties

- P_1 reveals a signed message with a corresponding preimage in every execution i, but P_2 cannot recycle an old signed message to avoid revealing the current output, because the indices won’t match.

- P_2 needs to keep a backlog of the signed messages from all the previous executions, but has the advantage of being able to pay q coins to learn the output ($q' = q + \varepsilon$ in ϕ_1 is also possible).

- The scripts ϕ_1, ϕ_2 need an opcode for arbitrary signature verification - same complexity as the standard CHECKSIGVERIFY.
Thank you.