
Hitesh Ballani

4130 Upson Hall
Cornell University
Ithaca, NY-14853

hitesh@cs.cornell.edu

www.cs.cornell.edu/∼hitesh

Phone: 607-279-6780
Fax: 607-255-4428

Research
Interests

Networked Systems: Routing, Protocols, Management, Security.

Education Cornell University Ithaca, NY.
Ph.D. candidate in Computer Science Expected summer 2009
Advisor: Paul Francis; GPA: 4.19/4.0
Minor in Statistics

Indian Institute of Technology Roorkee, India.
Bachelor of Technology, Computer Science May 2003
GPA: 9.76/10.0

Research ViAggre (Virtual Aggregation) HotNets’08, NSDI’09
Cornell University Aug. 2007 – Present
Invented and deployed ViAggre, a “configuration-only” technique to shrink the routing table
on routers. ViAggre does not require any changes to router software and routing protocols
and can be deployed by any ISP without the cooperation of other ISPs. It can reduce the
routing table load on routers by more than an order of magnitude. ViAgree was deployed on
a testbed of Cisco hardware routers. I also implemented an open-source configuration tool
that can automatically reconfigure status-quo routers for operation according to ViAggre.

CONMan (Complexity Oblivious
Network Management)

INM’06, SIGCOMM’07, INFOCOM’09

Cornell University Jan. 2006 – Present
Conceived, designed and implemented CONMan, an architecture aimed to make IP networks
amenable to management. CONMan restricts the operational complexity of protocols to
their implementation by minimising the amount of protocol-specific information exposed in
their management interface. I implemented a suite of CONMan protocols and management
applications. The resulting testbed was shown to be configurable based on human specified
high-level goals. Faults in the network were automatically detected and localised. Thus, in
effect, the CONMan testbed is a largely self-managing network.

DNS DoS Mitigation HotNets’06, CCS’08
Cornell University Jan. 2006 – Aug. 2008
Designed “Stale Cache”, a minor modification to the caching behavior of DNS resolvers
that reduces the need for nameserver availability in the existing DNS framework. This can,
in turn, mitigate the impact of DoS attacks on DNS. Conducted a long-term measurement
study that shows that even a single Internet resolver can use a Stale Cache and acquire
significant protection against DNS DoS attacks.

Prefix Interception and Hijacking SIGCOMM’07
Cornell University May 2006 – Sep. 2007

Investigated the possibility of Traffic Interception in the Internet wherein the attacker trans-
parently intercepts traffic from a sender to a receiver. As a proof-of-concept, I designed an
Interception attack, deployed it and used it to capture real Internet traffic (belonging to
a prefix I own). Also conducted a trace-based study to quantify the possibility of Hijack-
ing and Interception in the Internet and a measurement study to detect ongoing Internet
Interception.

Denial-of-Service protection HotNets’05
Intel-Research, Berkeley June 2005 – July 2005
Designed the DefaultOff architecture wherein end-hosts are “off by default” and each host
is allowed to explicitly declare to the routing infrastructure what traffic it wants routed to
it. Using traces from real ISPs, I showed that such a network is technologically feasible and
proposed a reachability protocol to allow for flexible expression of reachability by end-hosts
and end-sites.

Proxy IP Anycast Service (PIAS) Worlds’04, SIGCOMM’05, IMC’06
Cornell University Mar. 2004 – May 2006
Designed, implemented and deployed PIAS, as IP-level anycast architecture that combines
the advantages of native IP anycast and application level anycast. Besides obviating client
modifications, PIAS offers a unique array of features that allow P2P and overlay applications
to use the proposed anycast service. I deployed the PIAS service in the Internet (presently
at 7 PIAS nodes in US, UK and Asia) and have been maintaining this testbed for the past
four years.

Delay-tolerant Bulk Transfers
Telefonica Research June 2008 – present
Ongoing work that focusses on the problem posed by transfer of bulk traffic across the
Internet. Devising mechanisms to take advantage of the delay-tolerance of bulk traffic to
make it amenable to the network. Implementing an overlay that uses storage as one such
mechanism to time-shift bulk traffic away from the peak hours for Internet ISPs. Also
conducting a measurement study to determine bounds for the benefits that such time-
shifting can entail.

Teaching Computer Networks Teaching Assistant
CS519, Cornell University 2004
Designed and implemented the course project for CS519 - a master’s level networks course.
The project comprised of basic sockets programming and a user-level IP stack implementa-
tion. Other tasks included holding office hours, lecturing on certain occasions, and grading.

Java Practicum Teaching Assistant
CS212, Cornell University 2003
Designed problem sets, taught discussion sections, graded and conducted office hours for
CS212, an undergraduate course that introduces students to the ways of software engineering
using the Java programming language.

Publications [1]. Hitesh Ballani, Paul Francis, Tuan Cao and Jia Wang. Making Routers Last Longer
with ViAggre. In Proc. of USENIX Networked Systems Design and Implementation

(NSDI) (April 2009).

[2]. Hitesh Ballani and Paul Francis. Fault Management Using the CONMan Abstrac-
tion. In Proc. of IEEE INFOCOM (April 2009).

[3]. Hitesh Ballani and Paul Francis. Mitigating DNS DoS Attacks. In Proc. of ACM
Conference on Communications and Computer Security (CCS) (October 2008).

[4]. Hitesh Ballani, Paul Francis, Tuan Cao and Jia Wang. ViAggre: Making Routers
Last Longer! In Proc. of workshop on Hot Topics in Networks (Hotnets-VII) (October
2008).

[5]. Hitesh Ballani and Paul Francis. CONMan: A Step towards Network Manageability.
In Proc. of ACM SIGCOMM (August 2007).

[6]. Hitesh Ballani, Paul Francis and Xinyang Zhang. A Study of Prefix Hijacking and
Interception in the Internet. In Proc. of ACM SIGCOMM (August 2007).

[7]. Hitesh Ballani and Paul Francis. A Simple Approach to DNS DoS Defense. In Proc.
of workshop on Hot Topics in Networks (HotNets-V) (November 2006).

[8]. Hitesh Ballani, Paul Francis and Sylvia Ratnasamy. A Measurement-based Deploy-
ment Proposal for IP Anycast. In Proc. of Internet Measurement Conference (IMC)
(October 2006).

[9]. Hitesh Ballani and Paul Francis. CONMan - Taking the Complexity out of Network
Management. In Proc. of Sigcomm Workshop on Internet Network Management
(INM) (September 2006).

[10]. Hitesh Ballani, Yatin Chawathe, Sylvia Ratnasamy, Timothy Roscoe and Scott
Shenker. Off by default! In Proc. of workshop on Hot Topics in Networks (Hotnets-IV)
(November 2005).

[11]. Hitesh Ballani and Paul Francis. Towards a global IP Anycast service. In Proc. of
ACM SIGCOMM (August 2005).

[12]. Hitesh Ballani and Paul Francis. Towards a Deployable IP Anycast Service. In
Proc. of First Workshop on Real, Large Distributed Systems (WORLDS) (December
2004).

Talks ViAggre: Making Routers Last Longer!
– HotNets, 2008

Mitigating DNS DoS Attacks
– ACM CCS, 2008

CONMan: A Step Towards Network Manageability
– ACM SIGCOMM, 2007
– Cisco Tech Talk, 2007
– Ph.D Candidacy Exam, 2007
– AFOSR Funding Meeting 2007

A Study of Prefix Hijacking and Interception in the Internet
– ACM SIGCOMM, 2007

CONMan - Taking the Complexity out of Network Management
– ACM SIGCOMM INM, 2006
– Microsoft Edgenet Summit (Poster), 2006

A Measurement-based Deployment Proposal for IP Anycast
– ACM IMC, 2006

A Simple Approach to DNS DoS Mitigation
– HotNets, 2006

Towards a Global IP Anycast Service
– ACM SIGCOMM, 2005
– DNS OARC Meeting, 2005
– ICSI Seminar, 2005

Off by Default!
– HotNets, 2005

Towards a Deployable IP Anycast Service
– WORLDS, 2004

Honors and
Awards

Best Paper Award
ACM IMC, 2006

President’s Gold Medal, 2003
For obtaining highest CGPA amongst graduating students at the Indian Institute of Tech-
nology, Roorkee

IIT Roorkee, Gold Medals, 2000-2003
Best undergraduate academic performance in each of the four years of study at Indian
Institute of Technology, Roorkee

Cornell University, Outstanding TA award, 2004
Awarded in recognition of excellent TA’ship for Computer Networks (CS519), 2004.

IISc Bangalore, Summer Research Fellowship, 2002
Awarded a fellowship for summer research at the Indian Institute of Science, Bangalore

Professional
Activities

• Reviewer for ACM CCR, IJCNS, IEEE Communication Letters

• External Reviewer for NSDI’05, ICNP’05, DSN’07

• Member of IEEE and ACM

References Prof. Paul Francis Sylvia Ratnasamy
Assistant Professor Researcher
Department of Computer Science Intel-Research, Berkeley
Cornell University 2150 Shattuck Avenue, Suite 1300
Ithaca, NY 14853 Berkeley, CA 94704
francis@cs.cornell.edu sylvia.p.ratnasamy@intel.com

Pablo Rodriguez Jia Wang
Scientific Director Researcher
Telefonica Research AT&T Labs – Research
Via Augusta, 177 180 Park Avenue
08021, Barcelona. Spain Building 103, Room A165
pablo.rodriguez@tid.es Florham Park, NJ 07932

jiawang@research.att.com

Statement of Research Interests

Hitesh Ballani

I enjoy research. My research goal is to tackle problems afflicting the Internet. The explosive growth
in the size of the Internet over the past couple of decades has meant that many of the assumptions that
the Internet design is based on no longer hold true. This has led to a plethora of problems and has made it
imperative that we rethink such assumptions and the concomitant design decisions. However, the tremendous
success of the Internet has also been a bane for Internet research. It is difficult, if not impossible, to expect a
wholesale change in Internet infrastructure. Throughout my graduate career, I have tried to stay cognizant
of this ground truth and have strived to strike a balance between two competing urges regarding my research.

On one hand is the freedom of doing blue sky research that openly questions the fundamentals underlying
the Internet architecture in the face of new needs and challenges. For instance, as part of my dissertation I
argue that the fact that the Internet and its precursors started off as simple research networks meant that
“manageability” was never a first-class design goal. Instead, humans operating the network were expected to
delve into low-level network details in order to make it work. However, as the Internet becomes bigger and
more complex, such an approach becomes intractable. Frustrated by the lamentable state-of-art in network
management, I proposed and implemented CONMan [2,5,9], a cohesive architecture that leads to easy-to-
manage and even largely self-managing networks. Similarly, my work on DefaultOff [10], a DoS-resilient
Internet architecture recognises the mismatch between the security needs of the original and today’s Internet
and shows how this can be addressed by flipping default Internet reachability from “on” to “off”.

On the other hand, I want my research to have practical impact through solutions that are immediately
deployable. While it is well accepted that it is difficult to address the Internet’s problems without changing
the protocols involved, I have found that in many cases, simply by focussing on a subset of the given problem
space, it is possible to devise a solution that does not require architectural change. In other words, it is possible
to use existing protocols in novel ways to address some of the problems. I call this style of research dirty-slate.
Such incremental solutions have a couple of important benefits. First, they offer a better alignment of cost
vs benefits and hence, have a good chance of real-world adoption. Second, if the subset of problems solved
happen to be the most pressing of the lot, such solutions buy the time needed for architectural proposals to
mature and get deployed.

Over the past few years, I have developed a knack for recognising problems areas that can be alleviated in
an incremental fashion and actually devising solutions that do not require change to deployed protocols and
devices. For instance, I have invented ViAggre [1,4], a “configuration-only” approach to shrinking the routing
table on Internet routers. While there are many other problems that afflict the Internet’s routing system and
ViAggre is not a cure-all, it does solve an important part of the routing problem area without requiring changes
to both routing protocols and the routers themselves and without requiring global agreement. The same
theme of tackling problems without protocol changes and global deployment pervades my work on mitigating
DoS attacks on DNS nameservers [3,7] and making IP Anycast deployments practically feasible [8,11,12].

Overall, I feel that I have been successful at striking a good balance between clean-slate and incremental
research. I have made a conscious effort to explore different facets of systems research in the context of my
interest in networking. This appears in the fact that my work has included measurement studies, analytical
studies, architectural proposals, implementation and even wide-area deployment.

1 Previous Work

Clean-slate research.

– Network Management. IP networks are hard to manage (install, configure, provision, monitor, test,
debug). I have been able to boil down a large fraction of our management troubles to one specific shortcoming:

1

“Today, protocols and devices expose their internal details leading to a deluge of complexity that burdens the
management plane.” Consequently, a basic requirement for an Internet architecture conducive to management
is that the management interface of protocols contain as little protocol-specific information as possible.
This concept is at the core of my dissertation proposal called CONMan or Complexity Oblivious Network
Management. Among other things, I have developed a generic abstraction that is used by CONMan-compliant
protocols and devices to express their functionality to management applications. I have shown that this
abstraction can serve as the narrow waist for the Internet’s management plane, not much different from the
way IP has served as the narrow waist for the Internet’s data plane.

While the CONMan idea can be applied to all aspects of network management, my thesis focusses on
the use of CONMan for configuration [5,9] and fault management [2]. To this effect, I implemented a suite of
CONMan protocols and management applications. The resulting testbed can thus be configured by humans
simply by specifying desired high-level goals. Further, any faults occurring in the network are automatically
detected and localised. In effect, the CONMan testbed is a largely self-managing network. This work was
one of the top-rated papers at ACM Sigcomm’07 and has evoked interest and received funding support from
Cisco and NSF FIND.

– Denial-of-Service attacks. The original Internet architecture was designed to provide universal reach-
ability; any host can send any amount of traffic to any destination. Unfortunately, today’s less trustworthy
Internet environment has revealed the downside of such openness—every host is vulnerable to attack by any

other host(s). I argue that the simplest and the most direct approach to this problem is to flip Internet
reachability on its head – end hosts should be “off by default” and should explicitly declare what traffic they
want to be routed to them. This was the basis of the DefaultOff architecture [10] that, despite the seemingly
intractable burden imposed on the Internet infrastructure, proved to be technologically feasible.

Dirty-slate research.

– Routing Scalability. The Internet routing table has been growing at a rapid rate for the past few years.
Till now, it was almost universally accepted that maintaining a large routing table is just a fact of life in
the existing architecture and there is no way to reduce the burden on Internet routers other than through
a significant redesign. Consequently, most recent routing research has focussed on new architectures. While
I agree that maintaining the entire routing table on routers is the de-facto mode of operation for Internet
routing, I don’t think that any part of the Internet architecture necessitates it. Instead, the load imposed by
the routing table can be reduced simply by dividing the task of maintaining it amongst the routers.

This insight led me to invent ViAggre (Virtual Aggregation) [1,4], a scalability technique that shrinks
the routing table on routers. ViAggre’s most exciting feature is that it is a “configuration-only” approach.
ViAggre does not require any changes to routers or routing protocols and can de deployed independently by
any ISP on the Internet. It is mostly due to these reasons ViAggre has attracted a lot of positive attention in
the IETF community and has been put on the standards track by IETF. As a matter of fact, a major router
vendor (Huawei) is experimenting with implementing ViAggre natively into its routers.

Measurement results show that ViAggre can shrink routing tables by more than an order of magnitude.
I also implemented a configuration tool that allows network operators to adopt ViAggre without manual
router reconfiguration. Finally, I deployed ViAggre on a testbed of Cisco hardware routers. This exercise
provided me with useful hands-on experience with routers used by commercial ISPs and am sure will help
me in future routing research endeavors.

– DNS Denial-of-Service attacks. Recent years have seen many instances of Denial-of-Service (DoS)
attacks on DNS, the Internet’s naming system. I realised that such attacks are essentially targeting the
skewed division of name resolution functionality between DNS servers and clients. Specifically, the attacks
aim to make DNS servers unavailable and hence, can be tackled by doing away with the need for 100%
server availability. Guided by this observation, I proposed a minor modification in DNS caching behavior
that mitigates the impact of such attacks [3,7]. A long-term measurement study showed that even a single
DNS resolver in the Internet can adopt this modification and acquire significant protection against DNS DoS

2

attacks. I am especially proud of this work; while certainly not the highlight of my research credentials, it
does underscore my belief in dirty-slate research and shows how a very trivial hack can be used to address
daunting problems in the existing setup.

– Practical IP Anycast. IP anycast, with its innate ability to find nearby resources in a robust and
efficient fashion, has long been considered an important means of service discovery. However, it suffers from
severe scalability problems. I argue that IP Anycast entails a tight coupling of the the anycast functionality
to Internet routing mechanisms and this is the root-cause of its scalability problems. Hence, I designed,
implemented and deployed PIAS (Proxy IP Anycast Service) [11,12], an anycast service that decouples
anycast functionality from Internet routing.

As part of the PIAS deployment, I deployed a small testbed comprising of seven nodes spread across the
Internet with each node advertising an address prefix into Internet routing. This, apart from the technical
know-how involved, equipped me with an insight into the workings of commercial routing agreements. I have
been maintaining this testbed for the past four years. Apart from the anycast service, the testbed provides a
unique and very useful tool for researchers to perform active routing experiments. For instance, the testbed
has been used by me [6,8] and other researchers [13,14] for wide-area BGP studies.

2 Future Work

From the beginning, I have focussed my research on problems in networking. This has allowed me to really
delve deeply into one research area so as to have the most impact. This approach has worked well for me,
and has led to a number of new ideas that I plan to pursue.

What to solve? A spate of routing research over the past few years has led to an agreement that severe
problems afflict the routing system. For instance, scalability and manageability are commonly cited as the
two biggest challenges facing Internet routing. However, there is still no agreement on what specific factors
represent a scalability bottleneck and in what order: Is it memory or processing power or the ability to power
the routers and dissipate the generated heat. Further, the answer depends not only on the characteristics of
the routing system (such as the routing table size), but also on the characteristics of the routers themselves
(such as the number of peers). My thesis is that only after understanding the key pain points can we come
up with a practical alleviative for our routing pains. I am working on such benchmarking of the control plane
on Internet routers. The ultimate goal of this exercise is to guide the design of the next generation routing
system.

The Power of Tunnels. To a large extent, multihoming and traffic engineering have been the biggest con-
tributors to the growth in the Internet routing table. This, in turn, is the result of the unholy marriage
between Routing and Traffic Engineering. Specifically, Internet operators lack the appropriate primitives to
control traffic flowing in and out of their networks. Instead, they try to achieve goals regarding network
traffic through archaic knobs of routing protocols. The key problem with this marriage is the mismatch
between the granularity provided by the routing system (prefix-level) and the granularity required for traffic
engineering (flows or aggregates of flows).

On the other hand, recent years have seen an increasing use of tunnels in both enterprise networks
and wide-area Internet. The adoption of MPLS by ISPs and the surge in the use of VPN technologies has
promoted tunneling to a first-class Internet mechanism. In spite of this very public evolution, I am surprised
at how little attention tunnels have received in the research community. My work on ViAggre exploits tunnels
to shrink the routing table size on routers. Extending this, I believe that tunneling is a very powerful primitive
and represents an opportunity to have a genuine impact on many Internet problems. Hence, my vision is to
move the Internet towards an inter-domain tunneling system with the goal of tackling the complementary
problems of routing scalability and traffic engineering.

Delay-tolerant Traffic. The rise of P2P and streaming applications has led to a substantial increase in traffic
carried by ISPs and has caused them to take steps ranging from capacity upgrades to the much-maligned
selective manipulation of traffic. However, a lot of such traffic is delay-tolerant. For instance, it is common
for end-users to download movies only to watch them later. Such traffic can thus be “time-shifted” (delayed
across time) to make it more amenable to the network. This, apart from reducing the peak burden on

3

the ISPs, can offer better performance to end-users. To this effect, I am collaborating with researchers at
Telefonica Research towards the use of storage in the network to improve the network friendliness of delay-
tolerant bulk traffic. Our current focus is on a CDN-like deployment model that has a symbiotic relationship
with ISPs while benefiting the end-users. Looking ahead, I am also interested in an architectural solution to
the bulk-traffic problem. For instance, is it feasible for the network to provide storage as a service or is it
easier to deal with bulk traffic through a separate low-priority channel that does not interfere with existing
(non delay-tolerant) traffic.

Beyond this, I believe that my past work has equipped me with the requisite tools to diversify my research and
investigate problems beyond my core interests. For instance, my projects have included analysis, measure-
ment, implementation and deployment and should hold me in good stead for research in networked systems,
including enterprise networks, wireless networks, peer-to-peer systems and web services. In the near term, I
want to build upon my work in security [3,6] to tackle challenges in securing networked systems. Further, I
have a minor in statistics and am interested in game theory. Hence, I am exploring opportunities to apply
the corresponding tools to solve network problems.

To summarise, my research will be geared towards building better networked systems with a focus on
improving their scalability, manageability, security and reliability. Furthermore, my proposals will retain the
dual theme of instant and delayed gratification. To this effect, I want my future research endeavors to track
the following roadmap: Given a problem area, the first step will determine the largest subset that can be
solved within the existing setup and develop such a solution. Next, the insights from the dirty-slate solution
will guide a complete solution that will most likely require infrastructure change. While I do not claim that
my proposals will be better at spurring architectural change, I do believe that when the cost of dealing with
a problem becomes high enough to justify the costs associated with a change, my solutions will have a better
alignment of costs and benefits and hence, a better chance of deployment.

References

[1] Hitesh Ballani, Paul Francis, Tuan Cao and Jia Wang, “Making Routers Last Longer with ViAggre,” in Proc.
of USENIX Networked Systems Design and Implementation (NSDI), April 2009.

[2] Hitesh Ballani and Paul Francis, “Fault Management Using the CONMan Abstraction,” in Proc. of IEEE
INFOCOM, April 2009.

[3] Hitesh Ballani and Paul Francis, “Mitigating DNS DoS Attacks,” in Proc. of ACM Conference on Communi-
cations and Computer Security (CCS), October 2008.

[4] Hitesh Ballani, Paul Francis, Tuan Cao and Jia Wang, “ViAggre: Making Routers Last Longer!” in Proc. of
workshop on Hot Topics in Networks (Hotnets-VII), October 2008.

[5] Hitesh Ballani and Paul Francis, “CONMan: A Step towards Network Manageability,” in Proc. of ACM
SIGCOMM, August 2007.

[6] Hitesh Ballani, Paul Francis and Xinyang Zhang, “A Study of Prefix Hijacking and Interception in the Inter-
net,” in Proc. of ACM SIGCOMM, August 2007.

[7] Hitesh Ballani and Paul Francis, “A Simple Approach to DNS DoS Defense,” in Proc. of workshop on Hot
Topics in Networks (HotNets-V), November 2006.

[8] Hitesh Ballani, Paul Francis and Sylvia Ratnasamy, “A Measurement-based Deployment Proposal for IP
Anycast,” in Proc. of Internet Measurement Conference (IMC), October 2006.

[9] Hitesh Ballani and Paul Francis, “CONMan - Taking the Complexity out of Network Management,” in Proc.
of Sigcomm Workshop on Internet Network Management (INM), September 2006.

[10] Hitesh Ballani, Yatin Chawathe, Sylvia Ratnasamy, Timothy Roscoe and Scott Shenker, “Off by default!” in
Proc. of workshop on Hot Topics in Networks (Hotnets-IV), November 2005.

[11] Hitesh Ballani and Paul Francis, “Towards a global IP Anycast service,” in Proc. of ACM SIGCOMM, August
2005.

[12] Hitesh Ballani and Paul Francis, “Towards a Deployable IP Anycast Service,” in Proc. of First Workshop on
Real, Large Distributed Systems (WORLDS), December 2004.

[13] Tongqing Qiu, L. Ji, D. Pei, J. Wang, J. J. Xu, and Hitesh Ballani, “LOCK: Locating Countermeasure-Capable
Prefix Hijackers,” GeorgiaTech, Tech. Rep. GT-CS-08-04, 2008.

[14] Zheng Zhang, Y. Zhang, Y. C. Hu, Z. M. Mao, , and R. Bush, “iSPY: Detecting IP Prefix Hijacking on My
Own,” in Proc. of ACM SIGCOMM, August 2008.

4

Teaching Statement

Hitesh Ballani

I relish the simple joys and challenges of teaching. Very few things top the satisfaction that I gain from
helping hard-working students learn a skill or solve a problem. I distinctly remember my first student lecture
at Cornell where I was supposed to explain data structures such as stacks and queues to non-engineering
students. While such concepts are second nature to anybody majoring in computer science, I did not want
to assume that the same held for, lets say a fine arts student. To account for this, I tried to relate the data
structures to their real-life counterparts. For instance, I used a box of Pringles to illustrate how the notion
of “Last-In First-Out” captures the operation of a stack and the memory of the entire class appreciating how
simple these fundamental programming constructs are has stayed with me ever since.

The above example illustrates one element of my teaching philosophy. In general, I strive to imbibe the
following in my teaching:

• I don’t treat teaching as a chore. Instead, I see it as an opportunity to interact with young and curious
minds and this reflects in the energy and passion with which I teach.

• I try to make my classes, be it a lecture for a hundred students or a review session for just five students,
as engaging as possible. I have found that only by involving my students in a discussion do I establish a
feedback loop. This allows me to determine what techniques and examples are effective and which ones
need to be refined.

• I firmly believe that the “One Size Fits All” approach does not apply to teaching. Based both on my
personal experience as a student and as a teacher, I have realised that the best way to get an idea across
depends on numerous factors such as the concepts at hand, the familiarity of the students with the topic
and even the class size. For instance, I found that it was easier to explain programming language concepts
based on mathematical constructs while students better understood network protocols and underlying
principles by seeing the protocols in action.

• It is critical to strike a balance between well-established and well-understood concepts against work that
represents the cutting-edge technology both in industry and research. This, I believe, is especially true
for systems courses. Students get more involved and interested when told about how the algorithms and
techniques they have studied are being used in new applications and products. Further, this results in
well-rounded students who are better at applying the concepts that they have learnt.

• Teaching is a two-way street. I take my teaching assignments very seriously and try to ensure that
students get a complete understanding and appreciation of the subject being taught. On the other side,
teaching classes also results in a lot of takeaways for me. For one, explaining ideas to students allows
me to understand how other people look at technical issues and by extension, lets me determine the best
way to present and portray my research. More importantly, interacting with students who don’t have
many pre-conceived notions can lead to questions about fundamentals that many of us in the research
community have simply accepted on blind faith. Such out-of-the-box discussions help me question my
ideas and influence the direction of my research.

As far as teaching experience is concerned, I have served as the teaching assistant for two courses,
“Programming Practicum” that introduces students to the ways of software engineering and “Computer
Networks”, an advanced networking course. As a TA, I was responsible for various course tasks, including

1

project design, review sessions, grading and lectures. For the latter course, I personally designed and imple-
mented a set of programming assignments, including a user-level IP stack. I am very proud of the quality of
these assignments which is illustrated by the fact that the same set has been used by the following offerings of
the course for the past five years. Further, I also received an “Outstanding TA Award” from the department
as a recognition of my contribution to the course and its students. Beyond this, I have given occasional
lectures in both undergraduate and graduate-level networking courses.

Another important aspect of the teaching process is mentoring students. The focus here is less on
imparting knowledge and more on being a facilitator. Such facilitation can range from defining and providing
direction for a research project to helping out with low-level system idiosyncracies. I have had the pleasure of
mentoring two amazing graduate students – Andrey Ermolinskiy (Berkeley) for a brief duration in 2005 and
Tuan Cao (Cornell) for the past year. In both cases, I relished the opportunity to guide very bright students
who were eager to learn the intricacies of Internet routing. I helped them appreciate why inter-domain
routing works the way it works and what can be done to improve it. Seeing them make mistakes similar to
the ones that I made when I was starting routing research but spend less time on finding a work-around due
to my guidance was indeed very gratifying and contributed to my conviction to pursue an academic career.

I have been fortunate to have had many dedicated teachers who have influenced and inspired me deeply.
For instance, it was the way that the teachers at my undergraduate institution piqued and encouraged my
interest in systems and networking that convinced me to pursue graduate studies. My thesis advisor, Paul
Francis, proved that having a good advisor can go a long way in making graduate school an amazingly
enriching experience. I have consciously tried to imbibe the qualities of my teachers and it is their influence
and my experience as a teacher and mentor that has shaped the teaching philosophy described above.

Given my research and teaching background, I will be most interested in teaching undergraduate and
graduate-level networking courses. I would love to teach seminar and paper-chase courses on a number of
special topics including routing, wireless networks, network games, application of game theory to networking
problems, network security, etc. I will also be comfortable teaching other systems courses, such as operating
systems, distributed systems and software engineering. My teaching vision is to impart my students with
not only an understanding of how systems work and the ability to build them but to equip them with a
toolset that can be used to solve real-world problems in novel and interesting ways. To this effect, I will
strive to ensure that my courses strike the right balance between both “old-school” vs “new-school” concepts
and text-based vs hands-on teaching. I also hope to give my students just the right dose of skepticism so
that they can evaluate ideas in an objective fashion.

To summarize, I believe that being part of the academic world bestows upon us the very important
responsibility of preparing the next generation to face the challenges of the world. As I get ready to pursue
a career in academia, I feel fortunate that I will have a chance to mold so many young minds and I am
confident that I will be able to guide them to bigger and better things in life.

2

CONMan: A Step Towards Network Manageability

Hitesh Ballani
Cornell University

Ithaca, NY
hitesh@cs.cornell.edu

Paul Francis
Cornell University

Ithaca, NY
francis@cs.cornell.edu

ABSTRACT
Networks are hard to manage and in spite of all the so called
holistic management packages, things are getting worse. We
argue that the difficulty of network management can partly
be attributed to a fundamental flaw in the existing architec-
ture: protocols expose all their internal details and hence,
the complexity of the ever-evolving data plane encumbers the
management plane. Guided by this observation, in this paper
we explore an alternative approach and propose Complexity
Oblivious Network Management (CONMan), a network ar-
chitecture in which the management interface of data-plane
protocols includes minimal protocol-specific information. This
restricts the operational complexity of protocols to their im-
plementation and allows the management plane to achieve
high level policies in a structured fashion. We built the CON-
Man interface of a few protocols and a management tool that
can achieve high-level configuration goals based on this in-
terface. Our preliminary experience with applying this tool
to real world VPN configuration indicates the architecture’s
potential to alleviate the difficulty of configuration manage-
ment.

Categories and Subject Descriptors: C.2.3 [Network
Operations]: Network Management.

General Terms: Management.

Keywords: Management, Abstraction, Configuration.

1. INTRODUCTION
IP networks are hard to manage. Network management

(installation, configuration, provisioning, monitoring, testing,
debugging) requires detailed knowledge of many different net-
work components, each with its own management interface.
To cope, network managers rely on a host of tools ranging
from sophisticated centralized network management packages
to home-brewed scripts and elementary tools such as ping and
traceroute. For instance, Cornell’s IT group uses half a dozen
different tools, commercial and public domain, and has over
100K lines of scripts for managing the switch and router in-
frastructure alone (not including email, servers, DNS, DHCP,
billing, etc.). In spite of their ever increasing sophistication,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’07, August 27–31, 2007, Kyoto, Japan.
Copyright 2007 ACM 978-1-59593-713-1/07/0008 ...$5.00.

management tools seem to be waging a losing battle which
is shown by rising management costs and network downtime.
A recent survey [18] showed that 80% of the IT budget in
enterprises is devoted to maintain just the status quo - in
spite of this, configuration errors account for 62% of network
downtime.

We believe that the management troubles of the Internet
have been aggravated by the lack of research on fundamentals.
Instead, there is an increasing reliance on temporary “band-
aids”. While this has allowed a number of flaws to creep into
the way we manage networks, in this paper we focus on one
specific shortcoming:

Today, protocols and devices expose their internal de-
tails leading to a deluge of complexity that burdens
the management plane.

For instance, it is not uncommon for a network device to
have thousands of manageable objects. A review of SNMP
MIB modules found more than 13,000 MIB objects in IETF
MIBs alone [34]; MIBDepot [49] lists 6200 MIBs from 142
vendors for a total of nearly a million MIB objects. A single
router configuration file can consist of more than 10,000 com-
mand lines [39]. Encumbering the management plane with all
this complexity leads to these problems:
• Perception differs from reality. Management applications

need to effectively reverse engineer the capabilities and the
functionality of protocols and devices from their detailed
MIBs. The low-level and non-intuitive nature of these pa-
rameters makes this task difficult, if not impossible [28].

• Error-prone configuration. Network configuration involves
mapping high-level policies and goals to the values of proto-
col parameters. Since management applications don’t have
an understanding of the underlying network in the first
place, they often resort to a cycle of setting the parame-
ters and correlating events to see if the high level goal was
achieved or not. Apart from being haphazard, the noise
in measurements and correlations is often the root-cause
of misconfigurations and related errors. The inability to
understand the network’s operation also makes debugging
these errors very difficult [21].

• Fragmentation of tools. Since devices and their exposed
details keep evolving at a frantic pace, management ap-
plications tend to lag behind the power curve [26]. Ad-
ditionally, the inability of standard management interfaces
(IETF MIBs) to keep pace with data plane development
has led to a plethora of vendor specific MIBs and even ven-
dor specific management applications and has put us in a
situation where no one management approach suffices. For
example, SNMPLink [31] lists more than 1000 management

applications, many of them being vendor specific command
line or HTML-based tools. Hence, the Internet manage-
ment plane doesn’t have anything analogous to the IP “thin
waist” around which the Internet data-plane is built.

• Lack of dependency maintenance. Management state is
highly inter-dependent. These dependencies are not re-
flected in the existing set-up; thus, when a low-level value
changes, the appropriate dependent changes don’t always
happen [28]. Instances of improper filtering because the
address assigned to some machine changed, or the applica-
tion was started on some other port are very common. Re-
cent work details the challenges involved in tracking such
dependencies in the existing set-up [29] and gives exam-
ples of how failure to track them leads to problems in large
networks [20].

These shortcomings indicate that an (extreme) alternative
worth exploring is to confine the operational complexity of
protocols to their implementation. As a matter of fact, we
observe that almost all data-plane protocols share some very
basic characteristics that should, in theory, suffice for the
management of the network. Guided by this observation, we
adopt a more modest approach and argue that:

The management interface of data-plane protocols
should contain as little protocol-specific information as
possible.

This allows all data-plane protocols to have a generic yet
simple management interface. While such an approach can
be applied to all aspects of management, this paper restricts
itself to Configuration Management. Hence, in this paper we
present the design and implementation of a network archi-
tecture, Complexity Oblivious Network Management (CON-
Man), that incorporates this principle for network configu-
ration tasks. In CONMan, all protocols and devices express
their capability and their functionality using a generic ab-
straction. This allows the management plane to understand
the potential of the underlying network and to configure it in
line with the desired high-level policies without being encum-
bered by the details of the protocol/device implementation.
Having a fixed interface between the management plane and
the data plane also allows for independent evolution of the
two. To this effect, this paper makes the following contribu-
tions:
• We present the detailed design of a network architecture

that minimizes the protocol-specific information in the man-
agement interface of data-plane protocols. We also present
protocol-independent configuration primitives that can be
used to interact with this interface and hence, configure the
network.

• We describe the implementation of the management inter-
face of a few protocols in compliance with the proposed
architecture.

• We detail the implementation of a management application
that, given the abstraction of the protocols and devices in
the network, can achieve high-level configuration goals us-
ing the aforementioned primitives.

• The paper presents the use of CONMan in a real-world
configuration scenario (VPN configuration) to highlight its
advantages over the status quo. Further, we also use a naive
but hopefully informative metric to compare the protocol
agnosticity of CONMan configurations against today’s con-
figurations in three different scenarios (GRE tunnels, MPLS
LSPs and VLANs).

Note that CONMan doesn’t reduce the total system com-
plexity; it only attempts to correct the skewed division of
functionality between management done inside the managed
device and that done outside the managed device. While
the fact that management applications don’t have to deal
with myriad protocol details reduces their burden, proto-
cols still need various low-level details in order to operate.
With CONMan, it is the protocol implementation that uses
the high-level primitives invoked by the management appli-
cations and out-of-band communication with other protocols
to determine these. This, in effect, puts the responsibility for
detailed understanding of protocol operation on the protocol
implementor. Since the protocol implementer requires this
knowledge in any event, this seems to be a smarter place-
ment of functionality.

2. CONMan ARCHITECTURE
Our architecture consists of devices (routers, switches, hosts,

etc.) and one or more network managers (NMs). A NM is
a software entity that resides on one of the network devices
and manages some or all of them. Each device has a glob-
ally unique, topology independent identifier (device-id) that
can carry cryptographic meaning (for example, by hashing a
public key). Each device also has an internal management
agent (MA) that is responsible for the device’s participation
in the management plane. While the rest of the paper talks
about a device performing management tasks, in actuality it
is the device’s MA that is responsible for these. All protocols
and applications in devices are modeled as protocol modules.
Each protocol module has a name as well as an identifier that
is unique within the device. Examples of module names in-
clude “IPv4”, “RFC791”, or even a URI (which might be use-
ful for naming applications). Thus, modules can be uniquely
referred to using tuples of the form <module name, module-
id, device-id>.

2.1 Management Channel
As mentioned in section 1, a number of flaws afflict the way

we manage networks. One such flaw is that the existing man-
agement plane depends on the data plane [6,14]. For example,
SNMP operates on top of the data plane and hence, manage-
ment protocols rely on the correct operation of the very thing
they are supposed to manage. In recent work, Greenberg
et. al. [14] discuss the implications of this dependency loop
and propose a technique for achieving a self-bootstrapping,
operationally independent management plane. While such
management plane independence can be established using a
few other approaches (for instance, a more generalized and
self-bootstrapping version of the separate management net-
work that is used by some large ISPs), we agree with their
basic hypothesis and in this paper assume the presence of a
management channel. This management channel should be
independent of the data-plane, should not require any pre-
configuration and should allow devices in the network to com-
municate with the NM. However, we do not dictate whether
the management channel operates or does not operate over
the same physical links as used by the data-plane.

2.2 Overview
Our approach derives from two key observations: First, the

main purpose of a network is to provide paths between certain
applications on certain hosts while preventing certain other

applications and hosts from using those paths.1 Second, we
observe that most data-plane protocols have some basic char-
acteristics whose knowledge should suffice for configuring the
aforementioned paths. For instance, most protocols have the
ability to connect to certain other protocols, to switch pack-
ets, filter packets, queue packets and so on. We believe that it
is these basic characteristics that should serve as the narrow
waist for Internet’s management plane. Consequently, the
management plane only maps the high-level communication
goal into the path through the network (i.e. which proto-
cols should connected and how) and the protocols themselves
figure out the low-level parameters that they need to operate.

In our proposal, we try to capture these basic characteris-
tics using a generic abstraction called the Module Abstraction
– all protocol modules in CONMan self-describe themselves
using this abstraction. To this effect, we model every proto-
col module as a node with connections to other nodes, certain
generic switching capabilities, certain generic filtering capa-
bilities, certain performance and security characteristics, and
certain dependencies (figure 1). Thus, the abstraction de-
scribes what the protocol is capable of (potential) and what
it depends on (dependencies). Further, the module can be
configured to operate in a certain fashion (actual) by manip-
ulating its abstraction using the CONMan primitives. Such
modeling of protocols using a generic abstraction decouples
the data and the management plane so that they can evolve
independently of each other.

Each device in the network uses the management channel
to inform the NM of its physical connectivity, all modules
that it contains, and their respective module abstractions.
The module abstraction allows the NM to understand exactly
how packets may flow (or not flow) through a given module.
This provides the NM with the real picture of the network -
it does not need to reverse engineer numerous low-level and
non-intuitive parameters.

Given the network’s real picture and the high-level goals
and policies that need to be satisfied, the NM builds a graph
of modules in various devices that satisfy these. This graph
captures how each module should operate. The NM can then
use the management channel to invoke the appropriate CON-
Man primitives and configure the modules accordingly. Thus,
the NM can configure the entire network from the ground
up with (almost) no protocol-specific knowledge. We believe
that such as approach would ease network configuration and
in general, ameliorate a lot of the problems afflicting network
management today.

2.3 Module Abstraction
There are two kinds of modules: data plane modules and

control plane modules. Examples of data plane modules (or
data modules for short) include TCP, IP, Ethernet, while
examples of control plane modules (or control modules for
short) include routing algorithms and negotiation algorithms
like IPSec’s IKE or PPP’s LCP and NCPs.

Data modules connect to each other to carry data pack-
ets. These connections are called pipes. Control modules
also connect to data modules using pipes for delivery ser-
vices. Data modules may require the use of a control module;
we refer to this as a dependency. For instance, in Figure 1,
the IPsec module has a (data plane) pipe to IP, and has a

1Of course, this is a simplification since the paths must per-
form adequately, have certain security properties, etc. but
the basic argument still applies.

IP

ETH

IKE

UDPIP- Sec

Up-Pipe

Down-Pipe

Performance

Filtering Switching

Security

Module
Dependency

Figure 1: Modules, pipes, and dependencies form a
graph that describes the operation of a device (in
particular) and the network (in general). The figure
on the right denotes the major components of the
module abstraction.

dependency on IKE, which in turn has a pipe to UDP. Ulti-
mately, modules, pipes, and dependencies form a graph that
in some sense describes the operation of the network. The
data modules self-describe themselves using the abstraction
shown on the right in figure 1. Below we briefly comment on
the components of this abstraction:

2.3.1 Pipes
Up and Down pipes connect modules to other modules

above and below themselves in the same device. Such pipes
are point-to-point only. Point-to-point pipes are modeled as
unidirectional (and usually come in pairs), though for simplic-
ity we present them as bidirectional. The actual network links
are modeled as Physical pipes and can be point-to-point or
broadcast. Hence, the path between two modules in two dif-
ferent devices is the sequence of up-down and physical pipes
through which packets travel between the modules. Of these,
the NM can create up-down pipes. It cannot create physical
pipes, but can discover and enable them. Also, pipes have
identifiers which the NM can use to refer to them.

Modules are associated with a list of connectable-modules.
For example, the connectable-modules for the down pipe of a
particular TCP module might be restricted to {IPv4, IPv6}
implying that the TCP implementation in question can only
operate on top of (have a down pipe to) IPv4 or IPv6.

While modules pass packets between up and down pipes,
the end goal is to be able to communicate with modules in
other devices. To capture this, each pipe is associated with
one or more peers modules. For example, the peer module
for a down-pipe of a TCP module would be the remote TCP
module to which the down-pipe ultimately leads to. Also,
each module is associated with a set of peerable-modules. For
example, the peerable-modules for a TCP module are {TCP}
while the peerable-modules for a HTTP-server module are
{HTTP-client}.

In effect, the notion of pipes abstracts away the details that
protocols need for basic operation. Given a connectivity goal,
the NM simply builds the corresponding path by creating
pipes while the modules determine the low-level parameters.
For instance, creating a down pipe from an IP module to an
ETH module might be a part of establishing IP connectivity
between two hosts and may cause the IP module to communi-
cate with its peer IP module through the management chan-
nel to exchange the MAC address of the ETH module below
it.2 Apart from communication with peer modules, modules

2Note that ARP achieves this in the existing set-up and even

may need more help in determining the low-level parameters
– they express these as dependencies that need to be satisfied
before the pipe can be created.

2.3.2 Switch
Switches capture the ability of modules to pass packets be-

tween up, down and physical pipes. A switch can be unicast
or multicast and can have a small number of basic configu-
rations: packets pass between down and up pipes ([down ⇒
up] and [up ⇒ down] switching, e.g. TCP module), [down ⇒
down] switching (e.g. IP module with forwarding enabled),
[up ⇒ up] switching (e.g. IP module with loopback function-
ality), [up ⇒ phy], [phy ⇒ up] and [phy ⇒ phy] switching
(eg. Ethernet module). A module advertises its switching
capabilities. The NM uses this and the information about
the connectable-modules of each module to build a potential
connectivity graph for the network. As we show in section 3.3,
this allows the NM to determine what paths are and are not
possible. For instance, the ETH module in a Layer-2 switch-
ing device advertises that it can do [phy ⇒ phy] switching
and so, can be used by itself along a path between two de-
vices that the NM is trying to connect. As a contrast, the
ETH module in a router would not have [phy ⇒ phy] switch-
ing capability and so, the NM must use it in conjunction with
the IP module on the router.

When incorporating a module as part of a path, the NM
must direct the module as to how packets must be switched
between the pipes just created – this is the actual switch con-
figuration. Of course, it is not necessary that there be a one-
to-one mapping between the pipes. Instead, incoming packets
on a pipe may be switched to one of many other pipes and
hence, switches may have state which conditions how pack-
ets are switched. This switching state can be determined by
the module through interaction with its peer module. For in-
stance, the NM, as part of establishing an IP-IP tunnel, may
direct an IP module to switch packets between up-pipe P1
(to another IP module) and down-pipe P2 (to the underly-
ing ETH module). The creation of pipe P1 and P2 and the
actual switch rule causes the three modules to interact with
their peers and determine the parameters needed for a low-
level routing rule such as ip route to 204.9.169.1 dev eth1

nexthop 204.9.168.1. Alternatively, it also possible that the
switching state is generated by control protocols and this is
exposed as part of the module abstraction. Section 2.6 dis-
cusses these alternatives.

2.3.3 Filters
The filter abstraction allows modules to describe whether

and how they can filter packets. Filter rules are described in
terms of other abstracted components: pipes, devices, mod-
ules or even module types. Note that in configuring a filter,
the NM only needs to specify the component names or iden-
tifiers that need to be filtered - it is the protocol implementa-
tion that is responsible for determining the relevant protocol
fields (such as addresses and port numbers). This process
and other related issues are detailed in section 2.5.

2.3.4 Performance
Unlike the components above, which are quite specific in

nature, performance is harder to specify and manipulate. In
our current abstraction, performance is reported in terms of

with CONMan, the IP module could just as well rely on ARP
for the peer’s MAC address.

Name Caller Callee Description

showPotential NM MA of device Sec. 2.4
showActual NM MA of device Sec. 2.4

create, delete NM MA of device Sec. 2.4
conveyMessage Module Module Sec. 2.4

(Source) (Destination)
listFieldsAndValues Module Module Sec. 2.5

(Inspecting) (Target)

Table 1: Functions that are part of the CONMan
architecture

six generic performance metrics - delay, jitter, bandwidth,
loss-rate, error-rate, and ordering. These encompass most of
the IP performance metrics proposed by IETF [36]; though
in our architecture the metrics can be used by any module
that has the ability to describe its performance, not just the
IP module. Additional metrics, such as power, can be added
as needed.

Modules and pipes report on their performance with these
metrics. They can also advertise the ability to offer per-
formance trade-offs in terms of these metrics. For exam-
ple, many MAC layer protocols offer optional error correcting
checksums which represent a trade-off between error-rate on
one hand and bandwidth and delay on the other. Instead
of exposing the low-level options and associated parameters,
modules specify the trade-offs they can enforce. Just as with
filters, the module might allow these trade-offs to be applied
to specific traffic classes as specified by the names of mod-
ules or pipes and this too is advertised. However, more work
is needed towards the way these performance trade-offs can
be quantified and what they can capture. Further, protocols
modules may have other features such as performance en-
forcement and security capabilities. Due to space constraints,
this paper does not delve into these abstraction components
– we refer the interested reader to [4].

2.4 Network Manager (NM)
The management channel allows devices in the network to

communicate with the NM. Each device uses this to inform
the NM of its physical connectivity, thus allowing the NM to
determine the network topology. Beyond this, given the net-
work potential, the NM can achieve high level network config-
uration goals simply by creating and deleting pipes and mod-
ule components. The following primitives capture the NM’s
interaction with the devices in the network as part of net-
work configuration. Table 1 shows these and other CONMan
primitives offered by the NM and the modules themselves.3

(a). showPotential () allows the NM to determine a device’s
capabilities. The device returns a list of modules with their
abstractions. The type of information returned for each mod-
ule is shown in table 2.
(b). showActual () allows the NM to determine the state of
modules in a device. The state of each module includes state
for all the pipes, the switch, filters, performance and secu-
rity enforcement elements. Also returned is a report on the
performance parameters. In effect, the NM is presented with
the network reality - a module graph and associated infor-
mation which allows it to understand how the device (and
hence, the network) is or should be behaving. By contrast,
in the current set up, the NM is presented with all kinds of

3We do not give details of the CONMan API. However, we
do show the use of these primitives in section 3.

Parameter What is advertised?

Name <A,x,y>

Up and Information about up and down pipes such as
Down pipes connectable-modules, dependencies etc.
Physical Information about the physical pipes (if any)
pipes connected to the module
Peerable-Mod. Set of modules that can be peers of this module
Filter Classification based on which filtering can be done:

what can be filtered and where it can be filtered
Switch Possible switching between up, down and physical

pipes; Is the switch state generated locally
or needs to be provided externally

Performance Performance metrics that are reported for the
Reporting module’s pipes, filters, switch etc.
Performance Traffic classes to which performance trade-offs
Trade-Offs can be applied and the possible trade-offs
Others Performance Enforcement and Security

Capabilities (not explained)

Table 2: Module abstraction; showPotential () describes

each module using this abstraction

MIB objects from which it must deduce network behavior.
(c). create () and delete () allow the NM to create and delete
pipes, filter-rules, switch-rules and performance enforcement
state (queuing structures or service classes). The showPoten-
tial () function provides the NM with all the information it
needs to create and delete components.

The NM does not need protocol specific knowledge to use
these primitives. For instance, it can create up-down pipes
simply by satisfying their dependencies and invoking the cre-
ate function. For instance, consider a NM creating a pipe
between an IP module and an underlying GRE module. In
terms of today’s configuration, this amounts to creating a new
GRE tunnel which requires a number of low-level parameters
to be specified. With CONMan, it is the GRE module that
coordinates these parameters with its peer GRE module. For
instance, the modules may exchange the tunnel key values
to be used, so the NM does not need to know the notion of
keys. Since the management channel allows the modules to
communicate only with the NM, the NM provides:
(d). conveyMessage () allows modules to convey messages
to each other through the NM (see detailed example in sec-
tion 3.2).

2.5 Hiding Complexity
Much of the reduction in management plane complexity

comes from the fact that the NM operates in terms of the
abstract components, while the protocol modules themselves
translate these into concrete protocol objects.

For example, the NM can simply ask a module to filter
packets between two given modules - “drop packets from
module <IP,B,y> and going to <FOO,C,z>” (where FOO
is an application module with up-down pipes to TCP). The
protocol module itself is responsible for determining the ac-
tual protocol fields. For example, given the high-level specifi-
cation above, the inspecting module determines that it needs
to “drop packets from source address 128.19.2.3 and destined
to address 20.3.4.5, port 592”. This ensures that the NM,
while being opaque to protocol-specific fields, can trace the
paths between applications and hence, can reason about its
policies regarding a particular application-module.

In some cases, the inspecting module may know what fields
and field values to check for on its own. But in other cases, it
may not. To address this, CONMan modules provide a list-
FieldsAndValues () function. This allows other modules to
query the target module for the low-level fields and field val-

ues corresponding to the identifiers associated with its com-
ponents. Hence, in the example above, the inspecting mod-
ule can send queries to the target modules <IP,B,y> and
<FOO,C,z> (via the NM), as well as to the modules below
them, and ask those modules what field values it should be
checking for.

Such an approach also allows for maintenance of network
state dependencies – the need to update the dependent state
in different modules when some low-level value in a given
module changes. To ensure this, the NM tracks the dependen-
cies between component identifiers (that have been resolved)
and opaque low-level fields. Also, the NM installs triggers in
the target modules telling them to inform the NM when their
low-level values change.

However, not all detailed protocol values can be or should
be determined by the protocols themselves. For instance, it
appears difficult to expect IP modules to chat among them-
selves and assign IP addresses [12]. This is best done by
the NM having explicit knowledge of how to assign IP ad-
dresses (as DHCP servers do today). Similarly, tasks like
regular expression matching in HTML do not seem amenable
to abstraction and should be done by specialized NMs such
as Intrusion Detection Systems. Further, there are cases such
as P2P protocols where protocol designers don’t want to pro-
vide the protocol values since they don’t want to be filtered.
Thus, there are scenarios where the NM will have to deal with
protocol-specific details.

2.6 Control Modules
Many data-plane protocols rely on externally generated

state for their operation. Today, this may be provided man-
ually as part of the protocol configuration. Alternatively,
control-plane protocols can generate some of the state re-
quired for data plane operation. For example, routing proto-
cols generate the IP routing table. Similarly, LCP generates
PPP configuration state.

In CONMan, data modules can generate this state by in-
teracting with their peer modules based on the create/delete
primitives invoked by the NM. While this follows from the
general CONMan philosophy, there are cases where such an
approach poses challenges regarding the scalability, robust-
ness and responsiveness of the network.

Alternatively, even in CONMan, we may rely on control
protocols for the low-level state. However, control modules
do not fit into the generic module abstraction presented ear-
lier. Instead, they advertise their ability to provide the state
for certain data modules and the NM simply uses them. For
example, the PPP module could advertise that it has a de-
pendency on external state (say, X) and the LCP module
advertises that it can satisfy dependency X. While relying on
control modules suffices in some cases, there are also cases
when the control module itself requires quite a bit of config-
uration. Also, the fact that the NM does not generate this
state hinders its ability to understand related network oper-
ations and gets in the way of root-cause analysis. Finally, er-
rors in control module operation cannot always be debugged
by the NM. For example, the NM does not understand BGP
and hence, cannot be expected to debug route flaps and the
resulting prefix dampening.

One way to address some of these problems is to let the
NM perform the function of the control protocols whereby it
uses some high-level goal to generate the required state itself.
Of course, this implies that the state generation logic must
be embedded into the NM. For example, the 4D research [14]

Configure

connectivity ..

High-level
Human Manager

Configure

path ..

Low-level
NM

Protocol state
(ideal scenario)

Device-level

(current implementation)

(shown in

fig 7(b))

CONMan
NM scriptgoal goal

scripts

Protocol

Module

Figure 2: CONMan workflow: from high-level goals
to device configuration

argues for the replacement of routing protocols, with the NM
using its knowledge of the topology to set the switch state for
IP modules in devices across the network. A characterization
of the scenarios in which state should be generated by the
protocols themselves against the ones in which existing con-
trol protocols should be used against the ones in which the
control protocols should be replaced is an important question
in the context of CONMan. However, in order to explore the
limits of our proposal (i.e. what can be captured and what
cannot be captured), this paper (rather naively) ignores the
existence of control protocols. Hence, our implementation,
for the most part, involves the protocol modules generating
the low-level details.

3. IMPLEMENTATION
In CONMan, human managers don’t write device-level scri-

-pts; instead, they specify high-level configuration goals and
it is the NM and the protocol modules that map these to
the required low-level configuration. This process is shown in
figure 2 and is detailed in various parts of this section.

We implemented four protocols (GRE, MPLS, IP, ETH)
as CONMan modules through user-level wrappers around
the corresponding existing protocol implementation in Linux
(kernel 2.6.14). We also implemented a NM that under-
stands the CONMan abstraction and implements the CON-
Man NM primitives. In section 3.2, we use the establishment
of GRE tunnels as an example to detail our GRE module
implementation. This, in effect, describes the mapping of a
low-level goal to device-level scripts (see figure 2). In sec-
tion 3.3, we detail how our NM implementation can map a
human-specified high-level goal to low-level goals by describ-
ing the configuration of provider-provisioned Virtual Private
Networks (VPNs) with CONMan.

3.1 Management Channel
The testbed used for the examples described below com-

prised of Linux-based PCs operating as end-hosts and routers
with Ethernet as the connecting medium. All the PCs were
equipped with a separate management NIC and connected to
a separate network that served as the management channel
for our experiments. Communication between the protocol
modules and the NM was done through UDP-IP over this
management channel. Note that this is not ideal since the
management channel had to be pre-configured; however, this
can avoided by using techniques proposed in [14].

3.2 GRE tunneling
GRE is an encapsulation protocol that can be used to en-

capsulate a network protocol (payload protocol) in another
network protocol (delivery protocol). We focus on GRE with
IPv4 as the underlying delivery protocol - GRE-IP . Conse-
quently, each tunnel is characterized by a source and a des-
tination IP address. Besides this, GRE also involves key’ing
of tunnels - the source and the destination must agree on
the key for the tunnel to operate correctly. Configuring such
a GRE-IP tunnel today requires the management plane to

Parameter Value

i Name <GRE,device-id,module-id>

ii Up.Con-Modules IPv4
(Connectable-Modules)

iii Up.Dependencies Performance Trade-offs to be spec-
ified

iv Down.Con-Modules IPv4
v Down.Dependencies None
vi Physical pipes None
vii Peerable-Mod. GRE
viii Filter Nil
ix Switch [Up ⇒ Down],[Down ⇒ Up]
x Perf Reporting Number of recieved and transmit-

ted bytes on each up pipe
xi Perf Trade-Offs {[Jitter, Delay] Vs [In-order

delivery] | Up-pipe}
{[Loss-Rate] Vs [Error-Rate] | Up-
pipe}

xii Perf Enforcement Nil
xiii Security Nil

Table 3: Abstraction exposed by our GRE implementa-

tion

provide the IP addresses of the tunnel end-points, the key
values, whether to use sequence numbers or not (sequence
numbers help with in-order delivery of tunneled packets) and
other protocol specific details such as tunnel TTL, the TOS
field for tunneled packets, whether to use checksums or not,
and whether to use path-mtu-discovery or not.

We have implemented a GRE module conforming to the
CONMan architecture. As mentioned earlier, our implemen-
tation is based on the Linux GRE kernel module with a user-
level wrapper that confines the protocol-specific details to the
implementation and exposes a generic abstraction to the NM.
This abstraction is shown in table 3 and some of the entries
are explained below:
ii). Ideally, GRE can carry any payload protocol and hence,
there should not be any restriction on the modules that the
GRE module can connect to using an up pipe. However,
most implementations restrict the payload protocol to a well
defined list of protocols - with our underlying Linux imple-
mentation, the only payload protocol possible is IPv4.
iii). To create an up pipe, the NM needs to specify the per-
formance trade-offs (see k below) that apply to pipe.
iv,v). The module is restricted to having IPv4 as the tunnel-
ing protocol with no explicit dependencies.
ix). The module can switch packets between an up-pipe and
a down-pipe. The switching state is generated by the module
on its own.
x). The underlying Linux implementation provides limited
performance reporting: the number of bytes transmitted and
received on each up pipe.
xi). The module offers the following trade-offs: For a given
up-pipe, it can trade-off delay and jitter for in-order delivery.
The fact that this is attained by enabling sequence numbers
whose use needs to be coordinated with the peer GRE module
is not exposed. Similarly, the module can trade-off loss-rate
for error-rate for a specified up-pipe through the use of check-
sums.

We now describe how a NM, based on this abstraction, can
use CONMan primitives to achieve the following low-level
goal:

Configure the path between the IP modules <IP,A,a>

and <IP,B,a’> labeled as (1) through (12) in figure 3.

Note that this is equivalent to creating a GRE-IP tunnel
between devices A and B in the existing set-up. Also, as men-

Device
A

Device
B

Device C
(Layer-2 Switch)

Device D
(Router)

Peers denoted by

GRE (b)

IP (c)

ETH (d)

(1)

(2)

(3)

(4)

IP (a)

GRE

IP (c’)

ETH (d’)

(10)

(11)

(12)

(b’)

IP (a’)

ETH (e)

IP (g)

(5)

ETH (f) ETH (h)

(6) (7)

(8) (9)

Figure 3: GRE-IP tunnel between devices A and B -
the NM needs to build the path labeled from (1) to
(12).

tioned earlier, the human manager in CONMan is not
aware of such low-level goals or the notion of pipes
and switches or the CONMan script shown below. In-
stead, he/she specifies a high-level goal and the next section
describes how our NM implementation maps this high-level
goal to the aforementioned low-level goal. This mapping pro-
cess informs the NM which modules along the path are peers
of each other – in figure 3, the dashed line between pipes la-
belled (1) and (12) indicates that modules a and a’ are peer
modules for these pipes (as are modules b and b’).

We also assume that the NM has, as part of the mapping
process, invoked the showPotential primitive at these devices
and hence, is aware of the CONMan abstraction for all the
modules involved; for instance, table 3 shows the abstraction
exposed by the module <GRE-IP,A,b> (or b for short). The
other modules have similar abstractions that are not shown
here. This equips the NM with all the information it needs to
create the appropriate pipes and switch state. As a contrast,
some manual must be read (either by the implementor of the
management application or the system administrator) to gain
the equivalent knowledge while configuring GRE-IP tunnels
today. With this information at hand, the NM can build the
segment of the path in device A (i.e. a ⇒ b ⇒ c ⇒ d) using
the following script. A similar script needs to be invoked to
build the rest of the path.
(1). P1 = create (pipe, <IP,A,a>, <GRE,A,b>,

<IP,B,a’>, <GRE,B,b’>,
trade-off: order delivery,
trade-off: error-rate)

(2). P2 = create (pipe, <GRE,A,b>, <IP,A,c>,
<GRE,B,b’>, <IP,B,c’>, None)

(3). create (switch, <GRE,A,b>, P1, P2)
(4). P3 = create (pipe, <IP,A,c>, <ETH,A,d>,

<IP,D,g>, <ETH,D,f>, None)
(5). create (switch, <IP,A,c>, P2, P3)
(6). create (switch, <ETH,A,d>, P3, P4)

In the script, command (1) creates pipe P1 between the
IP module a and the underlying GRE module b. The fourth
and fifth arguments in the command specify the peer IP (a’)
and GRE (b’) modules for the pipe being created. Further,
the NM satisfies the dependency for creating an up pipe for
a GRE module by specifying that it desires in-order deliv-
ery of packets and low error-rate. These choices would be
based on high-level performance goals specified by the hu-
man manager. Similarly, commands (2) and (4) create pipes
P2 and P3. Through command (3) the NM specifies that
GRE module b should switch between pipes P1 and P2. Sim-
ilarly, commands (5) and (6) configure the switch in modules
c and d respectively.

The simple and structured process described above is all
the configuration that the NM needs to do. It is the protocols

NM

conveyMessage (<GRE,B,b’>, GRE-specific parameters)

MA
Device A

MA
Device B

listFieldsAndValues(<IP, B, c’>)

Caller Callee
functionName (parameters)

listFieldsAndValues(<IP, A, c>)

Packets over data plane paths

conveyMessage (<GRE,A,b>, GRE-specific parameters)

Key Values,

 and other parameters
 Seq No. usage

Associated
Command

Command
 (1)

IP-address
of tunnel
end-points

Command
(2)

listFieldsAndValues(<IP, D, g>)

listFieldsAndValues(<IP, A, c>)

MA
Device D

MA
Device A

IP-address
of next-hop

Command
(4)

Figure 4: GRE-IP Tunnel establishment between de-
vices A and B - the management plane is simplified
by ensuring that protocol complexity is restricted to
protocol implementation.

that incorporate the complexity of determining the low-level
parameters. Each module, based on the commands invoked
by the NM, interacts with its peer module through the man-
agement channel to determine the required protocol specific
parameters – this process is briefly described below and illus-
trated in figure 4.

On invocation of command (1) and the corresponding com-
mand on device B, modules b and b’ use the conveyMessage
primitive to exchange the GRE-specific parameters needed
for connectivity between them. These include the GRE key
values in each direction, the use of sequence numbers, etc.
Some of these parameters are based on the trade-off deci-
sions specified by the NM. For example, the NM, as part of
command (1), opts for in-order delivery. This causes mod-
ules b and b’ to negotiate the use of sequence numbers for the
GRE tunnel between them. Similarly, on invocation of com-
mand (2), IP modules c and c’ figure out the IP addresses of
the tunnel end-points by determining each other’s IP address
through the use of listFieldsAndValues. Command (3) causes
the GRE module b to generate the actual Linux command to
configure the GRE tunnel, the parameters for this command
already having been determined:
ip tunnel add name gre-P1-P2 mode gre remote 204.9.

169.1 local 204.9.168.1 ikey 1001 okey 2001 icsum

ocsum iseq oseq

Similarly, command (4) causes IP modules c and g to ex-
change their IP addresses while command (5) causes IP mod-
ule c to generate the low-level routing rule in device A such
that packets to device B are routed through D:
ip route add to 204.9.169.1 via 204.9.168.2 dev eth2

3.3 Virtual Private Networks (VPNs)
VPNs are commonly used to connect geographically dis-

tributed enterprise sites across the Internet while offering se-
curity and performance comparable to connecting the sites
across a dedicated network. As the name suggests, a “provider-
provisioned VPN” involves the ISP that provides connectiv-
ity to the enterprise sites configuring and maintaining the
VPN [3]. We implemented a NM that can be used for such
VPN configuration. In the interest of brevity, the discussion
below focusses on the configuration sub-task of an ISP try-
ing to ensure that traffic between two sites S1 and S2 of a
customer C1 is isolated from other traffic. A complete VPN
configuration involves doing the same for all pairs of sites of

Router A

Router B

Router C

ISP

Customer 1�
Site 1

Router D

Customer 1�
Site 2

Router E

(a)

Router A Router B Router C

Eth (a) Eth (b)

IP (h)

Eth (c) Eth (d)

IP (i)

Eth (e) Eth (f)

IP (j)

IP (k) IP (g) GRE (l) GRE (n)

GRE (m)
MPLS (o) MPLS(q)

MPLS(p)

Customer 1
Site 1

Router D

Customer 1
Site 2

Router E

(b)

Figure 5: Experimental set-up emulating an ISP
and customer sites for the VPN configuration. Fig-
ure 5(b) shows the network map and the modules
seen by the NM prior to configuration.

each customer needing VPN support. Figure 5(a) shows the
relevant part of the set-up in our lab with five Linux hosts (la-
beled A-E) serving as two of the ISP’s edge routers in different
POPs (A and C), the ISP’s core router (B) and customer C1’s
routers at site S1 (D) and site S2 (E). Specifically, the NM
aims to achieve the following high-level goal specified by
the human network manager:

Configure connectivity between sites S1 and S2 of cus-
tomer C1.

This is equivalent to the following high-level goal in CON-
Man terminology:

Configure connectivity between the customer-facing in-
terfaces <ETH,A,a> and <ETH,C,f> (see figure 5(b))
for traffic between C1-S1 and C1-S2.

Ideally, C1-S1 and C1-S2 should be high-level identifiers
that get mapped to the IP prefixes for the two sites through
communication between the NM of the ISP and the NM of
customer C1. However, this paper is restricted to manage-
ment in a single domain and hence, we provide the NM with
this information. Second, we assume that the NM has al-
ready assigned IP addresses to the IP modules. Finally, the
high-level goal above is imprecise since it does not specify
whether traffic between C1-S1 and C1-S2 ought to be iso-
lated or not. Today, this choice is dictated by whether C1-S1
and C1-S2 are public or private IP prefixes and this applies
to our implementation too. Consequently, the NM is aware
of the notion of public and private addresses. As explained
later in the section, this knowledge is used by the NM in the
way it finds paths through the network. We admit that this is
case of the NM using protocol-specific information. As men-
tioned earlier, while it is possible to abstract IP addresses,
their ubiquity and scarcity combined with the impact of ad-
dress assignment on routing scalability suggests that it makes
engineering sense to let the NM be aware of them and this is
what we chose for our implementation.

3.3.1 NM Implementation
All devices in the ISP’s network (routers A, B, C) inform

the NM of their physical connectivity through the manage-
ment channel. Given the aforementioned goal, our NM im-

Module Connectivity and Switching

<ETH,A,a> Up: {IP, MPLS}, Down: None, Phy: to C1-S1,
Switching: [Phy ⇒ Up],[Up ⇒ Phy]

<ETH,A,b> Up: {IP, MPLS}, Down: None, Phy: to
<ETH,B,c>, Switching: [Phy ⇒ Up],[Up ⇒ Phy]

<MPLS,A,o> Up: {IP}, Down: {ETH}, Phy: None, Switching:
[Down ⇒ Up],[Up ⇒ Down],[Down ⇒ Down]

<IP,A,g> Up: {IP, GRE}, Down: {IP, GRE, MPLS,
ETH}, Phy: None, Switching:[Down ⇒ Up],[Up
⇒ Down],[Down ⇒ Down],[Up ⇒ Up]

<IP,A,h> Up: {IP, GRE}, Down: {IP, GRE, MPLS,
ETH}, Phy: None, Switching:[Down ⇒ Up],[Up
⇒ Down],[Down ⇒ Down],[Up ⇒ Up]

<GRE,A,l> Up: {IP}, Down: {IP}, Phy: None, Switching:
[Down ⇒ Up],[Up ⇒ Down]

Table 4: Connectivity and switching capabilities of the mod-

ules in device A.

IP (h)

ETH (a)

IP (g)

MPLS (o)

ETH (b)

GRE (l)

LEGEND

A

B

B

A

is an
up-pipe for B &
down-pipe for A

A
Module A has

[down down]
switching

A
Module A has
[up up]
switching

Physical pipe

Figure 6: Potential Connectivity sub-graph for device
A.

plementation invokes showPotential at these devices to deter-
mine the abstraction for the modules in these devices. Thus,
the NM has a network map akin to the one shown in fig-
ure 5(b). This also provides the NM with information about
how the modules can be connected to each other and how they
can switch packets (shown in table 4). Based on this, the NM
constructs a graph of potential connectivity with modules as
“nodes” and up-down and physical pipes as “edges”. Figure 6
shows the device A part of this graph.

The NM also includes a path-finder component that can
find all paths between any two modules in such a graph. To
do so, the component traverses the graph in a depth-first
fashion while avoiding cycles. Further, we made two modifi-
cations to the traversal: First, the NM knows that a module
encapsulates packets in a protocol header when using [up ⇒
down] and [up ⇒ phy] switching; for example an ETH mod-
ule adds an Ethernet header to packets that it sends out onto
a physical pipe. Similarly, a module decapsulates packets
when using [down ⇒ up] and [phy ⇒ up] switching. A mod-
ule processes the packet header but doesn’t remove or add
headers when using [phy ⇒ phy], [down ⇒ down] and [up ⇒
up] switching. The traversal keeps track of such encapsula-
tion and decapsulation by the modules along the path and
hence, restricts itself to paths that are “sane” in the protocol
sense. For instance, assuming that the path shown in fig-
ure 7(a) is the path already traversed, this rule implies that
the next module should be able to decapsulate or process an
IP header and hence, the only possible next module is the IP
module in device B, <IP,B,i>. This also allows the NM to
determine modules that are peers of each other; in the path
above, <ETH,B,c> decapsulates the encapsulation put in by
<ETH,A,b> and hence, they are peers.

Second, the NM is aware of the notion of public and private
addresses and the traversal uses this information to rule out
invalid paths. For instance, the path shown in figure 7(b) is
an invalid path as it makes IP modules g and i peers even

ETH (a) ETH (c)ETH (b)

IP (g) ?

ETH (a) ETH (c) ETH (b)

IP (g) IP (i)

(a) (b)

Router A Router B Router A Router B

Peers denoted by

Figure 7: Options explored by the NM’s path finder.

though g is assigned a private address while i is assigned a
public address.

For the given goal, the NM directs the path-finder to find
paths between modules <ETH,A,a> and <ETH,C,f>. We
were expecting the NM to generate the following three paths
(we only show the module-id for each module along the path):
1). Using IP-IP tunnel: a, g, h, b, c, i, d, e, j, k, f.
2). Using GRE-IP tunnel: a, g, l, h, b, c, i, d, e, j, n, k, f.
3). Using MPLS: a, g, o, b, c, p, d, e, q, k, f.
However, the NM generated six more paths: IP-IP over MPLS,
GRE-IP over MPLS, IP-IP over MPLS only between A and
B, IP-IP over MPLS only between B and C, GRE-IP over
MPLS only between A and B, and GRE-IP over MPLS only
between B and C.4 While this suggests that we should use
more aggressive pruning rules for our traversal, it also shows
that the NM can determine the various ways of achieving
a high-level goal given the capabilities of the devices in the
network. As a contrast, today it is the human managing the
network that relies on RFCs and device manuals to determine
the options available.

The NM now needs to be able to choose amongst the paths
based on high-level directives and/or other metrics. We im-
plemented a very simple algorithm that minimizes the total
number of pipes instantiated in the routers. This is, in some
sense, akin to minimizing the amount of state on the routers
and the communication overhead on the NM. For the scenario
in question, the MPLS-based path and the IP-IP tunnel are
the best options (our NM implementation prefers the MPLS-
based path because the MPLS abstraction mentions that it
offers good forwarding bandwidth). We can also think of more
sophisticated metrics such as the performance capabilities of
the modules along the path or satisfying security constraints.
Moreover, while the ability to choose amongst possible config-
urations without protocol-specific knowledge is critical to the
CONMan argument, this is an area that we haven’t explored
in any detail and is an avenue for future work.

As described in the previous section, once a path is cho-
sen, the NM automatically generates the script of CONMan
primitives needed to create the path.

3.3.2 Comparing to the status quo
For each path in the example above, we directed the NM to

generate the CONMan primitives needed to create the path.
These primitives were invoked at the modules in the devices
(routers A, B and C) to configure them. Since the modules
are implemented as wrappers around existing protocol im-
plementations, they in turn generate the device-level scripts
from the CONMan primitives. It is the management plane
that needs to generate these device-level scripts with today’s

4Typically, ISPs use MPLS-over-MPLS [33] or MPLS-over-
GRE [40] for VPN support. Both these configurations are
not supported by the Linux hosts used for our experiments
and hence, the NM cannot propose these paths.

setup. Below we compare the configurations for two of these
paths: the GRE-IP and the MPLS path.

Figure 8(a) shows a Linux configuration snippet at router
A that establishes a GRE tunnel to router C and carries traf-
fic between sites S1 and S2 of customer C1. As a contrast,
the desired module connectivity and the CONMan commands
invoked by the NM at router A to achieve this are shown in
figure 8(b). These commands were explained in section 3.2.
Similarly, figures 9 shows the Linux and CONMan configura-
tion snippet needed to establish the MPLS path.

Note that while our testbed capabilities constrained us
to Layer-3 VPNs, some ISPs establish VPN connectivity at
Layer-2. This is typically achieved using Ethernet-over-MPLS
or PPP-over-L2TP. Recently, VLAN tunneling has been pro-
posed as another means of doing so [41] and as the use of
Ethernet in wide-area networks increases, this could be a
future VPN technology. Consequently, we also present the
Cisco CatOS and CONMan configuration snippet to estab-
lish a VLAN tunnel in figure 10.

The figures show that configuration today requires the man-
agement plane to specify a lot of low-level details. As a result,
it is difficult to build management applications that
automatically generate these configurations. Instead,
many management applications provide a better user inter-
face and/or some syntactic sugar to the human manager (this
is useful in itself). Even with these applications, the human
manager still needs to provide the specifics and this leaves the
door open for many kinds of errors; for instance, some error
possibilities in figure 8(a) include not configuring device A as
a router (command 4), misconfiguring the underlying routing
so that traffic from the wrong customer goes into a tunnel
or the tunneled traffic is delivered to the wrong customer at
the other end (commands 5-9), configuring the tunnel end
points with the wrong key values (command 2), using tun-
nel end point IP addresses that are wrong or do not have IP
connectivity between them (command 2), etc.

The CONMan scripts do not appear any-less-fragile. How-
ever, the human manager doesn’t need to see, much
less write, these scripts. All the identifiers in the script,
such as the module and device identifiers, are exposed by
the devices themselves and learnt by the NM through show-
Potential. Further, there is very little protocol-specific in-
formation in CONMan scripts and hence, an automated
NM can generate the commands and other details al-
gorithmically without incorporating protocol-specific
knowledge. Also, the similarity in the CONMan scripts
for three completely different protocols can be seen as retro-
spective (yet relevant) evidence of CONMan decoupling the
management plane from data-plane evolution.

To quantify the protocol-agnosticity of CONMan, we coun-
-ted the number of protocol-specific commands and state vari-
ables in the scripts. Table 5 shows that today’s scripts have
far more protocol-specific commands and state-variables. As
mentioned earlier, the instances of protocol-specific state vari-
ables in CONMan scripts (such as C1-S2 representing the IP
prefix for customer1-site2 on line (3) of figure 8(b)) result
from the fact that our current effort is restricted to man-
agement in a single domain. On the other hand, CONMan
scripts have more generic state-variables. This is an outcome
of both the verbose nature of the existing CONMan primi-
tives and the fact that CONMan requires the NM to specify
a lot of well-structured and systematically learnt generic in-
formation which the protocol modules then use to determine

#!/bin/bash
Insert the GRE-IP kernel module
(1) insmod /lib/modules/2.6.14-2/ip gre.ko
Create the GRE tunnel with the appropriate key
(2) ip tunnel add name greA mode gre remote 204.9.169.1 local
204.9.168.1 ikey 1001 okey 2001 icsum ocsum iseq oseq

(3) ifconfig greA 192.168.3.1
Enable Routing
(4) echo 1 > /proc/sys/net/ipv4/ip forward
Create IP routing from customer to tunnel
(5) echo 202 tun-1-2 >> /etc/iproute2/rt tables
(6) ip rule add to 10.0.2.0/24 table tun-1-2

(7) ip route add default dev greA table tun-1-2
Create IP routing from tunnel to customer
(8) echo 203 tun-2-1 >> /etc/iproute2/rt tables
(9) ip rule add iff greA table tun-2-1
(10) ip route add default dev eth1 table tun-2-1

(11) ip route add to 204.9.169.1 via 204.9.168.2 dev eth2

(a) Configuration “Today”

Router A Router B Router C

Eth (a) Eth (b)

IP (h)

Eth (c) Eth (d)

IP (i)

Eth (e) Eth (f)

IP (j)

IP (k) IP (g)

Customer 1
Site 1

Router D

Customer 1
Site 2

Router E

GRE (l) GRE (n)

Phy Pipe (P4) (1).

P0 = create (pipe, <IP,A,g>, <ETH,A,a>, None, None, None)
(2). P1 = create (pipe, <IP,A,g>, <GRE,A,l>, <IP,C,k>, <GRE,C,n>,
trade-off: in-order delivery, trade-off: error-rate)
(3) create (switch, <IP,A,g>, [P0, dst:C1-S2 ⇒ P1])
(4) create (switch, <IP,A,g>, [P1 ⇒ P0, S2-gateway])

(5). P2 = create (pipe, <GRE,A,l>, <IP,A,h>, <GRE,C,n>, <IP,C,j>, None)
(6). create (switch, <GRE,A,l>, P1, P2)
(7). P3 = create (pipe, <IP,A,h>, <ETH,A,b>, <IP,B,i>, <ETH,B,c>, None)
(8). create (switch, <IP,A,h>, P2, P3)

(9). create (switch, <ETH,A,b>, P3,P4)

(b) CONMan configuration

Figure 8: VPN connectivity between sites S1 and S2 of customer C1 through a GRE-IP tunnel between A and C.

#!/bin/bash
Instantiating MPLS kernel modules
modprobe mpls
modprobe mpls4
MPLS LSP for traffic from S2->S1
mpls labelspace set dev eth2 labelspace 0
mpls ilm add label gen 10001 labelspace 0
KEY-S2-S1=‘mpls nhlfe add key 0 mtu 1500 instructions nexthop
eth1 ipv4 192.168.0.1 | grep key | cut -c 17-26‘
mpls xc add ilm label gen 10001 ilm labelspace 0 nhlfe key
$KEY-S2-S1
MPLS LSP for traffic from S1->S2
KEY-S1-S2=‘mpls nhlfe add key 0 mtu 1500 instructions push gen
2001 nexthop eth2 ipv4 204.9.168.2 | grep key | cut -c 17-26‘
echo 1> /proc/sys/net/ipv4/ip forward
ip route add 10.0.2.0/24 via 204.9.168.2 mpls $KEY-S1-S2

(a) Configuration “Today”

Router A Router B Router C

Eth (a) Eth (b)

IP (h)

Eth (c) Eth (d)

IP (i)

Eth (e) Eth (f)

IP (j)

IP (k) IP (g)

Customer 1
Site 1

Router D

Customer 1
Site 2

Router E

MPLS (o) MPLS(q)

MPLS(p)

Phy Pipe (P4)

P0 = create (pipe, <IP,A,g>, <ETH,A,a>, None, None, None)
P1 = create (pipe, <IP,A,g>, <MPLS,A,o>, <IP,C,k>, <MPLS,C,q>,

None)
create (switch, <IP,A,g>, [P0, dst:C1-S2 ⇒ P1])
create (switch, <IP,A,g>, [P1 ⇒ P0, S2-gateway])

P2 = create (pipe, <MPLS,A,o>, <ETH,A,b>, <MPLS,B,p>, <ETH,B,c>,
None)

create (switch, <MPLS,A,o>, P1, P2)

create (switch, <ETH,A,b>, P2, P4)

(b) CONMan configuration

Figure 9: VPN connectivity between sites S1 and S2 of customer C1 using a MPLS LSP through router A, B and C.

GRE MPLS VLAN
T C T C T C

Generic Commands 1 2 1 2 3 2
Specific Commands 6 0 6 0 4 0

Generic State Var. 9 21 6 18 3 14
Specific State Var. 11 2 8 2 5 1

Table 5: Commands and state variables in Today’s (T) and

CONMan (C) scripts. The table and the scripts are color/font

coded; for instance, the first occurrence of a “Generic Com-

mand” in each script appears in Red/Italics and so on.

the protocol parameters. While we admit that these repre-
sent very coarse metrics, we see this as a naive yet important
step towards quantifying the advantages of having manage-
ment applications generate CONMan primitives instead of
device-level configuration.

4. RELATED WORK
There is a tremendous amount of past work in network

management, the most relevant of which we briefly cite here.
On the commercial side, SNMPLink [31] lists many existing
management tools, from low-end tools like packet analyzers
(eg, Wireshark [47]), traffic monitors (eg, MRTG [35]), and
SNMP agents (eg, ITM [7]) to high-end managers like Open-
View [43].

Zeroconf [51] (and similar efforts like UPnP [46], DLNA [50],
etc.) enable “local communication in networks of limited
scale” without any configuration [15]. CONMan is more gen-
eral but there are networks, such as ad-hoc networks, that we
don’t deal with. Further, with CONMan, the human manager

does need to specify a configuration goal, albeit at a high-
level. However, there are a number of Zeroconf features, such
as address auto-configuration using link-local addresses, that
CONMan could gain from. Policy-based management [16]
tries to reduce the amount of intricate knowledge required by
human managers by allowing management of QoS [2,32] and
security [37] based on high-level policies. There are efforts
in both research [48] and industry [42–45] with the similar
goals. While steps in the right direction, some entity still has
to map these policies to the individual device configurations.
The complexity of this translation was the major impediment
in the adoption of policy-based networking [17].

CONMan does not dictate how data-plane protocols should
be implemented. However, there is the vast body of literature
that does deal with protocol implementation, i.e. through ab-
stractions [1], specification languages (Estelle, LOTOS,
SDL [38]), implementation languages [10,24,25], and modu-
larization (Click [19], [5]). The 4D proposal [14] recognizes
the complexity of the Internet’s control and management
plane and hence, argues for restructuring them. We were
motivated by, among other things, 4D’s discovery plane. Re-
cently, there has been a spurt of research detailing the reasons
for outages and anomalies in IP backbones [22,27], Internet
services [28] and BGP routing [11,26]. These studies point
to configuration errors as a major culprit. CONMan can re-
duce these errors, particularly the ones impacting data plane
operation. Finally, we believe that CONMan can simplify
the cross-layer database and interface proposed in [20], and
indeed may provide the basis for the Knowledge Plane objec-
tives laid out by Clark et. al. [9].

put module0 port 9 into VLAN22
ensure MTU is set properly
set vlan 22 name C1 mtu 1504

set vlan 22 gigabitethernet0/9
ensure module 0 port 7 is access port
interface gigabitethernet0/7
switchport access vlan 22
switchport mode dot1q-tunnel

exit
vlan dot1q tag native

end

(a) Configuration “Today” on Cisco CatOS

Switch A Switch B Switch C

Eth (a)

VLAN (d)

Eth (b)

VLAN (e)

Eth (c)

VLAN (f)

Phy Pipe (P4)
Phy Pipe (P0)

Customer 1
Site 1

Router D

Customer 1
Site 2

Router E

P1 = create (pipe, <ETH,A,a>, <VLAN,A,d>, <ETH,C,c>,
<VLAN,C,f>)

P2 = create (pipe, <VLAN,A,d>, <ETH,A,a>, <VLAN,B,e>, <ETH,B,b>)
create (switch, <ETH,A,a>, [P0, Tagged ⇒ P1])

create (switch, <ETH,A,a>, [P1 ⇒ P0])
create (switch, <VLAN,A,d>, P1, P2)

create (switch, <ETH,A,a>, P2, P4)

(b) CONMan configuration

Figure 10: VPN connectivity between sites S1 and S2 of customer C1 through VLAN tunneling between A and C.

5. DISCUSSION AND FUTURE WORK
In this paper we have presented a network architecture that

is amenable to management. Implementation of a few proto-
cols according to the CONMan model and their use in VPN
configuration scenarios shows that the approach is worth con-
sidering. Though it is too early for us to claim that the ab-
straction presented here suffices for all data plane protocols
and for tasks beyond basic configuration, we do not envi-
sion the module abstraction expanding much beyond its cur-
rent state. As with OSs where we rely on ioctls and special-
purpose interfaces for things that cannot be accomplished
with the file system interface, in cases where protocol features
are not captured by the abstraction (some were mentioned in
the paper but we hope they will be few and far between), the
low-level parameters will have to explicitly be set. Hence, we
allow for the possibility of management applications accessing
low-level details and provide the relevant hooks. However, we
necessitate that any direct changes to the low-level details be
appropriately reflected in the protocol’s CONMan abstrac-
tion. There are many other avenues for future work, some of
which we mention below:
– Scalability: This paper tests the extent to which manage-
ment interfaces can be made protocol agnostic. However, it
does not address concerns regarding the scalability and the
robustness of the proposed approach. For instance, an im-
portant concern is the amount of traffic and processing load
imposed on the NM, especially as a result of changes in high-
level goals or even the network itself. Also, while our cur-
rent implementation is restricted to lower layer modules and
mostly static configuration tasks, scaling would be much more
challenging if CONMan were to account for applications too.
An extreme resulting scenario would be one where the NM
configures modules across the network whenever an applica-
tion initiates a connection. Note that in such a set-up, the
message overhead imposed on the NM(s) would be similar to
that imposed on domain controllers in the SANE project [8]
and one could use their results to claim that even this can
scale.

However, for a lot of tasks, the NM can use existing con-
trol protocols. For instance, our current path-finder could
easily be modified to use a hierarchical two-step traversal
wherein the first step finds paths between devices that have
been pre-established using a routing algorithm while the next
step finds the complete module-level path given the device-
level path. Apart from this, CONMan would certainly benefit
from many of the proposals to improve the scalability of au-
tomated agents within today’s SNMP framework [13,23,30].

Further, as discussed below, the NMs themselves may do spe-
cialized jobs and hence, scale by divide-and-conquer.
– Multiple NMs: Our current attempt has focussed on a single
NM managing a given network. However, multiple NMs may
exist. Primary and secondary NMs will be needed for robust-
ness. We can also imagine multiple simultaneously operating
NMs. One reason for this might be that NMs do special-
ized jobs. For example, one is responsible for tunnel creation
while another monitors for security violations. Another rea-
son might be that NMs are administratively nested. For ex-
ample, a high-level NM creates VLANs, but each VLAN has
its own NM. Different domains will have their own NM and
these may need to communicate.
– Management Channel: The aforementioned possibilities pr-
-esent a number of challenges such as the need for scoped
management channels, extending the management channel
beyond a single domain, the possibility of conflicting config-
urations and so on. Consequently, the notion of a manage-
ment channel needs more thought. However, we would still
like to keep the management channel as simple as possible so
we don’t run into the problem of managing the management
channel. Further, the robustness and scalability questions re-
garding this channel suggest that it should only be used as the
basis for low-level configuration. Higher-level management
tasks should then rely on the data-plane for communication.

Beyond this, the NM design requires more work. On the
user-side, we illustrated a simple high-level goal involving
connectivity between two devices. However, we would like
to evaluate other high-level goals and their impact on the al-
gorithmic complexity of the NM. An exercise worth pursuing
would be to come up with a simple yet precise language for
such goals. Challenges for the NM on the the network-side
include being able compare the quality of multiple low-level
goals that satisfy a given high-level goal, ensuring that the
translation process can scale to large networks, etc. Another
important question is how to deploy CONMan. It is likely to
share IPv6’s conundrum: namely that complexity has to be
increased over the short-term in order to arrive at reduced
complexity over the long-term. However, there is still a lot of
work to be done before we can worry about the widespread
adoption of CONMan and hence, the path of least resistance
towards a manageable, much less a self-managing network.

Acknowledgements
We would like to thank our shepherd, David Maltz, and the
anonymous reviewers for their useful feedback. This work was
partially supported by NSF Grants 0338750 and 0626978.

6. REFERENCES
[1] M. B. Abbott and L. L. Peterson, “A language-based

approach to protocol implementation,” in Proc. of ACM
SIGCOMM, 1992, pp. 27–38.

[2] K. Amiri, S. Calo, and D. Verma, “Policy based management
of content distribution networks,” IEEE Network Magazine,
March 2002.

[3] L. Andersson and T. Madsen, “RFC 4026 - Provider
Provisioned Virtual Private Network (VPN) Terminology,”
March 2005.

[4] H. Ballani and P. Francis, “Complexity Oblivious Network
Management: A step towards network manageability,”
Cornell University, Ithaca, NY, US, Tech. Rep.
cul.cis/TR2006-2026, 2006.

[5] E. Biagioni, “A structured TCP in standard ML,” in Proc.
of ACM SIGCOMM, 1994.

[6] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh,
and J. van der Merwe, “Design and Implementation of a
Routing Control Platform ,” in Proc. of Symp. on Networked
Systems Design and Implementation (NSDI), 2005.

[7] Carsten Schmidt, “Interface Traffic Monitor Pro,”
http://software.ccschmidt.de/.

[8] M. Casado, T. Garfinkel, A. Akella, M. Freedman, D. Boneh,
N. McKeown, and S. Shenker, “SANE: A Protection
Architecture for Enterprise Networks,” in Proc. of Usenix
Security, 2006.

[9] D. D. Clark, C. Partridge, J. C. Ramming, and J. T.
Wroclawski, “A knowledge plane for the internet,” in Proc.
of ACM SIGCOMM, 2003.

[10] T. Condie, J. M. Hellerstein, P. Maniatis, S. Rhea, and
T. Roscoe, “Finally, a Use for Componentized Transport
Protocols,” in Proc. of the Fourth Workshop on Hot Topics
in Networking, 2005.

[11] N. Feamster and H. Balakrishnan, “Detecting BGP
Configuration Faults with Static Analysis,” in Proc. of
Symp. on Networked Systems Design and Implementation
(NSDI), 2005.

[12] B. Ford, “Unmanaged Internet Protocol: taming the edge
network management crisis,” SIGCOMM Comput. Commun.
Rev., vol. 34, no. 1, 2004.

[13] G. Goldszmidt, Y. Yemini, and S. Yemini, “Network
management by delegation: the MAD approach,” in Proc. of
the conference of the Centre for Advanced Studies on
Collaborative research (CASCON), 1991.

[14] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Meyers,
J. Rexford, G. Xie, H. Yan, J. Zhan, and H. Zhang, “A clean
slate 4D approach to network control and management,”
ACM SIGCOMM Computer Communications Review,
October 2005.

[15] E. Guttman, “Autoconfiguration for ip networking: Enabling
local communication,” IEEE Internet Computing, vol. 5,
no. 3, 2001.

[16] J. Halpern and E. Ellesson, “The IETF Policy Framework
Working Group,” Online Charter,
http://www.ietf.org/html.charters/OLD/policy-charter.html.

[17] M. Jude, “Policy-based Management: Beyond The Hype,”
Business Communication Review, pp. 52–56, 2001,
http://www.bcr.com/bcrmag/2001/03/p52.php.

[18] Z. Kerravala, “Enterprise Networking and Computing : the
Need for Configuration Management,” Yankee Group report,
January 2004.

[19] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek, “The Click modular router,” ACM Transactions
on Computer Systems, vol. 18, no. 3, pp. 263–297, August
2000.

[20] R. R. Kompella, A. Greenberg, J. Rexford, A. C. Snoeren,
and J. Yates, “Cross-layer Visibility as a Service,” in Proc. of
workshop on Hot Topics in Networks, 2005.

[21] R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren,
“ IP Fault Localization Via Risk Modeling ,” in Proc. of 2nd
Symp. on Networked Systems Design and Implementation
(NSDI), 2005.

[22] C. Labovitz, A. Ahuja, and F. Jahanian, “Experimental
Study of Internet Stability and Backbone Failures,” in Proc.
of Symposium on Fault-Tolerant Computing (FTCS), 1999.

[23] K.-S. Lim and R. Stadler, “Developing Pattern-Based
Management Programs,” in Proc. of Conference on

Management of Multimedia Networks and Services
(MMNS), 2001.

[24] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis,
T. Roscoe, and I. Stoica, “Implementing Declarative
Overlays,” in Proc. of ACM SOSP, 2005.

[25] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan,
“Declarative Routing: Extensible Routing with Declarative
Queries,” in Proc. of ACM SIGCOMM, 2005.

[26] R. Mahajan, D. Wetherall, and T. Anderson,
“Understanding BGP misconfiguration,” in Proc. of ACM
SIGCOMM, 2002, pp. 3–16.

[27] A. Markopoulou, G. Iannaccone, S. Bhattacharyya,
C. Chuah, and C. Diot, “Characterization of Failures in an
IP Backbone,” in Proc. of IEEE INFOCOMM, 2004.

[28] D. Oppenheimer, A. Ganapathi, and D. Patterson, “Why do
Internet services fail, and what can be done about it,” in
Proc. of USENIX Symposium on Internet Technologies and
Systems, 2003.

[29] P. Bahl et. al., “Discovering Dependencies for Network
Management,” in Proc. of workshop on Hot Topics in
Networks, 2006.

[30] V. A. Pham and A. Karmouch, “Mobile Software Agents: An
Overview,” IEEE/ACM Trans. Netw., vol. 36, no. 7, 1998.

[31] Pierrick Simier, “SNMPLink,”
www.snmplink.org/Tools.html.

[32] R. Rajan, D. Verma, S. Kamat, E. Felstaine, , and
S. Herzog, “A policy framework for integrated and
differentiated services in the internet,” IEEE Network
Magazine, vol. 13, no. 5, September 1999.

[33] E. Rosen and Y. Rekhter, “RFC 4364 - BGP/MPLS IP
Virtual Private Networks (VPNs),” February 2006.

[34] J. Schonwalder, “Characterization of SNMP MIB Modules,”
in Proc. of International Symposium on Integrated Network
Management, 2005.

[35] Tobias Oetiker and Dave Rand, “MRTG : Multi Router
Traffic Grapher,” http://mrtg.hdl.com.

[36] H. Uijterwaal and M. Zekauskas, “IP Performance Metrics
(ippm),” Online Charter, Jan 2006,
http://www.ietf.org/html.charters/ippm-charter.html.

[37] D. Verma, “Simplifying Network Administration using Policy
based Management,” IEEE Network Magazine, March 2002.

[38] G. von Bochmann, “Usage of Protocol Development Tools:
The Results of a Survey,” in Proc. of Conference on Protocol
Specification, Testing and Verification, 1987.

[39] G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. Greenberg, and
G. Hjalmtysson, “Routing design in operational networks: a
look from the inside,” in Proc. of ACM SIGCOMM, 2004,
pp. 27–40.

[40] E. R. Y. Rekhter, R. Bonica, “Use of PE-PE GRE or IP in
BGP/MPLS IP Virtual Private Networks,”
draft-ietf-l3vpn-gre-ip-2547-05, February 2006.

[41] “CISCO 802.1Q Tunneling,”
http://www.cisco.com/univercd/cc/td/doc/product/lan/
c3550/1219ea1/3550scg/swtunnel.htm.

[42] “CISCO Network Management Products,” http://www.
cisco.com/en/US/products/sw/netmgtsw/index.html.

[43] “HP OpenView,” www.openview.hp.com/.
[44] “IBM’s Autonomic Computing,”

http://www-03.ibm.com/autonomic/.
[45] “Microsoft Dynamic Systems Initiative,” http://www.

microsoft.com/windowsserversystem/dsi/default.mspx.
[46] “UPnP Forum,” http://www.upnp.org/.

[47] “Wireshark: A Network Protocol Analyzer,”
http://www.wireshark.org/.

[48] “IBM Research: Policy-based Networking,” , Dec 2006,
http://www.research.ibm.com/policy/.

[49] “SNMP MIB Search Engine,” , January 2006,
www.mibdepot.com.

[50] “Digital Living Network Alliance,” Jan 2007,
http://www.dlna.org/.

[51] “Zeroconf Working Group,” Jan 2007,
http://www.zeroconf.org/.

D
R

A
FT

1

Making Routers Last Longer with ViAggre
Hitesh Ballani∗, Paul Francis∗, Tuan Cao∗ and Jia Wang†

∗Cornell University †AT&T Labs – Research
To Appear in NSDI’09 – This is not the camera-ready version. Please do not distribute. The

measurements in section IV-B.4 are in error and will be corrected in the camera-ready version.

Abstract— This paper presents ViAggre (Virtual Aggre-
gation), a “configuration-only” approach to shrinking the
routing table on routers. ViAggre does not require any
changes to router software and routing protocols and can
be deployed independently and autonomously by any ISP.
ViAggre is effectively a scalability technique that allows
an ISP to modify its internal routing such that individual
routers in the ISP’s network only maintain a part of the
global routing table.

We evaluate the application of ViAggre to a few tier-1
and tier-2 ISPs and show that it can reduce the routing
table on routers by an order of magnitude while imposing
almost no traffic stretch and negligible load increase across
the routers. We also deploy Virtual Aggregation on a
testbed comprising of Cisco routers and benchmark this
deployment. Finally, to understand and address concerns
regarding the configuration overhead that our proposal
entails, we implement a configuration tool that automates
ViAggre configuration. While it remains to be seen whether
most, if not all, of the management concerns can be
eliminated through such automated tools, we believe that
the simplicity of the proposal and its possible short-term
impact on routing scalability suggest that it is an alternative
worth considering.

I. INTRODUCTION

The Internet default-free zone (DFZ) routing table
has been growing at a rapid rate for the past few
years [21]. Looking ahead, there are concerns that as
the IPv4 address space runs out, hierarchical aggregation
of network prefixes will further deteriorate resulting in
a substantial acceleration in the growth of the routing
table [31]. A growing IPv6 deployment would worsen
the situation even more [29].

The increase in the size of the DFZ routing ta-
ble has several harmful implications for inter-domain
routing.1 [31] discusses these in detail. At a technical
level, increasing routing table size may drive high-
end router design into various engineering limits. For
instance, while memory and processing speeds might just
scale with a growing routing system, power and heat
dissipation capabilities may not [30]. On the business
side, the performance requirements for forwarding while
being able to access a large routing table imply that
the cost of forwarding packets increases and hence, net-
works become less cost-effective [27]. Further, it makes

1Hereon, we follow the terminology used in [39] and use the
term “routing table” to refer to the Forwarding Information Base or
FIB, commonly also known as the forwarding table. The Routing
Information Base is explicitly referred to as the RIB.

provisioning of networks harder since it is difficult to
estimate the usable lifetime of routers, not to mention
the cost of the actual upgrades. As a matter of fact,
instead of upgrading their routers, a few ISPs have
resorted to filtering out some small prefixes (mostly
/24s) which implies that parts of the Internet may not
have reachability to each other [20]. A recent proprietary
conversation with a major Internet ISP revealed that in
order to avoid router memory upgrades, the ISP is using a
trick that reduces memory requirements but breaks BGP
loop-detection and hence, would wreak havoc if adopted
by other ISPs too. These anecdotes suggest that ISPs are
willing to undergo some pain to avoid the cost of router
upgrades.

Such concerns regarding FIB size growth, along with
problems arising from a large RIB and the concomitant
convergence issues, were part of the reasons that led a
recent Internet Architecture Board workshop to conclude
that scaling the routing system is one of the most critical
challenges of near-term Internet design [30]. The severity
of these problems has also prompted a slew of routing
proposals [7,8,11,15,19,29,32,40]. All these proposals re-
quire changes in the routing and addressing architecture
of the Internet. This, we believe, is the nature of the
beast since some of the fundamental Internet design
choices limit routing scalability; the overloading of IP
addresses with “who” and “where” semantics represents
a good example [30]. However, the very fact that they
require architectural change has contributed to the non-
deployment of these proposals.

This paper takes the position that a major architectural
change is unlikely and it may be more pragmatic to
approach the problem through a series of incremental,
individually cost-effective upgrades. Guided by this and
the aforementioned implications of a rapidly growing
DFZ FIB, this paper proposes Virtual Aggregation or
ViAggre, a scalability technique that focuses primar-
ily on shrinking the FIB size on routers. ViAggre is
a “configuration-only” solution that applies to legacy
routers. Further, ViAggre can be adopted independently
and autonomously by any ISP and hence the bar for its
deployment is much lower. The key idea behind ViAggre
is very simple: an ISP adopting ViAggre divides the
responsibility for maintaining the global routing table
amongst its routers such that individual routers only
maintain a part of the routing table. Thus, this paper
makes the following contributions:

D
R

A
FT

2

• We discuss two deployment options through which
an ISP can adopt ViAggre. The first one uses FIB
suppression to shrink the FIB of all the ISP’s routers
while the second uses route filtering to shrink both the
FIB and RIB on all data-path routers.

• We analyze the application of ViAggre to an actual
tier-1 ISP and several inferred (Rocketfuel [37]) ISP
topologies. We find that ViAggre can reduce FIB size
by more than an order of magnitude with negligible
stretch on the ISP’s traffic and very little increase in
load across the ISP’s routers. Based on predictions of
future routing table growth, we estimate that ViAggre
can be used to extend the life of already outdated
routers by more than 10 years.

• We propose utilizing the notion of prefix popularity to
reduce the impact of ViAggre on the ISP’s traffic and
use a two-month study of a tier-1 ISP’s traffic to show
the feasibility of such an approach.

• As a proof-of-concept, we configure test topologies
comprising of Cisco routers (on WAIL [3]) according
to the ViAggre proposal. We use the deployment to
benchmark the control-plane processing overhead that
ViAggre entails. For one of the presented designs, the
overhead is minimal and hence, network properties
such as convergence times are not affected. The other
design has high overhead due to implementation issues
and needs more experimentation.

• ViAggre involves the ISP reconfiguring its routers
which can be a deterrent to adoption. We quantify this
configuration overhead. We also implement a config-
uration tool that, given the ISPs existing configuration
files, can automatically generate the configuration files
needed for ViAggre deployment. We discuss the use
of this tool on our testbed.
Overall, the incremental version of ViAggre that this

paper presents can be seen as little more than a simple
and structured hack that assimilates ideas from existing
work including, but not limited to, VPN tunnels and
CRIO [40]. We believe that its very simplicity makes
ViAggre an attractive short-term solution that provides
ISPs with an alternative to upgrading routers in order to
cope with routing table growth till more fundamental,
long-term architectural changes can be agreed upon and
deployed in the Internet. However, the basic ViAggre
idea can also be applied in a clean-slate fashion to
address routing concerns beyond FIB growth. While
we defer the design and the implications of such a
non-incremental ViAggre architecture for future work,
the notion that the same concept has potential both as
an immediate alleviative and as the basis for a next-
generation routing architecture seems interesting and
worth exploring.

II. VIAGGRE DESIGN

ViAggre allows individual ISPs in the Internet’s DFZ

to do away with the need for their routers to maintain
routes for all prefixes in the global routing table. An ISP
adopting ViAggre divides the global address space into
a set of virtual prefixes such that the virtual prefixes are
larger than any aggregatable (real) prefix in use today. So,
for instance, an ISP could divide the IPv4 address space
into 128 parts with a /7 virtual prefix representing each
part (0.0.0.0/7 to 254.0.0.0/7). Note that such a naı̈ve
allocation would yield an uneven distribution of real
prefixes across the virtual prefixes. However, the virtual
prefixes need not be of the same length and hence, the
ISP can choose them such that they contain a comparable
number of real prefixes.

The virtual prefixes are not topologically valid aggre-
gates, i.e. there is not a single point in the Internet topol-
ogy that can hierarchically aggregate the encompassed
prefixes. ViAggre makes the virtual prefixes aggregatable
by organizing virtual networks, one for each virtual
prefix. In other words, a virtual topology is configured
that causes the virtual prefixes to be aggregatable, thus
allowing for routing hierarchy that shrinks the routing
table. To create such a virtual network, some of the ISP’s
routers are assigned to be within the virtual network.
These routers maintain routes for all prefixes in the
virtual prefix corresponding to the virtual network and
hence, are said to be aggregation points for the virtual
prefix. A router can be an aggregation point for multiple
virtual prefixes and is required to only maintain routes
for prefixes in the virtual prefixes it is aggregating.

Given this, a packet entering the ISP’s network is
routed to a close-by aggregation point for the virtual
prefix encompassing the actual destination prefix. This
aggregation point has a route for the destination prefix
and forwards the packet out of the ISP’s network in
a tunnel. In figure 1 (figure details explained later),
router C is an aggregation point for the virtual prefix
encompassing the destination prefix and B → C → D is
one such path through the ISP’s network.

A. Design Goals

The discussion above describes ViAggre at a concep-
tual level. While the design space for organizing an ISP’s
network into virtual networks has several dimensions,
this paper aims for deployability and hence is guided by
two major design goals:

1) No changes to router software and routing protocols:
The ISP should not need to deploy new data-plane
or control-plane mechanisms.

2) Transparent to external networks: An ISP’s decision
to adopt the ViAggre proposal should not impact its
interaction with its neighbors (customers, peers and
providers).

These goals, in turn, limit what can be achieved
through the ViAggre designs presented here. Routers

D
R

A
FT

3

today have a Routing Information Base (RIB) generated
by the routing protocols and a Forwarding Information
Base (FIB) that is used for forwarding the packets.
Consequently, the FIB is optimized for looking up des-
tination addresses and is maintained on fast(er) memory,
generally on the line cards themselves [31]. All things
being equal, it would be nice to shrink both the RIB
and the FIB for all ISP devices, as well as make other
improvements such as speed up convergence time.

While the basic ViAggre idea can be used to achieve
these benefits (section VI), we have not been able to
reconcile them with the aforementioned design goals.
Instead, this paper is based on the hypothesis that given
the performance and monetary implications of the FIB
size for routers, an immediately deployable solution that
reduces FIB size is useful. Actually, one of the presented
designs also shrinks the RIB on routers; only components
that are off the data path (i.e. route reflectors) need to
maintain the full RIB.

B. Design-I: FIB Supression

This section details one way an ISP can deploy virtual
prefix based routing while satisfying the goals specified
in the previous section. The discussion below applies
to IPv4 (and BGPv4) although the techniques detailed
here work equally well for IPv6. The key concept behind
this design is to operate the ISP’s internal distribution of
BGP routes untouched and in particular, to populate the
RIB on routers with the full routing table but to suppress
most prefixes from being loaded in the FIB of routers.
A standard feature on routers today is FIB Suppression
which can be used to prevent routes for individual
prefixes in the RIB from being loaded into the FIB. We
have verified support for FIB suppression as part of our
ViAggre deployment on Cisco 7300 and 12000 routers.
Documentation for Juniper [44] and Foundry [43] routers
specify this feature too. We use this as described below.

The ISP does not modify its routing setup – the ISP’s
routers participate in an intra-domain routing protocol
that establishes internal routes through which the routers
can reach each other while BGP is used for inter-
domain routing just as today. For each virtual prefix,
the ISP designates some number of routers to serve as
aggregation points for the prefix and hence, form a virtual
network. Each router is configured to only load prefixes
belonging to the virtual prefixes it is aggregating into its
FIB while suppressing all other prefixes.

Given this, the ISP needs to ensure that packets to any
prefix can flow through the network in spite of the fact
that only a few routers have a route to the prefix. This
is achieved as follows:

– Connecting Virtual Networks. Aggregation points for
a virtual prefix originate a route to the virtual prefix

that is distributed throughout the ISP’s network but not
outside. Specifically, an aggregation point advertises the
virtual prefix to its iBGP peers. A router that is not an
aggregation point for the virtual prefix would choose the
route advertised by the aggregation point closest to it
and hence, forward packets destined to any prefix in the
virtual prefix to this aggregation point.2

– Sending packets to external routers. When a router
receives a packet destined to a prefix in a virtual prefix
it is aggregating, it can look up its FIB to determine
the route for the packet. However, such a packet cannot
be forwarded in the normal hop-by-hop fashion since a
router that is not an aggregation point for the virtual
prefix in question might forward the packet back to
the aggregation point, resulting in a loop. Hence, the
packet must be tunneled from the aggregation point to the
external router that was selected as the BGP NEXT HOP.
While the ISP can probably choose from many tunneling
technologies, we use of MPLS Label Switched Paths
(LSPs) for such tunnels. This choice was influenced by
the fact that MPLS is widely supported in routers, is
used by ISPs, and operates at wire speed. Further, proto-
cols like LDP [1] automate the establishment of MPLS
tunnels and hence, reduce the configuration overhead.

However, a LSP from the aggregation point to an
external router would require cooperation from the neigh-
boring ISP. To avoid this, every edge router of the ISP
initiates a LSP for every external router it is connected to.
Thus, all the ISP routers need to maintain LSP mappings
equal to the number of external routers connected to the
ISP, a number much smaller than the routes in the DFZ
routing table. Note that even though the tunnel endpoint
is the external router, the edge router can be configured
to strip the MPLS label from the data packets before
forwarding them onto the external router. This, in turn,
has two implications. First, external routers don’t need to
be aware of the adoption of ViAggre by the ISP. Second,
even the edge router does not need a FIB entry for the
destination prefix, instead it chooses the external router
to forward the packets to based on the MPLS label of the
packet. The behavior of the edge router here is similar to
the penultimate hop in a VPN scenario and is achieved
through standard configuration.

We now use a concrete example to illustrate the flow of
packets through an ISP network that is using ViAggre.
Figure 1 shows the relevant routers. The ISP is using
/7s as virtual prefixes and router C is an aggregation
point for one such virtual prefix 4.0.0.0/7. Edge router D
initiates a LSP to external router E with label l and hence,

2All other attributes for the routes to a virtual prefix are the same
and hence, the decision is based on the IGP metric to the aggregation
points. Hence, “closest” means closest in terms of IGP metric.

D
R

A
FT

4

A E
C

B D
1

2 3

ISP
(Ingress) (Egress)

(External) (External)

B’s FIB
Prefix Next-Hop

4/7 C

C’s FIB
Prefix

4/24 E
Next-Hop

4/7 Null

E/32 LSP with
label l

D’s LSP Map

l E

Label Next-Hop

Fig. 1. Path of packets destined to prefix 4.0.0.0/24 (or, 4/24) between
external routers A and E through an ISP with ViAggre. Router C is an
aggregation point for virtual prefix 4.0.0.0/7 (or, 4/7).

the ISP’s routers can get to E through MPLS tunneling.
The figure shows the path of a packet destined to prefix
4.0.0.0/24, which is encompassed by 4.0.0.0/7, through
the ISP’s network. The path from the ingress router B to
the external router E comprises of three segments:

1) VP-routed: Ingress router B is not an aggregation
point for 4.0.0.0/7 and hence, forwards the packet to
aggregation point C.

2) MPLS-LSP: Router C, being an aggregation point
for 4.0.0.0/7, has a route for 4.0.0.0/24 with BGP
NEXT HOP set to E. Further, the path to router E
involves tunneling the packet with MPLS label l.

3) Map-routed: On receiving the tunneled packet from
router C, egress router D looks up its MPLS label
map, strips the MPLS header and forwards the
packet to external router E.

C. Design-II: Route Reflectors

The second design offloads the task of maintaining the
full RIB to devices that are off the data path. Many ISPs
use route-reflectors for scalable internal distribution of
BGP prefixes and we require only these route-reflectors
to maintain the full RIB. For ease of exposition, we
assume that the ISP is already using per-PoP route re-
flectors that are off the data path, a common deployment
model for ISPs using route reflectors.

In the proposed design, the external routers connected
to a PoP are made to peer with the PoP’s route-reflector.3

This is necessary since the external peer may be adver-
tising the entire DFZ routing table and we don’t want
all these routes to reside on any given data-plane router.
The route-reflector also has iBGP peerings with other
route-reflectors and with the routers in its PoP. Egress
filters are used on the route-reflector’s peerings with the
PoP’s routers to ensure that a router only gets routes
for the prefixes it is aggregating. This shrinks both the
RIB and the FIB on the routers. The data-plane operation

3Note that these will be eBGP multihop peerings since the route-
reflector is not directly connected to the external routers.

and hence, the path of packets through the ISP’s network
remains the same as with the previous design.

With this design, a PoP’s route-reflector peers with
all the external routers connected to the PoP. The RIB
size on a BGP router depends on the number of peers
it has and hence, the RIB for the route-reflectors can
potentially be very large. If needed, the RIB requirements
can be scaled by using multiple route-reflectors. Note
that the RIB scaling properties here are better than in
the status quo. Today, edge routers have no choice but
to peer with the directly connected external routers and
maintain the resulting RIB. Replicating these routers is
prohibitive because of their cost but the same does not
apply to off-path route-reflectors, which could even be
BGP software routers.

D. Design Comparison

As far as the configuration is concerned, configuring
suppression of routes on individual routers in design-I is
comparable, at least in terms of complexity, to configur-
ing egress filters on the route-reflectors. In both cases,
the configuration can be achieved through BGP route-
filtering mechanisms (access-lists, prefix-lists, etc.).

Design-II, apart from shrinking the RIB on the routers,
does not require the route suppression feature on routers.
Further, as we detail in section V-B, the specific filtering
mechanism that we use for FIB suppression on the
routers in our deployment leads to high CPU utilization
at the peering establishment time and hence, requires
more experimentation. However, design-II does require
the ISP’s eBGP peerings to be reconfigured which,
while straightforward, violates our goal of not impacting
neighboring ISPs.

E. Network Robustness

ViAggre causes packets to be routed through an aggre-
gation point which leads to robustness concerns. When
an aggregation point for a virtual prefix fails, routers
using that aggregation point are re-routed to another
aggregation point through existing mechanisms without
any explicit configuration by the ISP. In case of design-I,
a router has routes to all aggregation points for a given
virtual prefix in its RIB and hence, when the aggregation
point being used fails, the router installs the second
closest aggregation point into its FIB and packets are
re-routed almost instantly. With design-II, it is the route-
reflector that chooses the alternate aggregation point and
advertises this to the routers in its PoP. Hence, as long
as another aggregation point exists, failover happens
automatically and at a fast rate.

F. Routing popular prefixes natively

The use of aggregation points implies that packets in
ViAggre may take paths that are longer than native paths.

D
R

A
FT

5

Apart from the increased path length, the packets incur
queuing delay at all the extra hops. The extra hops also
result in an increase in load on the ISP’s routers and links
and a modification in the distribution of traffic across
them

Past studies have shown that a large majority of
Internet traffic is destined to a very small fraction of
prefixes [10,13,34,38]. The fact that routers today have
no choice but to maintain the complete DFZ routing
table implies that this observation wasn’t very useful for
routing configuration. However, with ViAggre, individual
routers only need to maintain routes for a fraction of
prefixes. The ISP can thus configure its ViAggre setup
such that the small fraction of popular prefixes are in
the FIB of every router and hence, are routed natively.
For design-I, this involves configuring each router with
a set of popular prefixes that should not be suppressed
from the FIB. For design-II, a PoP’s route-reflector can
be configured to not filter advertisements for popular
prefixes from the PoP’s routers. Beyond this, the ISP may
also choose to install customer prefixes into its routers
such that they don’t incur any stretch. The rest of the
proposal involving virtual prefixes remains the same and
ensures that individual routers only maintain routes for
a fraction of the unpopular prefixes. In section IV-B.4,
we analyze Netflow data from a tier-1 ISP network to
show that not only such an approach is feasible, it also
addresses all the concerns raised above.

III. ALLOCATING AGGREGATION POINTS

An ISP adopting ViAggre would obviously like to
minimise the stretch imposed on its traffic. Ideally, an
ISP would deploy an aggregation point for all virtual
prefixes in each of its PoPs. This would ensure that for
every virtual prefix, a router chooses the aggregation
point in the same PoP and hence, the traffic stretch is
minimal. However, this is often not possible in practice.
This is because ISPs, including tier-1 ISPs, often have
some small PoPs with just a few routers and therefore
there may not be enough cumulative FIB space in the PoP
to hold all the actual prefixes. Hence, the ISP needs to
be smart about the way it designates routers to aggregate
virtual prefixes and in this section we explore this choice.

A. Problem Formulation

We first introduce the notation used in the rest of this
section. Let T represent the set of prefixes in the Internet
routing table, R be the set of ISP’s routers and X is the
set of external routers directly connected to the ISP. For
each r ∈ R, Pr represents the set of popular prefixes for
router r. V is the set of virtual prefixes chosen by the ISP
and for each v ∈ V, nv is the number of prefixes in v.
We use two matrices, D = (di,j) that gives the distance
between routers i and j and W = (wi,j) that gives the

IGP metric for the IGP-established path between routers
i and j. We also define two relations:
– “BelongsTo” relation B: T → V such that B(p)=v if
prefix p belongs to or is encompassed by virtual prefix
v.
– “Egress” relation E: R x T→ R such that E(i, p)=j if
traffic to prefix p from router i egresses at router j.

The mapping relation A: R → 2V captures how the ISP
assigns aggregation points; i.e. A(r) = {v1 . . . vn} im-
plies that router r aggregates virtual prefixes {v1 . . . vn}.
Given this assignment, we can determine the aggregation
point any router uses for its traffic to each virtual prefix.
This is captured by the “Use” relation U: R x V → R
where U(i, v) = j or router i uses aggregation point j for
virtual prefix v if the following conditions are satisfied:

1) v ∈ A(j)
2) wi,j ≤ wi,k ∀k ∈ R, v ∈ A(k)

Here, condition 1) ensures that router j is an aggregation
point for virtual prefix v. Condition 2) captures the
operation of BGP with design-I and ensures that a router
chooses the aggregation point that is closest in terms of
IGP metrics.4

Using this notation, we can express the FIB size on
routers and the stretch imposed on traffic.

1) Routing State: In ViAggre, a router needs to main-
tain routes to the (real) prefixes in the virtual prefixes it is
aggregating, routes to all the virtual prefixes themselves
and routes to the popular prefixes. Further, the router
needs to maintain LSP mappings for LSPs originated by
the ISP’s edge routers with one entry for each external
router connected to the ISP. Hence, the “routing state”
for the router r, hereon simply referred to as the FIB
size (Fr), is given by:

Fr =
∑

v∈A(r)

nv + |V | + |Pr| + |X |

The Worst FIB size and the Average FIB size are
defined as follows:

Worst FIB size = maxr∈R(Fr)

Average FIB size =
∑

r∈R

(Fr)/|R|

2) Traffic Stretch: If router i uses router k as an
aggregation point for virtual prefix v, packets from router
i to a prefix p belonging to v are routed through router
k. Hence, the stretch (S) imposed on traffic to prefix p
from router i is given by:

Si,p = 0, p ∈ Pi

= (di,k + dk,j − di,j), p ∈ (T − Pi), v = B(p)
k = U(i, v) & j = E(k, p)

4With design-II, a router chooses the aggregation point closest to
the router’s route-reflector in terms of IGP metrics and so a similar
formulation works for the second design too.

D
R

A
FT

6

The Worst Stretch and Average Stretch are defined as
follows:

Worst Stretch = maxi∈R,p∈T (Si,p)

Average Stretch =
∑

i∈R,p∈T

(Si,p)/(|R| ∗ |T |)

Problem: ViAggre shrinks the routing table on routers
by ensuring that individual routers only maintain routes
to a fraction of the prefixes and forward packets to an
aggregation point for the rest. Thus, through the use of
aggregation points, ViAggre trades off an increase in
path length for a reduction in routing state. The ISP can
use the assignment of aggregation points as a knob to
tune this trade-off. Here we consider the simple goal
of minimising the FIB Size on the ISP’s routers while
bounding the stretch. Specifically, the ISP needs to assign
aggregation points by determining a mapping A that

min Worst FIB Size
s.t. Worst Stretch ≤ C

where C is the specified constraint on Worst Stretch.
Note that much more complex formulations are possible.
Our focus on worst-case metrics is guided by practical
concerns – the Worst FIB Size dictates how the ISP’s
routers need to be provisioned while the Worst Stretch
characterizes the most unfavorable impact of the use
of ViAggre. Specifically, bounding the Worst Stretch
allows the ISP to ensure that its existing SLAs are not
breached and applications sensitive to increase in latency
(example, VOIP) are not adversely affected.

B. A Greedy Solution

The problem of assigning aggregation points while
satisfying the conditions above can be mapped to the
MultiCommodity Facility Location (MCL) problem [33].
Using the MCL terminology, this involves routers rep-
resenting facilities, virtual prefixes being commodities
and each router’s traffic to virtual prefixes serving as
clients. MCL is NP-hard and [33] presents a logarithmic
approximation algorithm for it. Here we discuss a greedy
approximation solution to the problem.

The first solution step is to determine that if router i
were to aggregate virtual prefix v, which routers can it
serve without violating the stretch constraint. This is the
can servei,v set and is defined as follows:

can servei,v = {j | j ∈ R, (∀p ∈ T, B(p) = v, E(i, p)
= k, (dj,i + di,k − dj,k) ≤ C)}

Given this, the key idea behind the solution is that
any assignment based on the can serve relation will
have Worst Stretch less than C. Hence, our algorithm
designates routers to aggregate virtual prefixes in ac-
cordance with the can serve relation while greedily
trying to minimise the Worst FIB Size. The algorithm,
shown below, stops when each router can be served

by at least one aggregation point for each virtual pre-
fix.

Worst FIB Size=0
for all r in R do

for all v in V do
Calculate can server,v

Sort V in decreasing order of nv

for all v in V do
Sort R in decreasing order of |can server,v|
repeat

for all r in R do
if (Fr + nv) ≤ Worst FIB Size then

A[r]=A[r] ∪ v # Assign v to r
Fr = Fr + nv # r’s FIB size increases
Mark all routers in can server,v as served

if All routers are served for v then
break

if All routers are not served for v then
Worst FIB Size needs to be raised

for all r in R do
if v /∈ A[r] then

r is not an aggregation point for v
A[r]=A[r] ∪ v
Fr = Fr + nv

Worst FIB Size = Fr

break
until All Routers are served for virtual prefix v

IV. EVALUATION

In this section we evaluate the application of ViAggre
to a few Internet ISPs.

A. Metrics of Interest

We defined (Average and Worst) FIB Size and
Stretch metrics in section III-A. Here we define other
metrics that we use for ViAggre evaluation.

1) Impact on Traffic: Apart from the stretch imposed,
another aspect of ViAggre’s impact is the amount of
traffic affected. To account for this, we define traffic
impacted as the fraction of the ISP’s traffic that uses a
different router-level path than the native path. Note that
in many cases, a router will use an aggregation point for
the destination virtual prefix in the same PoP and hence,
the packets will follow the same PoP-level path as before.
Thus, another metric of interest is the traffic stretched,
the fraction of traffic that is forwarded along a different
PoP-level path than before. In effect, this represents the
change in the distribution of traffic across the ISP’s inter-
PoP links and hence, captures how ViAggre interferes
with the ISP’s inter-PoP traffic engineering.

2) Impact on Router Load: The extra hops traversed
by traffic increases the traffic load on the ISP’s routers.
We define the load increase across a router as the extra
traffic it needs to forward due to ViAggre, as a fraction
of the traffic it forwards natively.

D
R

A
FT

7

B. Tier-1 ISP Study

We analysed the application of ViAggre to a large tier-
1 ISP in the Internet. For our study, we obtained the
ISP’s router-level topology (to determine router set R)
and the routing tables of routers (to determine prefix
set T and the Egress E and BelongsTo B relations).
We used information about the geographical locations
of the routers to determine the Distance matrix D such
that di,j is 0 if routers i and j belong to the same
PoP (and hence, are in the same city) else di,j is set
to the propagation latency corresponding to the great
circle distance between i and j. Further, we did not
have information about the ISP’s link weights. However,
guided by the fact that intra-domain traffic engineering
is typically latency-driven [36], we use the Distance
matrix D as the Weight matrix W. We also obtained the
ISP’s traffic matrix; however, in order to characterise the
impact of vanilla ViAggre, the first part of this section
assumes that the ISP does not consider any prefixes as
popular.

1) Deployment decisions: The ISP, in order to adopt
ViAggre, needs to decide what virtual prefixes to use
and which routers aggregate these virtual prefixes. We
describe the approaches we evaluated.
– Determining set V. The most straightforward way to
select virtual prefixes while satisfying the two conditions
specified in section II is to choose large prefixes (/6s, /7s,
etc.) as virtual prefixes. We assume that the ISP uses
/7s as its virtual prefixes and refer to this as the “/7
allocation”.

However, such selection of virtual prefixes could lead
to a skewed distribution of (real) prefixes across them
with some virtual prefixes containing a large number of
prefixes. For instance, using /7s as virtual prefixes im-
plies that the largest virtual prefix (202.0.0.0/7) contains
22,772 of the prefixes in today’s BGP routing table or
8.9% of the routing table. Since at least one ISP router
needs to aggregate each virtual prefix, such large virtual
prefixes would inhibit the ISP’s ability to reduce the
Worst FIB size on its routers. However, as we mentioned
earlier, the virtual prefixes need not be of the same
length and so large virtual prefixes can be split to yield
smaller virtual prefixes. To study the effectiveness of
this approach, we started with /7s as virtual prefixes and
split each of them such that the resulting virtual prefixes
were still larger than any prefix in the Internet routing
table. This yielded 1024 virtual prefixes with the largest
containing 4,551 prefixes or 1.78% of the BGP routing
table. We also use this virtual prefix allocation for our
evaluation and refer to it as “Uniform Allocation”.
– Determining mapping A. We implemented the algo-
rithm described in section III-B and use it to designate
routers to aggregate virtual prefixes.

 0

 5

 10

 15

 20

Uniform/7Uniform/7

F
IB

 S
iz

e
(%

 o
f D

F
Z

 r
ou

tin
g

ta
bl

e)

Virtual Prefix Allocation Scheme

LSP mappings
VPs

(Real) Prefixes

 0

 5

 10

 15

 20

Uniform/7Uniform/7

F
IB

 S
iz

e
(%

 o
f D

F
Z

 r
ou

tin
g

ta
bl

e)

Virtual Prefix Allocation Scheme

LSP mappings
VPs

(Real) Prefixes

Fig. 2. FIB composition for the router with the largest FIB, C=4ms
and no popular prefixes.

2) Router FIB: We first look at the size and the
composition of the FIB on the ISP’s routers with a
ViAggre deployment. Specifically, we focus on the router
with the largest FIB for a deployment where the worst-
case stretch (C) is constrained to 4ms. The first two
bars in figure 2 show the FIB composition for a /7 and
uniform allocation respectively. With a /7 allocation, the
router’s FIB contains 46,543 entries which represents
18.2% of the routing table today. This includes 22,772
prefixes, 128 virtual prefixes, 23,643 LSP mappings and
0 popular prefixes. As can be seen, in both cases, the LSP
mappings for tunnels to the external routers contribute
significantly to the FIB. This is because the ISP has a
large number of customer routers that it has peerings
with.

However, we also note that customer ISPs do not
advertise the full routing table to their provider. Hence,
edge routers of the ISP could maintain routes advertised
by customer routers in their FIB, advertise these routes
onwards with themselves as the BGP NEXT HOP and
only initiate LSP advertisements for themselves and
for peer and provider routers connected to them. With
such a scheme, the number of LSP mappings that the
ISP’s routers need to maintain and the MPLS overhead
in general reduces significantly. The latter set of bars
in figure 2 shows the FIB composition with such a
deployment for the router with the largest FIB. For the /7
allocation, the Worst FIB size is 23,101 entries (9.02% of
today’s routing table) while for the Uniform allocation,
it is 10,226 entries (4.47%). In the rest of this section,
we assume this model of deployment.

3) Stretch Vs. FIB Size: We ran the assignment algo-
rithm with Worst Stretch Constraint (C) ranging from 0
to 10 ms and determined the (Average and Worst) Stretch
and FIB Size of the resulting ViAggre deployment.
Figure 3(a) plots these metrics for the /7 allocation. The
Worst FIB size, shown as a fraction of the DFZ routing
table size today, expectedly reduces as the constraint on
Worst Stretch is relaxed. However, beyond C=4ms, the
Worst FIB Size remains constant. This is because the
largest virtual prefix with a /7 allocation encompasses
8.9% of the DFZ routing table and the Worst FIB Size
cannot be any less than 9.02% (0.12% overhead is due
to virtual prefixes and LSP mappings). Figure 3(b) plots
the same metrics for the Uniform allocation and shows

D
R

A
FT

8

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10
 0

 1

 2

 3

 4

 5

 6

 7

F
IB

 S
iz

e
 (

%
 o

f D
F

Z
 r

ou
tin

g
ta

bl
e)

S
tr

et
ch

 (
m

se
c)

Worst Stretch Constraint (msec)

Worst FIB Size
Average FIB Size

Worst Stretch
Average Stretch

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10
 0

 1

 2

 3

 4

 5

 6

 7

F
IB

 S
iz

e
 (

%
 o

f D
F

Z
 r

ou
tin

g
ta

bl
e)

S
tr

et
ch

 (
m

se
c)

Worst Stretch Constraint (msec)

Worst FIB Size
Average FIB Size

Worst Stretch
Average Stretch

(a) With /7 allocation

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10
 0

 1

 2

 3

 4

 5

 6

 7

F
IB

 S
iz

e
 (

%
 o

f D
F

Z
 r

ou
tin

g
ta

bl
e)

S
tr

et
ch

 (
m

se
c)

Worst Stretch Constraint (msec)

Worst FIB Size
Average FIB Size

Worst Stretch
Average Stretch

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10
 0

 1

 2

 3

 4

 5

 6

 7

F
IB

 S
iz

e
 (

%
 o

f D
F

Z
 r

ou
tin

g
ta

bl
e)

S
tr

et
ch

 (
m

se
c)

Worst Stretch Constraint (msec)

Worst FIB Size
Average FIB Size

Worst Stretch
Average Stretch

(b) With Uniform allocation

Fig. 3. Variation of FIB Size and Stretch with Worst Stretch constraint
and no popular prefixes.

Today ViAggre
Worst – 0 2 4 8
Stretch (ms)

239K Quad. Fit Expired 2015 2020 2039 2051
FIB Expo. Fit Expired 2018 2022 2031 2035
1M Quad. Fit 2015 2033 2044 2081 2106
FIB Expo. Fit 2018 2029 2033 2042 2046

TABLE I

ESTIMATES FOR ROUTER LIFE WITH VIAGGRE

that the FIB can be shrunk even more. The figure also
shows that the Average FIB Size and the Average stretch
are expectedly small throughout. The anomaly beyond
C=8msec in figure 3(b) results from the fact that our
assignment algorithm is an approximation that can yield
non-optimal results.

Another way to quantify the benefits of ViAggre is
to determine the extension in the life of a router with
a specified memory due to the use of ViAggre. As
proposed in [22], we used data for the DFZ routing table
size from Jan’02 to Dec’07 [21] to fit a quadratic model
to routing table growth. Further, it has been claimed
that the DFZ routing table has seen exponential growth
at the rate of 1.3x every two years for the past few
years and will continue to do so [30]. We use these
models to extrapolate future DFZ routing table size. We
consider two router families: Cisco’s Cat6500 series with
a supervisor 720-3B forwarding engine that can hold
upto 239K IPv4 FIB entries and hence, was supposed to
be phased out by mid-2007 [6], though some ISPs still
continue to use them. We also consider Cisco’s current
generation of routers with a supervisor 720-3BXL engine
that can hold 1M IPv4 FIB entries. For each of these
router families, we calculate the year to which they
would be able to cope with the growth in the DFZ routing
table with the existing setup and with ViAggre. Table I

 0.001
 0.01
 0.1

 1
 10

 100

 0 2 4 6 8 10
 0

 10

 20

 30

 40

 50

%
 o

f T
ra

ffi
c

S
tr

et
ch

ed

 a
nd

 Im
pa

ct
ed

Lo
ad

 In
cr

ea
se

 (
%

)

Worst Stretch Constraint C (msec)

Traffic Stretched
Traffic Impacted

Median Load Increase
 0.001
 0.01
 0.1

 1
 10

 100

 0 2 4 6 8 10
 0

 10

 20

 30

 40

 50

%
 o

f T
ra

ffi
c

S
tr

et
ch

ed

 a
nd

 Im
pa

ct
ed

Lo
ad

 In
cr

ea
se

 (
%

)

Worst Stretch Constraint C (msec)

Traffic Stretched
Traffic Impacted

Median Load Increase

Fig. 4. Variation of the percentage of traffic stretched/impacted and
load increase across routers with Worst Stretch Constraint (Uniform
Allocation) and no popular prefixes.

shows the results for the Uniform Allocation.
For ViAggre, relaxing the worst-case stretch con-

straints reduces FIB size and hence, extends the router
life. The table shows that if the DFZ routing table were
to grow at the aforementioned exponential rate, ViAggre
can extend the life of the previous generation of routers
to 2018 with no stretch at all. We realise that estimates
beyond a few years are not very relevant since the ISP
would need to upgrade its routers for other reasons such
as newer technologies and higher data rates anyway.
However, with ViAggre, at least the ISP is not forced
to upgrade due to growth in the routing table.

Figure 4 plots the impact of ViAggre on the ISP’s
traffic and router load. The percentage of traffic stretched
is small, less than 1% for C ≤ 6 ms. This shows that
almost all the traffic is routed through an aggregation
point in the same PoP as the ingress. However, the
fact that no prefixes are considered popular implies that
almost all the traffic follows a different router-level path
as compared to the status quo. This shows up in figure 4
since the traffic impacted is ≈100% throughout. This,
in turn, results in a median increase in load across the
routers by ≈39%. In the next section we discuss how an
ISP can use the skewed distribution of traffic to address
the load concern while maintaining a small FIB on its
routers.

4) Popular Prefixes: Past studies of ISP traffic pat-
terns from as early as 1999 have observed that a small
fraction of Internet prefixes carry a large majority of ISP
traffic [10,13,34,38]. We used Netflow records collected
across the routers of the same tier-1 ISP as in the last
section for a period of two months (20th Nov’07 to
20th Jan’07) to generate per-prefix traffic statistics and
observed that this pattern continues to the present day.
The line labeled “Day-based, ISP-wide” in figure 5 plots
the average fraction of the ISP’s traffic destined to a
given fraction of popular prefixes when the set of popular
prefixes is calculated across the ISP on a daily basis. The
figure shows that 1.5% of most popular prefixes carry
75.5% of the traffic while 5% of the prefixes carry 90.2%
of the traffic.

ViAggre exploits the notion of prefix popularity to
reduce its impact on the ISP’s traffic. However, the ISP’s
routers need not consider the same set of prefixes as
popular; instead the popular prefixes can be chosen per-

D
R

A
FT

9

 60
 65
 70
 75
 80
 85
 90
 95

 100

2015105321

%
 o

f T
ra

ffi
c

C
ar

rie
d

% of Popular Prefixes

Day-based, ISP-wide
Day-based, per-PoP

Estimate, per-PoP

 60
 65
 70
 75
 80
 85
 90
 95

 100

2015105321

%
 o

f T
ra

ffi
c

C
ar

rie
d

% of Popular Prefixes

Day-based, ISP-wide
Day-based, per-PoP

Estimate, per-PoP

Fig. 5. Popular prefixes carry a large fraction of the ISP’s traffic.

 100

 10

 1

 0.1
20151053210

 100
 31.3
 10

 1

 0.1

2924191412109

%
 o

f T
ra

ffi
c

Im
pa

ct
ed

Lo
ad

 In
cr

ea
se

(%
 o

f n
at

iv
e

lo
ad

)
% of Popular Prefixes

Worst FIB size (% of DFZ routing table)

Traffic Impacted
Increased Load Quartiles

 100

 10

 1

 0.1
20151053210

 100
 31.3
 10

 1

 0.1

2924191412109

%
 o

f T
ra

ffi
c

Im
pa

ct
ed

Lo
ad

 In
cr

ea
se

(%
 o

f n
at

iv
e

lo
ad

)
% of Popular Prefixes

Worst FIB size (% of DFZ routing table)

Traffic Impacted
Increased Load Quartiles

(a) With /7 allocation

 100

 10

 1

 0.1
20151053210

 100
 39

 10

 1

 0.1

24.519.514.59.56.54.5

%
 o

f T
ra

ffi
c

Im
pa

ct
ed

Lo
ad

 In
cr

ea
se

(%
 o

f n
at

iv
e

lo
ad

)

% of Popular Prefixes

Worst FIB size (% of DFZ routing table)

Traffic Impacted
Increased Load Quartiles

 100

 10

 1

 0.1
20151053210

 100
 39

 10

 1

 0.1

24.519.514.59.56.54.5

%
 o

f T
ra

ffi
c

Im
pa

ct
ed

Lo
ad

 In
cr

ea
se

(%
 o

f n
at

iv
e

lo
ad

)

% of Popular Prefixes

Worst FIB size (% of DFZ routing table)

Traffic Impacted
Increased Load Quartiles

(b) With Uniform allocation

Fig. 6. Variation of Traffic Impacted and Load Increase (0-25-50-75-
100 percentile) with percentage of popular prefixes, C=4ms.

PoP or even per-router. We calculated the fraction of
traffic carried by popular prefixes, when popularity is
calculated separately for each PoP on a daily basis. This
is plotted in the figure as “Day-based, per-PoP” and the
fractions are even higher.5

When using prefix popularity for router configuration,
it would be preferable to be able to calculate the popular
prefixes over a week, month, or even longer durations.
The line labeled “Estimate, per-PoP” in the figure shows
the amount of traffic carried to prefixes that are popular
on a given day over the period of the next month, aver-
aged over each day in the first month of our study. As can
be seen, the estimate based on prefixes popular on any
given day carries just a little less traffic as when the prefix
popularity is calculated daily. This suggests that prefix
popularity is stable enough for ViAggre configuration
and the ISP can use the prefixes that are popular on a
given day for a month or so. However, we admit that that
these results are very preliminary and we need to study
ISP traffic patterns over a longer period to substantiate
the claims made above.

5We did not have Netflow records for individual routers and hence,
were unable to generate router-specific popular prefixes.

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

ATTAbove-
-net

VSNLExodusGXTiscaliNTTEboneSprintTelstra

F
IB

 S
iz

e
(%

 o
f D

F
Z

 r
ou

tin
g

ta
bl

e)

ISP

Average
Worst

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

ATTAbove-
-net

VSNLExodusGXTiscaliNTTEboneSprintTelstra

F
IB

 S
iz

e
(%

 o
f D

F
Z

 r
ou

tin
g

ta
bl

e)

ISP

Average
Worst

Fig. 7. FIB size for various ISPs using ViAggre.

5) Load Analysis: We now consider the impact of
a ViAggre deployment involving popular prefixes, i.e.
the ISP populates the FIB on its routers with popu-
lar prefixes. Specifically, we focus on a deployment
wherein the aggregation points are assigned to constrain
Worst Stretch to 4ms, i.e. C = 4ms. Figure 6 shows
how the traffic impacted and the quartiles for the load
increase vary with the percentage of popular prefixes
for both allocations. Note that using popular prefixes
increases the router FIB size by the number of prefixes
considered popular and thus, the upper X-axis in the
figure shows the Worst FIB size. The large fraction of
traffic carried by popular prefixes implies that both the
traffic impacted and the load increase drops sharply even
when a small fraction of prefixes is considered popular.
For instance, with 2% popular prefixes in case of the
uniform allocation (figure 6(b)), 7% of the traffic follows
a different router-level path than before while the largest
load increase is 3.1% of the original router load. With
5% popular prefixes, the largest load increase is 1.38%.
Note that the more even distribution of prefixes across
virtual prefixes in the uniform allocation results in a more
even distribution of the excess traffic load across the
ISP’s routers – this shows up in the load quartiles being
much smaller in figure 6(b) as compared to the ones in
figure 6(a).

C. Rocketfuel Study

We studied the topologies of 10 ISPs collected as part
of the Rocketfuel project [37] to determine the FIB size
savings that ViAggre would yield. Note that the fact we
don’t have traffic matrices for these ISPs implies that we
cannot analyze the load increase across their routers. For
each ISP, we used the assignment algorithm to determine
the worst FIB size resulting from a ViAggre deployment
where the worst stretch is limited to 5ms. Figure 7 shows
that the worst FIB size is always less than 15% of the
DFZ routing table. The FIB size is relatively higher for
NTT and Sprint because they have a global footprint with
a few small PoPs outside their main area of influence. For
instance, Sprint has a few small PoPs in the Asia-Pacific
region. The constraint on the worst stretch implies that in
many cases, the traffic from these PoPs cannot be routed
to an aggregation point in another PoP and so these
PoPs must have aggregation points for all virtual prefixes.
Consequently, the routers in these PoPs end up with a
relatively large FIB. However, the Rocketfuel topologies

D
R

A
FT

10

PoP1 PoP2

RR1 RR2

R1
(VP1)

R4
(VP2)

R2
(VP2)

R3
(VP1)

AS2 AS3

R5 R6

Fig. 8. WAIL topology used for our deployment. All routers in the
figure are Cisco 7300s. RR1 and RR2 are route-reflectors and are not
on the data path. Routers R1 and R3 aggregate virtual prefix VP1 while
routers R2 and R4 aggregate VP2.

are not complete and are missing routers. Hence, while
the results presented here are encouraging, they should
be treated as conservative estimates of the savings that
ViAggre would yield for these ISPs.

D. Discussion

The analysis above shows that ViAggre can signif-
icantly reduce FIB size. Most of the ISPs we studied
are large tier-1 and tier-2 ISPs. However, smaller tier-
2 and tier-3 ISPs are also part of the Internet DFZ.
Actually, it is probably more important for such ISPs
to be able to operate without needing to upgrade to the
latest generation of routers. The fact that these ISPs have
small PoPs might suggest that ViAggre would not be
very beneficial. However, given their small size, the PoPs
of these ISPs are typically geographically close to each
other. Hence, it is possible to use the cumulative FIB
space across routers of close-by PoPs to shrink the FIB
substantially. And the use of popular prefixes ensures that
the load increase and the traffic impact is still small. For
instance, we analyzed router topology and routing table
data from a regional tier-2 ISP (AS2497) and found that
a ViAggre deployment with worst stretch less than 5ms
can shrink the Worst FIB size to 14.2% of the routing
table today.

Further, the fact that such ISPs are not tier-1 ISPs
implies they are a customer of at least one other ISP.
Hence, in many cases, the ISP could substantially shrink
the FIB size on its routers by applying ViAggre to the
small number of prefixes advertised by their customers
and peers while using default routes for the rest of the
prefixes.

V. DEPLOYMENT

To verify the claim that ViAggre is a configuration-
only solution, we deployed both ViAggre designs on a
small network built on the WAIL testbed [3]. The test
network is shown in figure 8 and represents an ISP with
two PoPs. Each PoP has two Cisco 7301 routers and a
route-reflector.6 For the ViAggre deployment, we use two
virtual prefixes: 0.0.0.0/1 (VP1) and 128.0.0.0/1 (VP2)
with one router in each PoP serving as an aggregation
point for each virtual prefix. Routers R1 and R4 have

6These are used only for the design-II deployment. We used both a
Cisco 7301 and a Linux PC as a route-reflector.

an external router connected to them and exchange
routes using an eBGP peering. Specifically, router R5
advertises the entire DFZ routing table and this is, in turn,
advertised through the ISP to router R6. We use OSPF
for intra-domain routing. Beyond this, we configure the
internal distribution of BGP routes according to the
following three approaches:
1). Status Quo. The routers use a mesh of iBGP peerings
to exchange the routes and hence, each router maintains
the entire routing table.
2). Design-I. The routers still use a mesh of iBGP
peerings to exchange routes. Beyond this, the routers are
configured as follows:

– Virtual Prefixes. Routers advertise the virtual prefix
they are aggregating to their iBGP peers.

– FIB Suppression. Each router only loads the routes
that it is aggregating into its FIB. For instance, router
R1 uses an access-list to specify that only routes
belonging to VP1, the virtual prefix VP2 itself and any
popular prefixes are loaded into the FIB. A snippet of
this access-list is shown below.

! R5’s IP address is 198.18.1.200
distance 255 198.18.1.200 0.0.0.0 1

! Don’t mark anything inside 0.0.0.0/1
access-list 1 deny 0.0.0.0 128.255.255.255
! Don’t mark virtual prefix 128.0.0.0/1
access-list 1 deny 0.0.0.0 128.0.0.0
! Don’t mark popular prefix 122.1.1.0/24
access-list 1 deny 122.1.1.0 0.0.0.255
! ... other popular prefixes follow ...

! Mark the rest with admin distance 255

access-list 1 permit any

Here, the distance command sets the adminis-
trative distance of all prefixes that are accepted by
access-list 1 to “255” and these routes are not
loaded by the router into its FIB.

– LSPs to external routers. We use MPLS for the
tunnels between routers. To this effect, LDP [1] is
enabled on the interfaces of all routers and establishes
LSPs between the routers. Further, each edge router (R1
and R4) initiates a Downstream Unsolicited tunnel [1]
for each external router connected to them to all their
IGP neighbors using LDP. This ensures that packets to
an external router are forwarded using MPLS to the edge
router which strips the MPLS header before forwarding
them onwards.

Given this setup and assuming no popular prefixes,
routers R1 and R3 store 40.9% of today’s routing table
(107,943 prefixes that are in VP1) while R2 and R4 store
59.1%.
3). Design-II. The routers in a PoP peer with the route-
reflector of the PoP and the route-reflectors peer with
each other. External routers R1 and R6 are reconfigured
to have eBGP peerings with RR1 and RR2 respectively.
The advertisement of virtual prefixes and the MPLS

D
R

A
FT

11

configuration is the same as above. Beyond this, the
route-reflectors are configured to ensure that they only
advertise the prefixes being aggregated by a router to it.
For instance, RR1 uses a prefix-list to ensure that
only prefixes belonging to VP1, virtual prefix VP2 itself
and popular prefixes are advertised to router R1. The
structure of this prefix-list is similar to the access-list
shown above. Finally, route-reflectors use a route-map on
their eBGP peerings to change the BGP NEXT HOP of
the advertised routes to the edge router that the external
peer is connected too. This ensures that the packets don’t
actually flow through the route-reflectors.

A. Configuration Overhead

A drawback of ViAggre being a “configuration-only”
approach is the overhead that the extra configuration
entails. The discussion above details the extra configu-
ration that routers need to participate in ViAggre. Based
on our deployment, the number of extra configuration
lines needed for a router r to be configured according to
design-I is given by (rint + rext + 2|A(r)| + |Pr| + 6)
where rint is the number of router interfaces, rext is the
number of external routers r is peering with, |A(r)| is
the number of virtual prefixes r is aggregating and |Pr|
is the number of popular prefixes in r. Given the size of
the routing table today, considering even a small fraction
of prefixes as popular would cause the expression to be
dominated by |Pr| and can represent a large number of
configuration lines.

However, quantifying the extra configuration lines
does not paint the complete picture since given a list
of popular prefixes, it is trivial to generate an access or
prefix-list that would allow them. To illustrate this, we
developed a configuration tool as part of our deployment
effort. The tool is 334 line python script which takes
as input a router’s existing configuration file, the list of
virtual prefixes, the router’s (or representative) Netflow
records and the percentage of prefixes to be considered
popular. The tool extracts relevant information, such as
information about the router’s interfaces and peerings,
from the configuration file. It also uses the Netflow
records to determine the list of prefixes to be considered
popular. Based on these extracted details, the script
generates a configuration file that allows the router to
operate as a ViAggre router. We have been using this tool
for experiments with our deployment and it is available
at [45]. Further, we use clogin [42] to automatically load
the generated ViAggre configuration file onto the router.
Thus, we can reconfigure our testbed from status quo
operation to ViAggre operation (design-I and design II)
in an automated fashion. While our tool is specific to the
router vendor and other technologies in our deployment,
its simplicity and our experience with it lends evidence
to the argument that ViAggre offers a good trade-off be-

 100

 1000

 0 50 100 150 200 250

In
st

al
la

tio
n

T
im

e
(s

ec
)

Number of Prefixes Advertised (thousands)

Design-I, 2% PP
Design-I, 5% PP

Design-II, 2% PP
Design-II, 5% PP

Status Quo

Fig. 9. Installation time with different approaches and varying fraction
of Popular Prefixes (PP).

tween the configuration overhead and increased routing
scalability.

B. Control-plane Overhead

Section IV evaluated the impact of ViAggre on the
ISP’s data plane. Beyond this, ViAggre uses control-
plane mechanisms to divide the routing table amongst
the ISP’s routers – Design-I uses access-lists and
Design-II uses prefix-lists. We quantify the per-
formance overhead imposed by these mechanisms using
our deployment. Specifically, we look at the impact of
our designs on the propagation of routes through the ISP.

To this effect, we configured the internal distribution
of BGP routes in our testbed according to the three
approaches described above. External router R5 is con-
figured to advertise a variable number of prefixes through
its eBGP peering. We restart this peering on router R5
and measure the time it takes for the routes to be installed
into the FIB of the ISP’s routers; hereon we refer to
this as the installation time. During this time, we also
measure the CPU utilization on the routers. We achieve
this by using a clogin script to execute the “show process
cpu” command on each router every 5 seconds. The
command gives the average CPU utilization of individual
processes on the router over the past 5 seconds and we
extract the CPU utilization of the “BGP router” process.

We measured the installation time and the CPU utiliza-
tion for the three approaches. For status quo and design-
I, we focus on the measurements for router R1 while
for design-II, we focus on the measurements for route-
reflector RR1. We also varied the number of popular pre-
fixes. Here we present results with 2% and 5% popular
prefixes. Figures 9 and 10 plot the installation time and
the quartiles for the CPU utilization respectively.

Design-I Vs Status Quo. Figure 9 shows that the
installation time with design-I is much higher than
that with status quo. For instance, with status quo,
the complete routing table is transferred and installed
on router R1 in 189 seconds while with design-I and
2% popular prefixes, it takes 834 seconds. Further,
the design-I installation time increases significantly as
the number of popular prefixes increases. Finally, fig-
ures 10(b) and 10(c) show that design-I results in very

D
R

A
FT

12

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

C
P

U
 U

til
iz

at
io

n
(%

)

Number of Prefixes (thousands)

(a) Status Quo, Measured on R1

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

C
P

U
 U

til
iz

at
io

n
(%

)

Number of Prefixes (thousands)

(b) Design-I, 2% PP, Measured on R1

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

C
P

U
 U

til
iz

at
io

n
(%

)

Number of Prefixes (thousands)

(c) Design-I, 5% PP, Measured on R1

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

C
P

U
 U

til
iz

at
io

n
(%

)

Number of Prefixes (thousands)

(d) Design-II, 2% PP, Measured on RR1

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

C
P

U
 U

til
iz

at
io

n
(%

)

Number of Prefixes (thousands)

(e) Design-II, 5% PP, Measured on RR1

Fig. 10. CPU Utilization quartiles (0-25-50-75-100 percentile) for the
three approaches and different fraction of Popular Prefixes (PP).

high CPU load during the transfer which increases as
more prefixes are considered popular. This results from
the fact that access-lists with a large number of rules
are very inefficient and would obviously be unacceptable
for an ISP deploying ViAggre. While we are currently
exploring ways to achieve FIB suppression without the
use of access-list, we note that the performance of access-
lists has been improved on current generation Cisco
routers (12000 and onwards) [41].

Design-II Vs Status Quo. Figure 9 shows that the
time to transfer and install routes with design-II is not
much higher than status quo, especially with 2% popular
prefixes and a large number of advertised routes. For
instance, design-II with 2% popular prefixes leads to an
installation time of 200 seconds for the entire routing
table as compared to 189 seconds for status quo. Fig-
ures 10(d) and 10(e) show that the CPU utilization is low
with median utilization being less than 20%. We note that
the increasing the number of prefixes being advertised
increases the number of popular prefixes which, in turn,
increases the size of the prefix-list being used. The CPU

utilization increases as the number of prefixes advertised
increases and then tapers off. Further, the trend is similar
to status quo (figure 10(a)). Also note that the utilization
shown for design-II was measured on route-reflector RR1
which has fewer peerings than router R1 in status quo.
This explains the fact that the utilization with design-II
is less than status quo.

C. Failover

As detailed in section II-E, as long as alternate ag-
gregation points exist, traffic in a ViAggre network is
automatically re-routed upon failure of the aggregation
point being used. We measured this failover time using
our testbed. In the interest of space, we very briefly
summarise the experiment here. We generated UDP
traffic between PCs connected to routers R5 and R6
(figure 8) and then crashed the router being used as the
aggregation point for the traffic. We measured the time
it takes for traffic to be re-routed over 10 runs with each
design. In both cases, the maximum observed failover
time was 200 usecs. This shows that our designs ensure
fast failover between aggregation points.

VI. DISCUSSION

Pros. ViAggre can be incrementally deployed by an ISP
since it does not require the cooperation of other ISPs
and router vendors. The ISP does not need to change the
structure of its PoPs or its topology. What’s more, an
ISP could experiment with ViAggre on a limited scale (a
few virtual prefixes or a limited number of PoPs) to gain
experience and comfort before expanding its deployment.
None of the attributes in the BGP routes advertised by
the ISP to its neighbors are changed due to the adoption
of ViAggre. Also, the use of ViAggre by the ISP does not
restrict its routing policies and route selection. Further, at
least for design-II, the control-plane overhead is minimal
and hence, properties such as convergence times are
similar. Finally, there is incentive for deployment since
the ISP improves its own capability to deal with routing
table growth.
Management Overhead. As detailed in section V-A,
ViAggre requires extra configuration on the ISP’s routers.
Beyond this, the ISP needs to make a number of de-
ployment decisions such as choosing the virtual prefixes
to use, deciding where to keep aggregation points for
each virtual prefix, and so on. Apart from such one-
time or infrequent decisions, ViAggre may also influence
very important aspects of the ISP’s day-to-day operation
such as maintenance, debugging, etc. All this leads to
increased complexity and there is a cost associated with
the extra management.

In section V-A we discussed a configuration tool that
automates ViAggre configuration. We are also imple-
menting a planning tool that takes as input high-level

D
R

A
FT

13

constraints specified by the human ISP manager such
as constraints on the traffic stretch, router load, router
memory used and the robustness of the resulting design.
It then uses ILP to solve a multiple-constraint optimiza-
tion problem to generate VA-specific deployment details
such as the assignment of aggregation points. These two
tools combined would provide human ISP managers an
automated means to adopt ViAggre without needing to
delve into ViAggre and configuration-specific details.

It is difficult to speculate about actual costs and so we
don’t compare the increase in management costs against
the cost of upgrading routers. While we hope that our
tools will actually lead to cost savings for a ViAggre
network, an ISP might just be inclined to adopt ViAggre
because it breaks the dependency of various aspects of its
operation on the size of the routing table. These aspects
include its upgrade cycle, the per-byte forwarding cost,
the per-byte forwarding power, etc.
Other concerns. An important concern arising out of the
use of ViAggre is the tunneling overhead. However, the
extensive use of tunnels (MPLS, GRE-IP, IPSec, VLAN
tunneling) in ISP networks has meant that most routers
are already equipped with interfaces that have extensive
tunneling and detunneling capabilities at line rates [14].

As mentioned earlier, ViAggre represents a trade-off
between FIB shrinkage on one hand and increased router
load and traffic stretch on the other. The fact that Internet
traffic follows a power-law distribution makes this a very
beneficial trade-off. This power-law observation has held
up in measurement studies from 1999 [10] to 2008 (in
this paper) and hence, Internet traffic has followed this
distribution for at least the past nine years in spite of
the rise in popularity of P2P and video streaming. We
believe that, more likely than not, future Internet traffic
will be power-law distributed and hence, ViAggre will
represent a good trade-off for ISPs.
Other design points. The ViAggre proposal presented
in this paper represents one point in the design space that
we focussed on for the sake of concreteness. Alternative
approaches based on the same idea include
– Adding routers. We have presented a couple of tech-
niques that ensure that only a subset of the routing
table is loaded into the FIB. Given this, an ISP could
install “slow-fat routers”, low-end devices (or maybe
even a stack of software routers [17]) in each PoP
that are only responsible for routing traffic destined to
unpopular prefixes. These devices forward a low-volume
of traffic, so it would be easier and cheaper to hold the
entire routing table. The popular prefixes are loaded into
existing routers. This approach does away with a lot of
deployment complexity. However, apart from the cost
of the additional devices, this leads to concerns similar
to the ones that ISPs have regarding routers that cache
routes. For instance, attack traffic to unpopular prefixes

could lead to a high relative increase in load across the
low-end devices.
– Router changes. Routers can be changed to be
ViAggre-aware and hence, make virtual prefixes first-
class network objects. This would do away with a lot
of the configuration complexity that ViAggre entails,
ensure that ISPs get vendor support and hence, make
it more palatable for ISPs. We, in cooperation with a
router vendor, are exploring this option [16].

Routers today tend to have multiple blades with each
blade maintaining its own copy of the entire routing
table. Another approach involving vendor support is
to split the routing table amongst router blades using
ViAggre and hence, achieve FIB shrinkage with less
burden on the ISP itself.
– Clean-slate ViAggre. The basic concept of virtual
networks can be applied in an inter-domain fashion. The
idea here is to use cooperation amongst ISPs to induce
a routing hierarchy that is more aggregatable and hence,
can accrue benefits beyond shrinking the router FIB. This
involves virtual networks for individual virtual prefixes
spanning domains such that even the RIB on a router only
contains the prefixes it is responsible for. This would
reduce both the router FIB and RIB and in general,
improve routing scalability. We intend to study the merits
and demerits of such an approach in future work.

VII. RELATED WORK

A number of efforts have tried to directly tackle the
routing scalability problem through clean-slate designs.
One set of approaches try to reduce routing table size
by dividing edge networks and ISPs into separate ad-
dress spaces [7,11,29,32,40]. Our work resembles some
aspects of CRIO [40] which uses virtual prefixes and
tunneling to decouple network topology from address-
ing. However, CRIO requires adoption by all provider
networks and like [7,11,29,32], requires a new mapping
service to determine tunnel endpoints. APT [23] presents
such a mapping service. Alternatively, it is possible to
encode location information into IP addresses [8,15,19]
and hence, reduce routing table size. Finally, an inter-
esting set of approaches that trade-off stretch for routing
table size are Compact Routing algorithms; see [26] for
a survey of the area.

The use of tunnels has long been proposed as a routing
scaling mechanism. VPN technologies such as BGP-
MPLS VPNs [9] use tunnels to ensure that only PE
routers need to keep the VPN routes. As a matter of
fact, ISPs can and probably do use tunneling protocols
such as MPLS and RSVP-TE to engineer a BGP-free
core [35]. However, edge routers still need to keep the
full FIB. With ViAggre, none of the routers on the data-
path need to maintain the full FIB. Router vendors,
if willing, can use a number of techniques to reduce

D
R

A
FT

14

the FIB size, including FIB compression [35] and route
caching [35]. Forgetful routing [24] selectively discards
alternative routes to reduce RIB size. [2] sketches the
basic ViAggre idea.

In recent work, Kim et. al. [25] use relaying, similar to
ViAggre’s use of aggregation points, to address the VPN
routing scalability problem. The VPN setting involves
VPN-specific routing tables and the task of maintaining
these can be split amongst PE routers; in our setting there
is just the Internet routing table and we use the concept
of virtual prefixes to make it divisible. We also have the
additional challenge of dealing with networks other than
customers since these networks might be advertising the
full routing table, which is solved by not installing some
routes in the FIB (design-I) or through the use filters on
route-reflectors (design-II).

Over the years, several articles have documented the
existing state of inter-domain routing and delineated
requirements for the future [5,12,28]; see [12] for other
routing related proposals. RCP [4] and 4D [18] argue for
logical centralization of routing in ISPs to provide scal-
able internal route distribution and a simplified control
plane respectively. We note that ViAggre fits well into
these alternative routing models. As a matter of fact, the
use of route-reflectors in design-II is similar in spirit to
RCSs in [4] and DEs in [18].

VIII. SUMMARY

This paper presents ViAggre, a technique that can be
used by an ISP to substantially shrink the FIB on its
routers and hence, extend the lifetime of its installed
router base. The ISP may have to upgrade the routers
for other reasons but at least it is not driven by DFZ
growth over which it has no control. While it remains
to be seen whether the use of automated tools to config-
ure and manage large ViAggre deployments can offset
the complexity concerns, we believe that the simplicity
of the proposal and its possible short-term impact on
routing scalability suggest that is an alternative worth
considering.

REFERENCES

[1] ANDERSSON, L., MINEI, I., AND THOMAS, B. RFC 5036 - LDP
Specification, Jan 2006.

[2] BALLANI, H., FRANCIS, P., CAO, T., AND WANG, J. ViAggre: Making
Routers Last Longer! In Proc. of Hotnets (Oct 2008).

[3] BARFORD, P. Wisconsin Advanced Internet Laboratory (WAIL), Dec
2007. http://wail.cs.wisc.edu/.

[4] CAESAR, M., CALDWELL, D., FEAMSTER, N., REXFORD, J., SHAIKH,
A., AND VAN DER MERWE, J. Design and Implementation of a Routing
Control Platform . In Proc. of Symp. on Networked Systems Design and
Implementation (NSDI) (2005).

[5] DAVIES, E., AND DORIA, A. Analysis of Inter-Domain Routing Re-
quirements and History. Internet Draft draft-irtf-routing-history-07.txt,
Jan 2008.

[6] DE SILVA, S. 6500 FIB Forwarding Capacities. NANOG 39 meeting,
2007. http://www.nanog.org/mtg-0702/presentations/
fib-desilva.pdf.

[7] DEERING, S. The Map & Encap Scheme for scalable IPv4 routing with
portable site prefixes, March 1996. http://www.cs.ucla.edu/
∼lixia/map-n-encap.pdf.

[8] DEERING, S., AND HINDEN, R. IPv6 Metro Addressing. Internet Draft
draft-deering-ipv6-metro-addr-00.txt, Mar 1996.

[9] E. ROSEN AND Y. REKHTER. RFC 2547 - BGP/MPLS VPNs, Mar 1999.
[10] FANG, W., AND PETERSON, L. Inter-As traffic patterns and their

implications. In Proc. of Global Internet (1999).
[11] FARINACCI, D., FULLER, V., ORAN, D., AND MEYER, D. Locator/ID

Separation Protocol (LISP). Internet Draft draft-farinacci-lisp-02.txt, July
2007.

[12] FEAMSTER, N., BALAKRISHNAN, H., AND REXFORD, J. Some Foun-
dational Problems in Interdomain Routing. In Proc. of Workshop on Hot
Topics in Networks (HotNets-III) (2004).

[13] FELDMANN, A., GREENBERG, A., LUND, C., REINGOLD, N., REX-
FORD, J., AND TRUE, F. Deriving traffic demands for operational IP
networks: methodology and experience. IEEE/ACM Trans. Netw. 9, 3
(2001).

[14] FRANCIOS, P., AND BONAVENTURE, O. An evaluation of IP-based Fast
Reroute Techniques. In Proc. of CoNEXT (2005).

[15] FRANCIS, P. Comparision of geographical and provider-rooted Internet
addressing. Computer Networks and ISDN Systems 27, 3 (1994).

[16] FRANCIS, P., XU, X., AND BALLANI, H. FIB Suppression with Virtual
Aggregation and Default Routes. Internet Draft draft-francis-idr-intra-va-
01.txt, Sep 2008.

[17] GILLIAN, B. VYATTA: Linux IP Routers, Dec 2007. http://
freedomhec.pbwiki.com/f/linux ip routers.pdf.

[18] GREENBERG, A., HJALMTYSSON, G., MALTZ, D. A., MEYERS, A.,
REXFORD, J., XIE, G., YAN, H., ZHAN, J., AND ZHANG, H. A clean
slate 4D approach to network control and management. ACM SIGCOMM
Computer Communications Review (October 2005).

[19] HAIN, T. An IPv6 Provider-Independent Global Unicast Address Format.
Internet Draft draft-hain-ipv6-PI-addr-02.txt, Sep 2002.

[20] HUGHES, D., Dec 2004. PACNOG list posting http:
//mailman.apnic.net/mailing-lists/pacnog/
archive/2004/12/msg00000.html.

[21] HUSTON, G. BGP Reports, Dec 2007. http://bgp.potaroo.
net/.

[22] HUSTON, G., AND ARMITAGE, G. Projecting Future IPv4 Router
Requirements from Trends in Dynamic BGP Behaviour. In Proc. of
ATNAC (2006).

[23] JEN, D., MEISEL, M., MASSEY, D., WANG, L., ZHANG, B., AND
ZHANG, L. APT: A Practical Transit Mapping Service. Internet Draft
draft-jen-apt-01.txt, Nov 2007.

[24] KARPILOVSKY, E., AND REXFORD, J. Using forgetful routing to control
BGP table size. In Proc. of CoNext (2006).

[25] KIM, C., GERBER, A., LUND, C., PEI, D., AND SEN, S. Scalable VPN
Routing via Relaying. In Proc. of ACM SIGMETRICS (2008).

[26] KRIOUKOV, D., AND KC CLAFFY. Toward Compact Interdomain Rout-
ing, Aug 2005. http://arxiv.org/abs/cs/0508021.

[27] LI, T. Router Scalability and Moore’s Law, Oct 2006. http://www.
iab.org/about/workshops/routingandaddressing/
Router Scalability.pdf.

[28] MAO, Z. M. Routing Research Issues. In Proc. of WIRED (2003).
[29] MASSEY, D., WANG, L., ZHANG, B., AND ZHANG, L. A Proposal for

Scalable Internet Routing & Addressing. Internet Draft draft-wang-ietf-
efit-00, Feb 2007.

[30] MEYER, D., ZHANG, L., AND FALL, K. Report from the IAB Workshop
on Routing and Addressing. Internet Draft draft-iab-raws-report-02.txt,
Apr 2007.

[31] NARTEN, T. Routing and Addressing Problem Statement. Internet Draft
draft-narten-radir-problem-statement-02.txt, Apr 2008.

[32] O’DELL, M. GSE–An Alternate Addressing Architecture for IPv6.
Internet Draft draft-ietf-ipngwg-gseaddr-00.txt, Feb 1997.

[33] RAVI, R., AND SINHA, A. Multicommodity facility location. In Proc. of
ACM-SIAM SODA (2004).

[34] REXFORD, J., WANG, J., XIAO, Z., AND ZHANG, Y. BGP routing sta-
bility of popular destinations. In Proc. of Internet Measurment Workshop
(2002).

[35] SCUDDER, J. Router Scaling Trends. APRICOT Meeting, 2007.
http://submission.apricot.net/chatter07/slides/
future of routing.

[36] SPRING, N., MAHAJAN, R., AND ANDERSON, T. Quantifying the
Causes of Path Inflation. In Proc. of ACM SIGCOMM (2003).

[37] SPRING, N., MAHAJAN, R., AND WETHERALL, D. Measuring ISP
topologies with Rocketfuel. In Proc. of ACM SIGCOMM (2002).

[38] TAFT, N., BHATTACHARYYA, S., JETCHEVA, J., AND DIOT, C. Under-
standing traffic dynamics at a backbone PoP. In Proc. of Scalability and
Traffic Control and IP Networks SPIE ITCOM (2001).

[39] Y. REKHTER AND T. LI AND S. HARES, ED. RFC 4271 - A Border
Gateway Protocol 4 (BGP-4), Jan 2006.

[40] ZHANG, X., FRANCIS, P., WANG, J., AND YOSHIDA, K. Scaling Global
IP Routing with the Core Router-Integrated Overlay. In Proc. of ICNP
(2006).

[41] Access List Performance Improvements, Oct 2008. http:
//www.cisco.com/en/US/docs/ios/12 0s/feature/

D
R

A
FT

15

guide/hw acl.html.
[42] clogin Manual Page, Oct 2008. http://www.shrubbery.net/

rancid/man/elogin.1.html.
[43] Foundry Router Reference, Jul 2008. http://www.

foundrynetworks.co.jp/services/documentation/
srcli/BGP cmds.html.

[44] JunOS Route Preferences, Jul 2008. http://www.
juniper.net/techpubs/software/junos/junos60/
swconfig60-routing/html/protocols-overview4.html.

[45] ViAggre Configuration Tool, Oct 2008. http://www.cs.cornell.
edu/∼hitesh/va-tools/va conf generator.py.

Towards a Global IP Anycast Service

Hitesh Ballani
Cornell University

Ithaca, NY

hitesh@cs.cornell.edu

Paul Francis
Cornell University

Ithaca, NY

francis@cs.cornell.edu

ABSTRACT
IP anycast, with its innate ability to find nearby resources
in a robust and efficient fashion, has long been considered an
important means of service discovery. The growth of P2P
applications presents appealing new uses for IP anycast. Un-
fortunately, IP anycast suffers from serious problems: it is
very hard to deploy globally, it scales poorly by the num-
ber of anycast groups, and it lacks important features like
load-balancing. As a result, its use is limited to a few crit-
ical infrastructure services such as DNS root servers. The
primary contribution of this paper is a new IP anycast archi-
tecture, PIAS, that overcomes these problems while largely
maintaining the strengths of IP anycast. PIAS makes use of a
proxy overlay that advertises IP anycast addresses on behalf
of group members and tunnels anycast packets to those mem-
bers. The paper presents a detailed design of PIAS and evalu-
ates its scalability and efficiency through simulation. We also
present preliminary measurement results on anycasted DNS
root servers that suggest that IP anycast provides good affin-
ity. Finally, we describe how PIAS supports two important
P2P and overlay applications.

Categories and Subject Descriptors: C.2.1 [Network Ar-
chitecture and Design]: Network communications

General Terms: Design, Measurement.

Keywords: Anycast, Proxy, Overlay, Routing, Architecture.

1. INTRODUCTION
Ever since it was proposed in 1993, IP anycast[1]1 has been

viewed as a powerful IP packet addressing and delivery mode.
Because IP anycast typically routes packets to the nearest of
a group of hosts, it has been seen as a way to obtain efficient,
transparent and robust service discovery . In cases where
the service itself is a connectionless query/reply service, IP

1IP anycast is an IP addressing and delivery mode whereby
an IP packet is sent to one of a group of hosts identified by
the IP anycast address. Where IP unicast is one-to-one, and
IP multicast is one-to-many, IP anycast is one-to-any.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’05, Aug 22–26, 2005, Philadelphia, Pennsylvania, USA.
Copyright 2005 ACM 1-59593-009-4/05/0008 ...$5.00.

anycast supports the complete service, not just discovery of
the service. The best working example of the latter is the
use of IP anycast to replicate root DNS servers [2][3] without
modifying DNS clients. Other proposed uses include host
auto-configuration [1] and using anycast to reach a routing
substrate, such as rendezvous points for a multicast tree[4][5]
or a IPv6 to IPv4 (6to4) transition device[6].

In spite of its benefits, there has been very little IP anycast
deployment to date, especially on a global scale. The only
global scale use of IP anycast in a production environment
that we are aware of is the anycasting of DNS root servers
and AS-112 servers[7]2.

The reason for this is that IP anycast has serious limita-
tions. Foremost among these is IP anycast’s poor scalability.
As with IP multicast, routes for IP anycast groups cannot
be aggregated—the routing infrastructure must support one
route per IP anycast group. It is also very hard to deploy IP
anycast globally. The network administrator must obtain an
address block of adequate size (i.e. a /24), and arrange to
advertise it into the BGP substrate of its upstream ISPs. Fi-
nally, the use of IP routing as the host selection mechanism
means that important selection metrics such as server load
cannot be used. It is important to note that while IPv6 has
defined anycast as part of its addressing architecture[8], it is
also afflicted by the same set of problems.

By contrast, application layer anycast provides a one-
to-any service by mapping a higher-level name, such as a
DNS name, into one of a group of hosts, and then inform-
ing the client of the selected host’s IP address, for instance
through DNS or some redirect mechanism. This approach is
much easier to deploy globally, and is in some ways superior
in functionality to IP anycast. For example, the fine grained
control over the load across group members and the ability
to incorporate other selection criteria makes DNS-based any-
cast the method of choice for Content Distribution Networks
(CDNs) today.

In spite of this, we believe that IP anycast has compelling
advantages, and its appeal increases as overlay and P2P ap-
plications increase. First, IP anycast operates at a low level.
This makes it potentially useable by, and transparent to, any
application that runs over IP. It also makes IP anycast the
only form of anycast suitable for low-level protocols, such
as DNS. Second, it automatically discovers nearby resources,
eliminating the need for complex proximity discovery mecha-
nisms [9]. Finally, packets are delivered directly to the target
destination without the need for a redirect (frequently re-

2anycasted servers that answer PTR queries for the RFC 1918
private addresses

quired by application-layer anycast approaches). This saves
at least one packet round trip, which can be important for
short lived exchanges. It is these advantages that have led to
increased use of IP anycast within the operational commu-
nity, both for providing useful services (DNS root servers),
and increasingly for protecting services from unwanted pack-
ets (AS112 and DDoS sinkholes [10]).

The primary contribution of this paper is the detailed de-
scription of a deployment architecture for an IP anycast ser-
vice that overcomes the limitations of today’s “native” IP
anycast while adding new features, some typically associated
with application-level anycast, and some completely new. This
architecture, called PIAS (Proxy IP Anycast Service),
is composed as an overlay, and utilizes but does not impact
the IP routing infrastructure. The fact that PIAS is an IP
anycast service means that clients use the service completely
transparently—that is, with their existing IP stacks and ap-
plications.

PIAS allows an endhost in an anycast group (anycast group
member, or anycast target) to receive anycast packets for
that group via its normal unicast address (and normal proto-
col stack). The anycast target joins the anycast group simply
by transmitting a request packet to an anycast address (again,
via its unicast interface). The target may likewise leave the
group through a request packet, or by simply becoming silent.

PIAS utilizes the IP address space efficiently: thousands
of IP anycast groups may be identified through a single IP
address. It scales well by the number of groups, group size
and group churn with virtually no impact on the IP routing
infrastructure. It provides fast failover in response to failures
of both target hosts and PIAS infrastructure nodes.

PIAS can select targets based on criteria other than prox-
imity to the sending host, notably including the ability to
load balance among targets. PIAS has the unique feature
that an anycast group member can also transmit packets to
other members of the same anycast group. This is in contrast
to native IP anycast, where a group member would receive
its own packet if it transmitted to the group. This feature
makes IP anycast available to P2P applications, something
not possible if a host can’t both send to and receive from the
anycast group.

The remainder of the paper is organized as follows: Section
2 identifies the features of an ideal anycast service. Section
3 spells out the system design together with the goals sat-
isfied by each design feature. Section 4 presents simulations
and measurements meant to evaluate various features of the
PIAS design. Section 5 discusses related work and section 6
describes a few applications made possible by PIAS. Section
7 discusses other important goals that PIAS must fulfill and
section 8 presents our conclusions.

2. DESIGN GOALS
This section specifically lays out the design goals of PIAS,

and briefly comments on how well PIAS meets those goals.
The subsequent design description section refers back to these
goals as needed. The goals are listed here in two parts. The
first part lists those goals that are accomplished by native IP
anycast, and that we wish to retain. The second part lists
those goals that are not accomplished by native IP anycast.
In this way, we effectively highlight the weaknesses of IP any-
cast, and the contributions of PIAS.

1. Backwards Compatible: Native IP anycast is completely

transparent to clients and routers , and we believe that
this transparency is critical to the success of a new IP
anycast service. Because PIAS is an overlay technology
that uses native IP anycast, it does not change clients
and routers.

2. Scale by group size: By virtue of being totally dis-
tributed among routers, native IP anycast scales well
by group size. PIAS has no inherent group size limi-
tation. PIAS is deployed as an overlay infrastructure,
and can scale arbitrarily according to the size of that
infrastructure.

3. Efficient packet transfer : Because native IP anycast
uses IP routing, its paths are naturally efficient. As
an overlay, PIAS imposes some stretch penalty on the
paths packets take. The penalty imposed by PIAS is
small (section 4.3), and shrinks as the PIAS infrastruc-
ture grows.

4. Robustness: Native IP anycast’s robustness properties
(including packet loss) are similar to IP unicast. PIAS
is engineered to be similarly robust.

5. Fast failover : Failover speed in Native IP anycast de-
pends on the convergence speed of the underlying rout-
ing algorithms, and can be fast (OSPF) or somewhat
slow (BGP). PIAS can be engineered to almost always
rely on OSPF for certain types of failover (section 3.6).
The PIAS overlay exposes additional failover situations
that go beyond IP routing, and these are handled ac-
cordingly (Section 3.6).

The following are the goals that native IP anycast does not
satisfy.

6. Ease of joining and leaving: Target hosts must not
have to interact with IP routing to join and leave.

7. Scale by the number of groups: In addition to scaling
by the usual metrics of memory and bandwidth, we re-
quire that PIAS also make efficient use of the IP ad-
dress space. PIAS is able to accommodate thousands
of groups within a single address by incorporating TCP
and UDP port numbers as part of the group address.

8. Scale by group dynamics: Globally, IP routing behaves
very badly when routes are frequently added and with-
drawn. The PIAS overlay hides member dynamics from
IP routing, and can handle dynamics caused both by
continuous member churn and flash crowds (including
those caused by DDoS attacks).

9. Target Selection criteria: IP anycast can only select
targets based on proximity. At a minimum, we wish to
add load and connection affinity as criteria.

3. DESIGN DESCRIPTION
This section gives a detailed description of PIAS. We take

a “layered” approach to the description—we start with the
core concepts and basic design and then step-by-step describe
additional functionality that satisfies specific goals listed in
section 2.

PIAS is deployed as an overlay infrastructure. It may be
deployed by a CDN company like Akamai, by multiple coop-
erating ISPs, or even by a single ISP (though the efficacy of
proximity discovery would be limited by the ISP’s geographic
coverage). Multiple distinct PIAS infrastructures may be de-
ployed. In this case, each operates using distinct blocks of IP

AP

AP

AP

AP

Anycast
Client

Anycast
Client

Anycast
Target

Anycast
Target

AP Anycast Proxy

Unicast (Tunnel/NAT)

Native IP Anycast

Figure 1: Proxy Architecture: the client packets
reaching the proxies through native IP anycast are
tunnelled to the targets

anycast addresses, and they do not interact with each other3.
In the remainder of this document, for simplicity of exposi-
tion, we assume a single PIAS infrastructure.

The basic idea of PIAS, illustrated in Figure 1, is very sim-
ple. Router-like boxes, hereon referred to as anycast proxies
(AP or simply proxies), are deployed at various locations in
the Internet, for example at POPs (Point of Presence) of dif-
ferent ISPs. These proxies advertise the same block of IP
addresses, referred to as the anycast prefix , into the rout-
ing fabric (BGP, IGP). As such, the proxies are reachable by
native IP anycast—a packet transmitted to the anycast prefix
will reach the closest proxy. However, these proxies are not
the actual anycast target destinations(AT)4. Rather, true
to their name, they proxy packets that reach them via na-
tive IP anycast to the true target destinations using unicast
IP. This proxying can take the form of lightweight tunnels
or NAT. NAT allows for backwards compatibility with the
protocol stack at target hosts, but increases processing at the
proxy.

This novel combination of native IP anycast with tunnelling
to the unicast addresses of the targets allows PIAS to fulfill
three critical design goals and drives the rest of the system
design. First, it allows for efficient use of the address space as
all the IP addresses in the prefix advertised by the proxies can
be used by different anycast groups. In fact, PIAS does one
better. It identifies an anycast group by the full transport
address (TA), i.e. IP address and TCP/UDP port, thus al-
lowing thousands of anycast groups per IP address. Second, it
solves the IP routing scaling problem by allowing many any-
cast groups to share a single address prefix and hence, fulfills
goal 7. Finally, it relieves targets from the burden of inter-
acting with the routing substrate. They can join an anycast
group by registering with a nearby proxy that is discovered
using native IP anycast. This fulfills goal 6.

The reader may notice two suspicious claims in the last
paragraph. First, we claim to ease deployment by running
unicast at the target instead of anycast, and yet the proxies
still must run anycast. So, how is this an improvement? The
benefit is that the difficult work of deploying IP anycast is
borne by the anycast provider once, and amortized across
many anycast groups. Second, we claim to improve scaling
by allowing thousands of IP anycast groups to share a single
IP address prefix. All we’ve really done, however, is to move
the scaling problem from the IP routing domain to the PIAS
infrastructure domain. This is quite intentional. As we argue

3Indeed, a single operator could deploy multiple distinct
PIAS infrastructures as a way to scale.
4the members of the anycast group; hereon referred to as
anycast targets or simply targets

later on, the scaling issues are much easier to deal with in the
overlay than in IP routing.

PIAS offers two primitives to the members of an anycast
group, which involve sending messages to a nearby proxy:

• join(IPA:portA,IPT :portT ,options): this message instructs
the proxy to forward packets addressed to the anycast
group identified by the TA IPA:portA to the joining
node’s unicast TA IPT :portT . The options may spec-
ify additional information such as the selection criteria
(load balance etc.), delivery semantics (scoping etc.), or
security parameters needed to authenticate the target
host. These are discussed later.

• leave(IPA:portA,IPT :portT ,options): this message in-
forms the proxy that the target identified by TA IPT :portT

has left the group IPA:portA. options are the security
parameters.

The join and leave messages are transmitted to the anycast
address IPA(that belongs to the anycast prefix) at some well-
known port that is dedicated to receiving registration mes-
sages. This means that no extra configuration is required for
a target to discover a nearby proxy.

Note that we don’t specify a “create group” primitive. For
the purpose of this paper, we assume that the first join essen-
tially results in the creation of the group. In practice, a sub-
scriber to the service would presumably have entered into a
contract with the anycast service provider, which would have
resulted in the assignment of anycast TAs to that subscriber.
The subscriber would also have obtained authentication in-
formation using which targets may join the group. While the
issues surrounding this sort of group creation are important,
they are not central to the PIAS architecture, and we don’t
discuss them further.

3.1 The Join Anycast Proxy (JAP)
A target may leave a group either through the leave prim-

itive, or by simply falling silent (for instance, because the
target is abruptly shut off or loses its attachment to the In-
ternet). This means that the Join AP (JAP—the nearby
proxy with which the target registers; shown in figure 2) must
monitor the health of its targets, determine when they are no
longer available, and treat them as having left the group. The
proximity of the JAP to the target makes it ideal for this.

The JAP must also inform zero or more other anycast prox-
ies (APs) of the target(s) that have registered with it. This is
because not all APs may be JAPs for a given group (that is,
no target joined through them), but anycast clients (ACs)
may nevertheless send them packets destined for the group.
A proxy that receives packets directly from a client is referred
to as the Ingress AP (IAP)5 for the client. Note that the
client-IAP relation is established using native IP anycast. As
an IAP, the proxy must know how to forward packets towards
a target; even though the IAP may not explicitly know of the
target.

One possible way to achieve this would have the JAP spread
information about targets associated with it to all proxies.
This allows the IAP to tunnel packets directly to clients (as in
Figure 1). However, such an approach would hamper PIAS’s
ability to support a large number of groups. In fact, Figure 1
is conceptual—PIAS’s approach for spreading group infor-
mation is described in the next section and the actual paths
taken by packets are shown in Figure 2.

5in figure 1 the proxies in the client-target path are IAPs

AT

RAP

JAP

AC

IAP

JAP address
 (Cached)

IP Tunnel

Anycast

Unicast

Reverse Path

1

2

3

4

5

6

No. Source Dest Comment
1 AC:p AA:g Native IP Anycast
2 IAP:AC:p RAP:AA:g IP-IP tunnel
3 RAP:AC:p JAP:AA:g IP-IP tunnel
4 JAP:q AT:r Unicast IP

JAP:q = NAT(AC:p)
5 AT:r JAP:q Unicast IP
6 AA:g AC:p Unicast IP

AC:p = NAT
−1(JAP:q)

7 IAP:AC:p JAP:AA:g IP-IP tunnel

AT

RAP

JAP

AC

IAP
1

7
4

5

6

Figure 2: Initial (left) and subsequent (right) packet path. The table shows the various packet headers.
Symbols in block letters represent IP addresses, small letters represent ports. AA(Anycast Address) is one
address in the address block being advertised by PIAS, AA:g is the transport address assigned to the group
the target belongs to, while AT:r is the transport address at which the target wants to accept packets. Here,
the target joined the group by invoking join(AA:g,AT:r,options)

3.2 Scale by the number of groups
In the previous section, we mentioned the need for a scheme

that would allow PIAS to manage group membership infor-
mation while scaling to a large number of groups. For any
given group, we designate a small number of APs (three or
four) to maintain a list of JAPs for the group. When acting
in this role, we call the AP a Rendezvous Anycast Proxy
(RAP). All APs can act as RAPs (as well as as JAPs and
IAPs).

The RAPs associated with any given group are selected
with a consistent hash [11] executed over all APs. This sug-
gests that each proxy know all other proxies, and maintain
their current up/down status. This is possible, however, be-
cause we can assume a relatively small number of global APs
(≤20, 000, a number we derive later). We also assume that,
like infrastructure routers, APs are stable and rarely crash or
are taken out of service. The APs can maintain each other’s
up/down status through flooding, gossip [12] or a hierarchi-
cal structure [13]. The current implementation uses flood-
ing. Such an arrangement establishes a simple one-hop DHT
and hence, limits the latency overhead of routing through the
proxy overlay.

When a proxy becomes a JAP for the group (i.e. a target
of the group registers with it), it uses consistent hashing to
determine all the RAPs for the group and informs them of
the join. This allows the RAP to build a table of JAPs for
the group.

The concept of the RAP leads to a packet path as shown
on the left side of Figure 2. When an IAP receives a packet
for an anycast group that it knows nothing about, it hashes
the group TA, selects the nearest RAP for the group, and
transmits the packet to the RAP (path segment 2). The
RAP receives the packet and selects a JAP based on whatever
selection criteria is used for the group. For instance, if the
criteria is proximity, it selects a JAP close to the IAP. The
RAP forwards the packet to the selected JAP (path segment
3), and at the same time informs the IAP of the JAP (the
RAP sends a list of JAPs, for failover purposes).

The use of RAPs unfortunately introduces another overlay
hop in the path from client to target. We mitigate this cost
however by having the IAP cache information about JAPs.
Once the IAP has cached this information, subsequent pack-
ets (not only of this connection, but of subsequent connec-
tions too) are transmitted directly to the JAP. This is shown
in the right-hand side of Figure 2. The time-to-live on this
cache entry can be quite large. This is because the cache en-

try can be actively invalidated in one of two ways. First, if
the target leaves the JAP, the JAP can inform the IAP of this
when a subsequent packet arrives. Second, if the JAP disap-
pears altogether, inter-AP monitoring will inform all APs of
this event. In both cases, the IAP(s) will remove the cached
entries, failover to other JAPs it knows of, or failing this, go
back to the RAP. Because of this cache invalidation approach,
the IAP does not need to go back to the RAP very often.

Note that in figure 2, the JAP is responsible for transmit-
ting packets to and receiving packets from its targets. The
reasoning for this is not obvious and goes as follows. We aim
to support legacy clients that expect to see return packets
coming from the same address and port to which they sent
packets. In general, targets cannot source packets from any-
cast addresses and so at least one proxy must be inserted into
the target-client path. Furthermore, if NAT is being used to
forward packets to the target, then the proxy with the NAT
state should be the proxy that handles the return packets.

This might argue for traversing the IAP in the reverse di-
rection too, since by necessity it must be traversed in the
forward direction. The argument in favor of using the JAP
however, boils down to the following two points. First, it is
highly convenient to keep all target state in one proxy rather
than two or more. Since the JAP in any event must monitor
target health, it makes sense to put all target state in the
JAP. Second, the JAP is close to the target, so the cost of
traversing the JAP in terms of path length is minimal (Sec-
tion 4.3). Also, by seeing packets pass in both directions, the
JAP is better able to monitor the health of the target. For
the most part, when a packet passes from client to target, the
JAP may expect to soon see a packet in the reverse direction.
Rather than force the JAP to continuously ping each target,
the lack of a return packet can be used to trigger pings.

The use of proxies implies that the PIAS path (AC⇒IAP⇒
JAP⇒AT) might be longer than the direct path (AC⇒AT)6.
However, the proximity of the client to the IAP and of the
target to the JAP should ensure that PIAS imposes minimal
stretch and hence fulfills goal 3. This has been substantiated
by simulating the stretch imposed by PIAS across a tier-1
topology map of the Internet.

The introduction of the RAP to allow scaling by the num-
ber of groups is somewhat equivalent to the extra round-trip
imposed by application-level anycast schemes, for instance in
the form of the DNS lookup or the HTTP redirect. This is

6the PIAS path may actually be shorter as inter-domain rout-
ing is not optimal[14]

one aspect of PIAS that falls short of native IP anycast, which
has no such extra hop. Having said that, it would be possible
for a small number of groups with minimal target churn to
operate without RAPS—that is, to spread JAP information
among all APs. This might be appropriate, for instance, for
a CDN or for 6to4 gateways. By-and-large, however, we can
expect most groups to operate with RAPs as described here,
and in the remainder of the design section, we assume that is
the case.

3.3 Scale by group size and dynamics
If the only selection criteria used by a RAP to select a JAP

were proximity to the client, then the RAP could ignore the
number of targets reachable at each JAP. In order to load
balance across targets, however, RAPs must know roughly
how many targets are at each JAP. In this way, RAPs can
select JAPs in a load balanced way, and each JAP can subse-
quently select targets in a load balanced way. Unfortunately,
requiring that RAPs maintain counts of targets at JAPs in-
creases the load on RAPs. This could be a problem for very
large groups, or for groups with a lot of churn.

We mitigate this problem by allowing the JAP to give the
RAP an approximate number of targets, for example within
25% or 50% of the exact number. For instance, if 25% error
is allowed, then a JAP that reported 100 targets at one time
would not need to report again until the number of targets
exceeded 125 or fell below 75. This approach allows us to
trade-off the granularity of load-balancing for scalability with
group size and dynamics. Indeed, this trade-off can be made
dynamically and on a per-group basis. A RAP that is lightly
loaded, for instance, could indicate to the JAP that 100%
accuracy reporting is allowed (i.e. in its acknowledgement
messages). As the RAP load goes up, it would request less
accuracy, thus reducing its load. The combination of the two-
tiered approach with inaccurate information in a system with
2 groups is illustrated in Figure 3 (the figure assumes that
there is just one RAP for each group). Section 4.2 presents
simulations that show the benefits of this approach in the
case of a large, dynamic group.

In any event, the number of targets is not the only measure
of load. Individual targets may be more-or-less loaded due
to differing loads placed by different clients. Ultimately, the
JAP may simply need to send a message to the RAPs when-
ever its set of targets are overloaded for whatever reason.

3.4 Scale by number of proxies
Given that we have laid out the basic architecture of PIAS,

we can now specifically look at PIAS deployment issues. A
central question is, how many proxies may we reasonably ex-
pect in a mature PIAS deployment, and can we scale to that
many proxies?

A key observation to make here is that the scaling charac-
teristics of PIAS are fundamentally different from the scaling
characteristics of IP routing. While the traffic capacity of
the Internet can be increased by adding routers, the scalabil-
ity of IP routing per se is not improved by adding routers.
All routers must contain the appropriate routing tables. For
instance, all Tier1 routers must contain the complete BGP
routing table no matter how many Tier1 routers there are.
For the most part, IP routing is scaled by adding hierarchy,
not adding routers.

With PIAS, on the other hand, scaling does improve by
adding proxies. With each additional proxy, there are lower

RAP1 RAP2

JAP1 JAPn

Target(group1) Target (group2)

RAP for group1

Low activity
approximate
membership
information

High activity
aliveness

RAP for group2

Figure 3: 2-tier membership management: the JAPs
keep the aliveness status for the associated targets;
the RAP for a group tracks the JAPs and an approx-
imate number of targets associated with each JAP

ratios of target-to-JAP and group-to-RAP. Growth in the
number of groups and targets can be absorbed by adding
proxies. However, an increase in the number of proxies presents
its own scaling challenge. Among other things, every proxy
is expected to know the up/down status of every other proxy.

The following describes a simple divide-and-conquer ap-
proach that can be used if the number of proxies grows too
large. In a typical deployment, a given anycast service provider
starts with one anycast prefix, and deploys proxies in enough
geographically diverse POPs to achieve good proximity. As
more anycast groups are created, or as existing anycast groups
grow, the provider expands into more POPs, or adds addi-
tional proxies at existing POPs. With continued growth, the
provider adds more proxies, but it also obtains a new address
prefix (or splits the one it has), and splits its set of proxies
into two distinct groups. Because the IP routing infrastruc-
ture sees one address prefix per proxy group, and because
a proxy group can consist of thousands of proxies and tens
of thousands of anycast groups, the provider could continue
adding proxies and splitting proxy groups virtually indefi-
nitely.

The size of a mature proxy deployment may be roughly
calculated as follows. There are about 200 tier-1 and tier-
2 ISPs [15]. An analysis of the ISP topologies mapped out
in [16] shows that such ISPs have ∼25 POPs on average.
Assuming that we’d like to place proxies in all of these POPs,
this leads to 5000 POPs. Assuming 3-4 proxies per POP
(for reliability, dicussed later), we get a conservative total of
roughly 20,000 proxies before the infrastructure can be split.

While 20,000 proxies is not an outrageous number, it is
large enough that we should pay attention to it. One concern
not yet addressed is the effect of the number of proxies on
IP routing dynamics. In particular, BGP reacts to route dy-
namics (flapping) of a single prefix by “holding down” that
prefix—ignoring any advertisements about the prefix for a
period of at most one hour [17]. A naive proxy deployment
where each proxy advertises the anycast prefix directly into
BGP would imply that a proxy failure necessitates a BGP
withdrawal for the prefix (from the site where the proxy is
located) that could lead to hold downs. While the proxy sta-
bility ensures that such events do not occur often, even the
occasional prefix instability and the consequent service dis-
ruptions that a large proxy deployment would entail are not
acceptable.

Hence, the deployment model involves more than one proxy
being placed inside every POP where the proxies are de-
ployed. Such an arrangement is referred to as an anycast

Segment Failure of Failover through Section
AC⇒IAP IAP IGP, onto a proxy 3.6

within the same
cluster

IAP⇒JAP JAP proxy health 3.6
monitoring system

JAP⇒AT AT pings between target 3.1,3.2
and JAP, passive
monitoring by JAP

AT⇒JAP JAP pings routed to a 3.6
different proxy
who becomes JAP

JAP⇒AC AC no failover needed -

Table 1: Failover along the PIAS forward
path (AC⇒IAP⇒JAP⇒AT) and reverse path
(AT⇒JAP⇒AC)

cluster7 and is based on the model used by the anycasted
f-root server[18]. The approach involves connecting one or
more routers and more than one proxy to a common subnet.
All the proxies in the cluster advertise the anycast prefix into
IGP while the routers advertise it into BGP and hence, a
proxy-failure does not lead to a BGP withdrawal.

3.5 Proximity
The introduction of the proxies into the IP path negates

the natural ability of native IP anycast to find the nearest
target. Therefore, we require explicit mechanisms in PIAS to
regain this capability.

As mentioned before, native IP anycast sets the client-IAP
and target-JAP path segments. The RAP, on the other hand,
selects the JAP, and therefore sets the IAP-JAP path segment
(on forward packets) and the JAP-client path segment (on
return packets). To ensure the proximity of the target to
the client, the RAP must choose a JAP close to the IAP and
hence, every AP must know the distance (in terms of latency)
between every pair of APs. This could be accomplished using
a proximity addressing scheme like GNP [19] or Vivaldi [20].

Another possibility is to use a simple, brute-force approach
whereby every AP occasionally pings every other AP and ad-
vertises the minimum measured round trip time (RTT) to
all other APs. This is feasible because, with the cluster de-
ployment approach, RAPs only need to know the distance
between each pair of clusters. While validating the above
claim would require experimentation with the actual deploy-
ment, back of the envelope calculations do paint a promising
picture for the simple approach.

3.6 Robustness and fast failover
The introduction of proxies between client and target might

have a negative impact on the robustness of PIAS as com-
pared to native IP anycast. On the other hand, RON[14] has
shown how an overlay structure can be used to improve the
resiliency of communication between any two overlay mem-
bers. Extending the same thought, PIAS, by ensuring the
robustness of packet traversal through the proxy overlay, can
improve the resiliency of communication between clients and
group members. We believe that given the stable nature
of the proxies, their deployment in well connected parts of
the Internet (tier-1 and tier-2 ISPs) and the engineering that
would go into their set-up, PIAS should be able to match, if
not better, the robustness offered by native IP anycast.

A related requirement is that of fast fail-over. ”E2E” na-
tive IP anycast has to achieve failover when a group member

7hereon referred to as proxy cluster or simply, cluster

crashes, so that clients that were earlier accessing this mem-
ber are served by some other group member. Given the way
native IP anycast works, this failover is tied to IP routing con-
vergence. Specifically, in case of a globally distributed group,
the failover is tied to BGP convergence, which in some cases
can extend to a few minutes[14]. Since PIAS uses native IP
anycast to reach the proxies, it is subject to the same issues.
The process of overcoming the failure of a proxy is termed as
proxy failover. In addition, the proxies must themselves be
able to fail over from one target to another which is termed
as target failover. Thus the failover problem seems worse
with PIAS than with native IP anycast; however, this is not
the case.

3.6.1 Target failover
As discussed in Sections 3.1 and 3.2, the JAP is responsible

for monitoring the aliveness of its targets. It does this through
pinging and tracking data packets to and from the target.
The JAP is also responsible for directing IAPs to delete their
cache entries when enough targets have failed.

3.6.2 Proxy failover
There is still the question of clients failing over onto a dif-

ferent proxy when their IAP crashes, and targets failing over
when their JAP crashes. And there are two levels at which
this must be achieved: at the routing level and at the overlay
level.

At the routing level, the system must be engineered such
that when a proxy fails, clients that were using this proxy
as an IAP are rerouted to some other proxy quickly. PIAS’s
deployment of proxies in a cluster means that this failover
is across proxies within the same cluster. Also, since the
proxies advertise the prefix into IGP, PIAS relies on IGP for
convergence after a proxy failure and hence can achieve faster
failover. Typically, this is of the order of a few seconds and
can be reduced to sub-second times[21].

At the overlay level, to monitor the health of proxies, we
use a 2-tier health monitoring system. At the first tier, the
proxies within the same proxy cluster are responsible for mon-
itoring each other. At the next level, each proxy in a clus-
ter monitors the health of a small number of other clusters.
When either an individual proxy or an entire cluster fails, it is
detected quickly and communicated to all remaining proxies.

Section 3.2 had described IAP behavior when a JAP goes
down. The only thing left to discuss is target behavior when
a JAP goes down. In this case, native IP anycast routing
will cause ping packets from the target to reach another JAP,
which will ask the target to re-register. Table 1 sums up the
way PIAS achieves failover across various segments of the
client-target path.

3.7 Target selection criteria
As described earlier, the RAP may select the JAP based on

a number of criteria, including proximity, load balancing, and
connection affinity8. The JAP subsequently selects a target.
It is this selection process, divorced from IP routing, that
allows PIAS to offer richer target selection criteria

How PIAS achieves load balance and proximity has already
been discussed. Connection affinity is discussed later in this
section. We wish to point out here that these three important
selection criteria are in fact at odds with each other. For

8Connection affinity—all packets from a given connection or
flow are delivered to the same target.

AC

IAP1

IAP2 JAP2

JAP1 Target1

Target2

Native
 Flap

PIAS
Flap

Figure 4: Lack of native IP anycast affinity can cause
flaps in the PIAS model

exampl, if both load balance and proximity are important
criteria, and the JAP nearest to the IAP is heavily loaded,
then one of the other criteria must be compromised. This
basic set of trade-offs applies to application-level anycast as
well.

By never selecting the source of a packet as the target,
PIAS allows a host to be both a target and a client for a given
group. Packets sent by the target to the group address would
be forwarded to some group target other than the sender.
Note that this is not possible with native IP anycast and it
allows PIAS to support new P2P applications (section 6.1).

Proxies could potentially base their target selection on vari-
ous scoping criteria. These selection criteria can be expressed
by overloading the transport address, i.e. a group can have
separate TAs for each type of scoping. For instance, an any-
cast packet could be administratively scoped. That is, it
could indicate that the target should be in the same site,
belong to the same DNS domain, or have the same IP ad-
dress prefix (or be from different sites, DNS domains, or IP
prefixes). While how this would be configured and operated
is a good topic for further study, the selection functionality
of the RAP allows for the possibility of many such features.

Another form of selection would be to pick a random tar-
get rather than the nearest target - the RAP would pick a
random JAP who would then pick a random target. Random
selection among a group can be useful for various purposes
such as spreading gossip [22] or selecting partners in multicast
content distribution [23]. Indeed, in the PIAS architecture,
there is no reason an anycast packet cannot be replicated by
the RAP and delivered to a small number of multiple targets.
The salient point here is that, once IP anycast functionality is
divorced from IP routing, any number of new delivery seman-
tics are possible if the benefits justify the cost and complexity.

3.7.1 Connection affinity
Lack of connection affinity in native IP anycast has long

been considered one of its primary weak points. This issue
spills over into PIAS. Specifically, the issue is how to maintain
affinity when native IP anycast causes a different IAP to be
selected during a given client connection. If the same IAP
is always used, then packets will be sent to the same JAP
that was initially cached by the IAP. However, a change in
the IAP could lead to a change in the target the packets are
delivered to, as shown by Figure 4. Application-layer anycast
doesn’t have this problem, because it always makes its target
selection decision at connection start time, and subsequently
uses unicast.

A simple solution would be to have RAPs select JAPs based
on the identity of the client, such as the hash of its IP ad-
dress. This way, even if IP routing caused packets from a
given client to select a different IAP, they would be routed
to the same JAP and hence the same target. Unfortunately,

 0.1

 1

 10

c-root
(4)

f-root
(28)

i-root
(17)

j-root
(13)

k-root
(11)

m-root
(3)

as112
(20)

A
ve

ra
ge

 ti
m

e
be

tw
ee

n
fla

ps
 (

D
A

Y
S

)

Anycasted Server (# of locations in paranthesis)

14 hrs

3.5 hrs

19 hrs 15.5 hrs
25 hrs

14.5 hrs

3.5 hrs

0 - 5 - 10 - 25 - 50 percentile
1 flap per day

 0.1

 1

 10

c-root
(4)

f-root
(28)

i-root
(17)

j-root
(13)

k-root
(11)

m-root
(3)

as112
(20)

A
ve

ra
ge

 ti
m

e
be

tw
ee

n
fla

ps
 (

D
A

Y
S

)

Anycasted Server (# of locations in paranthesis)

14 hrs

3.5 hrs

19 hrs 15.5 hrs
25 hrs

14.5 hrs

3.5 hrs

0 - 5 - 10 - 25 - 50 percentile
1 flap per day

Figure 5: Percentiles for the average time between
flaps for all the anycasted destinations

this approach completely sacrifices proximity and load bal-
ance. Broadly, another approach would be to modify the host
application by making it anycast aware, and redirect the host
to the unicast address of a selected target (either PIAS or the
target itself could do this redirect). There are some security
issues here—the redirect must be hard to spoof—but these
are surmountable.

We can also imagine complex schemes whereby JAPs and
IAPs coordinate to insure affinity. However, a fundamental
question that still has not been answered is, how good or
bad is the affinity offered by native IP anycast? It might be
the case that the affinity offered by native IP anycast is very
good; i.e. the probability that a connection breaks due to
a routing flap is very small as compared to the probability
of the connection breaking due to other factors. This would
imply that we do not need the complex mechanisms stated
above. In this regard, we did some measurements to find
out the affinity offered by native IP anycast. Our results,
while preliminary, suggest that native IP anycast affinity is
quite good, and PIAS need not do anything extra to provide
reasonable connection affinity. Details of these measurements
are presented in section 4.1

4. EVALUATION
In this section we evaluate the PIAS architecture using

measurements and simulations. Section 4.1 describes the
measurements made using the Planetlab[24] testbed and the
anycasted DNS root servers to argue for the sufficiency of
the affinity offered by native IP anycast and hence, PIAS.
Sections 4.2 and 4.3 present simulation results that show the
scalability (by group characteristics) and the efficiency of the
PIAS deployment. Finally, section 4.4 discusses our PIAS
implementation. We also measured the quality of proximity
selection offered by the anycasted DNS server deployments.
These are briefly discussed in section 7.

4.1 Connection Affinity measurements
As mentioned earlier, it is important to determine the affin-

ity offered by native IP anycast in order to understand the
need for mechanisms to ensure affinity in PIAS. This section
presents the results of our measurement study aimed to do so.
The goal of the study was to determine how often IP routing
selected different locations when sending packets to a native
IP anycast address. We used the anycasted root servers and
the AS-112 servers as the anycast destinations. For clients,
we used 129 Planetlab nodes belonging to 112 sites.

For each anycast destination, the clients probed the as-
sociated anycast address every 10 seconds to determine the

 1

 10

 100

 1000

 10000

 100000

 0 50 100 150 200

N
um

be
r

of
 m

em
be

rs
 o

r
S

ys
te

m
 w

id
e

m
es

sa
ge

s

TIME (min)

0% inaccuracy
5% inaccuracy

25% inaccuracy
50% inaccuracy

Group size

 1000

 10000

 1 2 3 4 5

0% inaccuracy
5% inaccuracy

25% inaccuracy
50% inaccuracy

 Minutes
 [1-5]

Figure 6: System wide messages from the all the
JAPs to the 4 RAPs during the event for varying
degrees of inaccuracy

 0.1

 1

 10

 100

 0 50 100 150 200

A
ve

ra
ge

 s
ys

te
m

 w
id

e
m

es
sa

ge
s

/ s
ec

on
d

% INACCURACY

60000 members,100 proxies
90000 members, 100 proxies

120000 members, 100 proxies
60000 members, 1000 proxies
90000 members, 1000 proxies

120000 members, 1000 proxies
60000 members, 10000 proxies
90000 members, 10000 proxies

120000 members, 10000 proxies

10000 proxies

1000 proxies

100 proxies

Figure 7: Average system wide messages (per sec-
ond) versus the percentage of inaccuracy with vary-
ing number of proxies and varying maximum group
size.

location they are routed too. The servers at different loca-
tions have been configured by their operators to respond to a
TXT type DNS query with their location[25] and hence, the
probes were DNS queries generated using dig. This data was
collected for a period of 30 continuous days in Dec’04-Jan’05.

The probing of the anycasted destinations reveals changes
in routing or ’flaps’ that cause packets to be delivered to dif-
ferent locations of an anycasted server. So, a pair of probes
from a given Planetlab node switching from the San Jose f-
root server to the Palo Alto f-root server9 would be counted as
one flap. Using our measurement data, we determined the av-
erage time between flaps to a given root server for each prob-
ing node. Figure 5 plots various percentiles for the average
time between flaps when probing various anycasted servers.
The figure shows that the anycasted services are very stable
as viewed from almost all locations. For example, more than
95% of the nodes observed less than a flap per day for all the
anycasted destinations. Similarly, ∼48% of the nodes never
observed a flap when probing the f-root during the entire 30
day period.

Also, the few nodes that observed frequent flaps (i.e. an
average inter-flap duration of less than a day) had their av-
erage skewed by tiny bursts of instability in between large
periods of stability. For example, the Planetlab node that
experienced most flaps (208) over the month when probing
j-root was in Leixip, Ireland. Of these, 180 flaps occurred in
a 3-hour period. We conjecture that such phenomena can be
attributed to ephemeral issues specific to the sites to which
these nodes belong. While a more rigorous analysis of the col-
lected data and correlation with BGP-updates for the prefixes
representing these anycasted destinations would be needed
for determining the causes and patterns amongst these flaps,
the overall figures do paint an encouraging picture. These
measurements reveal that the probability that a two minute
connection breaks due to a flap is about 1 in 4500 and the
probability that an hour long connection breaks is about 1 in
150. Note that it is the short connections that, in order to
avoid the overhead of anycast to unicast redirect, need to rely
on anycast affinity. Long connections can incur the overhead
of a redirect and hence, could use anycast for discovery and
unicast for the actual communication.

We admit that the limited number(129) and variety of van-
tage points and the number of locations of the anycast des-

9San Jose and Palo Alto are two locations of the f-root server

tinations makes our study preliminary. Also, the operators
of j-root, based on their observations, have come to the op-
posite conclusion regarding the ability of native IP anycast
to support stateful connections[26]. While their results are
being debated by many in the operational community[27], we
are trying to acquire the relevant data-sets so as to find the
reason for the flapping observed by them (something that the
authors of the j-root study have not analyzed).

4.2 Scalability by group size and dynamics
In this experiment, we evaluate PIAS’s ability to handle

large and dynamic groups (as described in 3.3). We simulate
the load imposed by a large group with high churn on the
proxy infrastructure. The dynamics of the simulated group
- the arrival rate of group members and the session duration
cumulative distribution function - resemble the dynamics of
the largest event observed in a study of large-scale streaming
applications[28]. Simulation of just one such group is suffi-
cient as the load imposed varies linearly with the number of
such groups supported.

The PIAS infrastructure in the simulation has varying num-
ber of proxies and maximum group size. We simulate four
RAPs per group. We want to measure the number of mes-
sages required to keep the 2-tier membership hierarchy up-
dated in face of the group dynamics. This is the number of
messages from the JAPs of the group to the 4 RAPs and is
referred to as ’system wide messages’.

Figure 6 plots the system wide messages produced with a
proxy deployment of size 1000 and the group size bounded by
90000. The topmost curve in the figure shows how the group
size varies with the time. A flash crowd, at a rate of ∼100
members/second, leads to a sudden rise in the group size in
the first 10 minutes. The other curves plot the number of
messages produced in the corresponding minute (as plotted
along the X-axis) for varying degrees of inaccuracy. The de-
gree of inaccuracy, as explained in section 3.3, implies that a
JAP only informs a RAP of a change in the number of mem-
bers associated with it if the change is more than a certain
percentage of the last value sent.

The inaccuracy of information offers only a small benefit in
the nascent stages of the group (the first minute). This is be-
cause no matter what inaccuracy percentage we use, the JAP
must inform the RAP of the first group member that contacts
it. In the next couple of minutes, as the group increases in

size and more members join their corresponding JAPs, the
inaccuracy causes the traffic towards the 4 RAPs to drop
rapidly (see the embedded graph in figure 6). Overall, the
average number of messages over the duration of the entire
event reduces from 2300 per min. with the naive approach to
117 per min. with 50% inaccuracy.

Figure 7 plots the average system wide messages (per sec-
ond) versus the percentage of inaccuracy for varying number
of proxies and varying maximum group size. Each plotted
point is obtained by averaging across 20 runs. All curves
tend to knee around an inaccuracy mark of 50%−60%. The
closeness of the curves for different sized groups (given a fixed
number of proxies) points to the scalability of the system by
the group size even in the face of high churn.

More interesting is the variation of the load on the RAPs
with the number of proxies. As the number of proxies in-
crease, the number of JAPs increase; an offshoot of the as-
sumption that the group members are evenly distributed across
the proxy infrastructure. For a given group size, each JAP
is associated with lesser number of group members. Hence,
there is lesser benefit due to the inaccuracy approach. This
shows up as the increase in the average number of messages
directed towards the RAPs with the number of proxies.

The figure shows that such an extreme group in a 100 proxy
deployment with 100% inaccuracy would require an average
of ∼0.18 messages/second. As a contrast the same setup in
a 10000 proxy deployment would necessitate an average of
∼7.25 messages/second. The low message overhead substan-
tiates the PIAS scalability claim. Note that a larger number
of proxies implies that each proxy is a RAP for a smaller num-
ber of groups. The number of targets associated with each
proxy (as a JAP) reduces too. Thus, increasing the num-
ber of proxies would indeed reduce the overall load on the
individual proxies.

4.3 Stretch
PIAS causes packets to follow a longer path (client ⇒ IAP

⇒ JAP ⇒ target). We have argued that the combination of
native IP anycast and proxy-to-proxy latency measurements
minimizes the effect of this longer path. This section sim-
ulates the stretch introduced by PIAS along the end-to-end
path.

For the simulation, we use a subset of the actual tier-1
topology of the Internet, as mapped out in the Rocketfuel
project [16]. This subset consists of 22 ISPs, 687 POPs, and
2825 inter-POP links (details in [29]). The use of only the
tier-1 topology can be justified on two grounds. First, a large
proportion of traffic between a randomly chosen client-target
pair on the Internet would pass through a tier-1 ISP. Second,
such a simulation gives us an approximate idea about the
overhead that a PIAS deployment restricted to tier-1 ISPs
would entail.

The topology was annotated with the actual distance be-
tween POPs (in Kms) based on their geographical locations.
We then used SSFNET[30] to simulate BGP route conver-
gence. This allowed us to construct forwarding tables at each
of the POPs and hence, determine the forwarding path be-
tween any two POPs.

The simulated PIAS deployment involves placing a variable
number of proxies at random POPs, one proxy per POP.
These POPs are referred to as the proxy POPs. For every
client-target pair to be simulated, we choose a POP through
which the client’s packets enter the topology (the client

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 100 200 300 400 500 600 700

R
at

io
 o

f N
IR

N
 to

 D
ire

ct
 p

at
h

le
ng

th

of Proxies

10 - 25 - 50 - 75 - 90 percentile

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 100 200 300 400 500 600 700

R
at

io
 o

f N
IR

N
 to

 D
ire

ct
 p

at
h

le
ng

th

of Proxies

10 - 25 - 50 - 75 - 90 percentile

Figure 8: Percentiles for the stretch with varying
number of proxies

POP) and a POP through which the target’s packets enter
the topology (the target POP). The forwarding paths between
the client and the target through these POPs represents the
direct path. The IAP is assumed to be in the proxy POP
closest to the client POP—this is the IAP POP. Similarly,
the JAP is in the proxy POP closest to the target POP—this
is the JAP POP. The PIAS path comprises of the following
three segments: from the client POP to the IAP POP, from
the IAP POP to the JAP POP and from the JAP POP to
the target POP.

Figure 8 plots the percentiles for the stretch with varying
number of proxies. For a given number of proxies, we simu-
lated 100000 runs. Each run comprised of simulating a client-
target pair and finding the direct and the PIAS path length
(in kms). Note that the well-documented non-optimal nature
of inter-domain routing[14] is reflected in the cases where the
PIAS path turns out to be shorter than the direct path. The
figure shows that with a deployment of just 100 proxies (a
mature deployment might encompass 50 times more POPs),
the median stretch is 1.01 with the 90th percentile being 2.2.
Hence, even with a small size deployment, PIAS performs
well with regards to the direct path.

4.4 Implementation
We have implemented the PIAS system and are in the pro-

cess of deploying it. The current implementation of PIAS
proxies comprises of a user-space component responsible for
the overlay management tasks, such as handling proxy fail-
ures, target join/leaves, health monitoring etc. and a kernel-
space component responsible for the actual forwarding of
packets through the use of Netfilter hooks[31]. This involves
tunnelling of the packets when sending them between 2 proxy
nodes, and using a NAT when handling packets to/from a
target.

5. RELATED WORK
Table 2 summarizes the pros and cons of PIAS, application

level anycast, and other related approaches described below.
Partridge et. al. [1] originally proposed the IPv4 anycast

service. It involves assigning an otherwise unicast IP address
IPA to multiple hosts, and advertising it into the routing in-
frastructure from all the hosts. Packets addressed to IPA

will be forwarded to the host nearest to the packet source in
terms of metrics used by the routing protocol. Later, IPv6
incorporated anycast into its addressing architecture[8]. It
allowed for scoped anycast addresses for groups confined to a
topological region, which does not burden the global routing
system. However, a globally spread group still poses scalabil-
ity problems. Besides, IPv6 anycast also inherits all the other

Criterion (related to goal number) IPv4 IPv6 IP + GIA App. Level i3 PIAS
Router Modification(1) No No Yes No No No
Client Modification(1) No No No No Yes No
Scalability by group size(2) Very Good Very Good Very Good Poor Poor/Good10 Good
Stretch(3) No No Little/No No Little Little
Robustness(4) No Issues No Issues No Issue Mixed Mixed Mixed11

Failover(5) Fast12 Fast12 Fast12 Fast Fast Fast
Target Deployment(6) Difficult Difficult Difficult Easy Easy Easy
Scalability by no. of groups(7) No No Yes Yes Yes Yes
Scalability by group dynamics(8) Poor Poor Poor Poor Poor/Good10 Good
Cost of Proximity(9) None None Small Large Large Small
Low-level access Yes Yes Yes No Yes Yes

Table 2: The Anycast Design Space

limitations of IPv4 anycast. Despite the shortcomings, there
has been work detailing the relevance of anycast as a tool for
service discovery and other applications, both for IPv4[32]
and for IPv6[33].

Katabi and Wroclawski[34] proposed an architecture that
allows IP anycast to scale by the number of groups. Their ap-
proach is based on the observation that services have a skewed
popularity distribution. Hence, making sure that the unpop-
ular groups do not impose any load on the routing infras-
tructure addresses the scalability issue. However, the need
to change routers puts a severe dent on the practical appeal
of the approach. Besides, being a router-based approach, it
suffers from most other limitations of IPv4 anycast.

Because of the limitations of these approaches, anycast to-
day is typically implemented at the application layer. This
offers what is essentially anycast service discovery—DNS-
based approaches use DNS redirection while URL-rewriting
approaches dynamically rewrite the URL links as part of redi-
recting a client to the appropriate server. Related proposals
in the academic community include [35][36]. The idea behind
these is to identify the group using an application level name
that, at the beginning of the communication, is mapped to the
unicast address of a group member. The reliance on unicast
support from the underlying IP layer implies that these ap-
proaches circumvent all limitations of IP anycast. The chal-
lenge here is to collect the relevant selection metrics about
the group members in an efficient and robust fashion.

Another element in this design space is anycast built on
top of the indirection architecture offered by i3[37]. i3 uses
identifiers as a layer of indirection that generically gives the
receiver tremendous control over how it may (or may not)
be reached by senders. One of the services i3 can provide is
anycast. There are two main advantages of PIAS over i3 for
the anycast service. First, PIAS requires no changes in the
protocol stack, whereas i3 requires a new layer inserted below
transport. A PIAS client, on the other hand, can use PIAS
with no changes whatsoever. Second, because PIAS uses na-
tive IP anycast, it is easier to derive proximity from PIAS
than from i3. PIAS only has to measure distances between
proxies—i3 has to measure distances to clients and targets.
The main advantage of i3 over PIAS is that it is easier to
deploy an i3 infrastructure than a PIAS infrastructure, pre-
cisely because i3 doesn’t require IP anycast. Indeed, this has

10Note that the way i3 has described their anycast, it wouldn’t
scale to very large or very dynamic groups, because a single
node holds all the targets and receives pings from the targets.
It may be possible that i3 could achieve this with a model
closer to how they do multicast, but we’re not sure.

11for reasons described in first paragraph of section 3.6
12they can be engineered to be fast by relying on IGP for
convergence

been a source of frustration for us—we can’t just stick a PIAS
proxy on Planetlab and start a service.

As far as the broader notion of indirection is concerned,
there is no question that i3 is more general. Its ability for both
the sender or receiver to chain services is very powerful. The
addressing space is essentially infinite, and hosts can create
addresses locally. Finally the security model (that supports
the chaining) is elegant and powerful. Having said that, PIAS
does provide indirection from which benefits other than just
anycast derive. For unicast communications, it could be used
to provide mobility, anonymity, DoS protection, and global
connectivity through NATs. In the best of all worlds, we’d
want something like i3 running over PIAS. But IPv6 and
NAT have taught us that you don’t always get the best of
all worlds, and considering PIAS’s backwards compatibility,
it may after all be the more compelling story.

6. ANYCAST APPLICATIONS
Given that PIAS offers an easy-to-use global IP anycast

service that combines the positive aspects of both native IP
anycast and application-layer anycast, it is interesting to con-
sider new ways in which such a service could be used.

6.1 Peer Discovery
Though IP anycast has long been regarded as a means of

service discovery, this has always been in the context of clients
finding servers. PIAS opens up discovery for P2P networks,
where not only is there no client/server distinction, but peers
must often find (and be found by) multiple peers, and those
peers can come and go rapidly. Examples of such cases in-
clude BitTorrent and network games.

One reason that traditional IP anycast has not worked for
peer discovery (other than difficulty of deployment), is that an
IP anycast group member cannot send to the group—packets
are just routed back to themselves. With the right selec-
tion characteristics, PIAS can support a wide-range of P2P
applications. Random selection would allow peers to find ar-
bitrary other peers, and is useful to insure that unstructured
P2P networks are not partitioned. Proximity is obviously also
important, but to insure that a peer can find multiple nearby
peers (rather than the same peer over and over), a selection
service whereby a node can provide a short list of targets to
exclude (i.e. already-discovered targets) could be used.

6.2 Reaching an Overlay network
A very compelling application of PIAS would allow a RON[14]

network to scale to many thousands of members, and would
allow those members to use RON not only for exchanging
packets with each other, but with any host on the Internet!
What follows is a high-level description of the approach. As-
sume a set of 50-100 RON “infrastructure” nodes that serve

many thousands of RON clients. The RON nodes all join
a large set of anycast groups—large enough that there is an
anycast transport address (TA) for every possible client con-
nection. The RON nodes also partition the anycast TAs so
that each TA maps to a single RON node. Clients discover
nearby RON nodes (or a couple of them) using one of the
anycast groups, and establish a unicast tunnel (for instance,
a VPN tunnel) with the RON node. We call this the RON
tunnel, and the RON node is referred to as the local RON.

When a client wishes to establish a connection with some
remote host on the Internet, it does so through its RON tun-
nel. The local RON assigns one of its TAs to the connec-
tion using NAT, and forwards the packet to the remote host.
When the remote host returns a packet, it reaches a nearby
RON node, called the remote RON. Because the transport
address of the return packet maps to the local RON node,
the remote RON node can identify the local RON node. The
remote RON tags the packet with its own identity, and trans-
mits the packet through the RON network to the local RON
node, which caches the identity of the remote RON, and de-
livers the packet to the client. Now subsequent packets from
the client to the remote host can also traverse the RON net-
work.

This trick isn’t limited to RONs. It could also work for
route optimization in Mobile IP13 (for v4 or v6, see [38] for a
description of the problem), or simply as a way to anonymize
traffic without sacrificing performance.

7. DISCUSSION
In this paper, we have presented the basic aspects of PIAS.

A ”practical” IP anycast service, however, requires a number
of features that we don’t have space to describe in detail. For
example, the need for scoping whereby packets from clients
in a domain (enterprise) are always served by targets within
the domain. This can be achieved by deploying a PIAS proxy
in the domain, or simply by deploying intra-domain native IP
anycast.

Another important issue is security. The IP routing infras-
tructure is secured router-by-router through human super-
vision of router configuration. This makes routing security
error-prone and unreliable. Since PIAS involves advertising
a prefix into inter-domain routing, it is afflicted by the same
issues. However, it is important to note that PIAS does not
worsen the situation. Also, the fact that from the routing
point of view, an anycasted autonomous system is akin to a
multi-homed autonomous system implies that any future so-
lution for routing security would apply directly to the PIAS
deployment.

PIAS, however, does need to explicitly secure its join and
leave primitives. The fact that these primitives are to be used
by group members who have an explicit contract with the
anycast service provider implies that we could use standard
admission control schemes; for example PIAS could adapt
any of a number of network or wireless authentication proto-
cols like EAP [39]. Previous work on using overlays to pro-
tect specific targets from DOS attacks [40] described some
approaches to allow controlled access to the overlay.

An assumption implicit in PIAS’s claim of incurring mini-
mal stretch (section 4.3) is the proximity of the client to the
IAP and of the server to the JAP. This assumption is justified
by the fact that these relations are discovered using native IP

13Details withheld for lack of space.

BERKELEY NEW YORK

Native IP
Anycast
Packets

POP with
a server

POP without
 a server

 Routing
Advertisement
AS PATH [I2,J]

AS PATH [J]

ISP 2 (I2)I2-B

I1-B
C

I1-NY

I2-NY

Figure 9: Native IP anycast inefficiency - packets
from client C in New York destined to the native IP
anycast address are routed to the anycast server in
Berkeley, even though there is a server in New York

anycast and hence, the distances are small in terms of metrics
used by inter-domain routing. However, this does not neces-
sarily imply that the distances are small in terms of latency.
As a matter of fact, preliminary measurements done by us
show that the assumption does not hold for the j-root server
anycast deployment. We found that native IP anycast does
not do a great job of selecting close-by locations, at least not
for the j-root server deployment. For example, 40% of the
measured clients experienced a stretch of more than 4 when
accessing the anycasted j-root. The measurement methodol-
ogy and the results are detailed in [41].

We believe the inefficacy of anycast when selecting close-
by root-servers might be due to the way the j-root servers
have been deployed - all 13 anycasted servers for j-root are
placed in POPs of different ISPs. A possible problem with
this approach is illustrated in figure 9. The figure shows 2 ISP
networks- I1 and I2, each having a POP in New York and
in Berkeley. It also shows a native IP anycast deployment
(AS number J) with two servers - one hosted at the New
York POP of I2 (I2-NY) and the other at the Berkeley POP
of I1 (I1-B). The figure has these POPs highlighted. The
anycast servers have an EBGP relation with the routers of
the hosting POP; hence, the anycast prefix is advertised with
J as the origin AS. Now, if a client (C) in the New York area
sends packets to the anycast address and these reach POP I1-
NY, they will be routed to the server hosted at I1-B. This is
because the routers in I1-NY would prefer the 1 AS-hop path
([J]) through I1-B to the anycasted server over the 2 AS-hop
path ([I2,J]) through I2-NY. Note that the anycasted server
hosted at I1-B represents a customer of I1 and so, it would be
very uncommon for I1 to steer these packets towards I2-NY
due to local policies (local preference values); rather the AS
path length would dictate the path.

Although negative, the importance of the result cannot be
overemphasized. It brings out the fact that a naive proxy de-
ployment might not achieve low-latency client-IAP and JAP-
target paths. Also, an unverified implication of the above
analysis is that for good performance, an ISP that is part
of the deployment14 should be sufficiently covered, i.e., there
should be clusters at a decent number of POPs of the ISP.
For example, deployment of the two servers in the figure at
both of the POPs of I1 (I1-NY and I1-B) or I2 (I2-NY and
I2-B) would avoid the problem of long paths. We believe that
such an approach would ensure that the client-IAP and the
target-JAP segments are latency-wise small - something that
can only be substantiated when we get the PIAS deployment
going

14the ISP has at least one POP hosting a proxy cluster

8. CONCLUSIONS
In this paper, we propose a proxy based IP anycast service

that addresses most of the limitations of native IP anycast.
Specifically, the primary contribution of this paper is the de-
sign of PIAS, a practically deployable IP anycast architec-
ture. The unique features of PIAS such as the scalability by
the size and dynamics of groups mean that it opens up new
avenues of anycast usage. The purported scalability has been
substantiated through simulations representing extreme, but
real, workloads. Simulations on the real tier-1 topology of
the Internet point to the efficiency of our approach.

The fact that PIAS uses native IP anycast means that it
can be used as a simple and general means of discovery and
bootstrapping. Internet measurements against the anycasted
DNS root servers show that the reliance on native IP anycast
does not undermine PIAS’s ability to support connection ori-
ented services. A PIAS prototype has been built and the de-
ployment efforts are underway. We feel confident that PIAS
has the potential of fulfilling the need for a generic Internet-
wide anycast service that can serve as a building block of
many applications, both old and new.

Acknowledgements
We are grateful to Xinyang Zhang for help with the simu-
lations and to David Anderson for design discussions. We
would also like to thank the anonymous reviewers for their
feedback. This material is based upon work supported by
AFOSR MURI and IAI AFOSR/AFRL under award numbers
F49620-02-1-0233 and F49620-02-1-0170 respectively. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this publication are those of the authors and do
not necessarily reflect the views of the agencies above.

9. REFERENCES
[1] C. Partridge, T. Mendez, and W. Milliken, “RFC 1546 - Host

Anycasting Service,” November 1993.

[2] T. Hardy, “RFC 3258 - Distributing Authoritative Name Servers
via Shared Unicast Addresses,” April 2002.

[3] J. Abley, “Hierarchical Anycast for Global Service Distribution,”
ISC Technical Note ISC-TN-2003-1
www.isc.org/tn/isc-tn-2003-1.html.

[4] D. Kim, D. Meyer, H. Kilmer, and D. Farinacci, “RFC 3446 -
Anycast Rendevous Point (RP) mechanism using Protocol
Independent Multicast (PIM) and Multicast Source Discovery
Protocol (MSDP),” January 2003.

[5] D. Katabi, “The Use of IP-Anycast for Building Efficient
Multicast Trees,” in Proc. of Global Telecommunications
Conference, 1999.

[6] C. Huitema, “RFC 3068 - An Anycast Prefix for 6to4 Relay
Routers,” June 2001.

[7] “AS112 Project Home Page,” www.as112.net.

[8] R. Hinden and S. Deering, “RFC 3513 - Internet Protocol
Version 6 (IPv6) Addressing Architecture,” April 2003.

[9] Akamai Technologies Inc., “Internet Bottlenecks: the Case for
Edge Delivery Services,” 2000, www.akamai.com/en/resources/
pdf/whitepapers/Akamai Internet Bottlenecks Whitepaper.pdf.

[10] B. Greene and D. McPherson, “ISP Security: Deploying and
Using Sinkholes,” www.nanog.org/mtg-0306/sink.html, June
2003, NANOG TALK.

[11] D. R. Karger, E. Lehman, F. T. Leighton, R. Panigrahy, M. S.
Levine, and D. Lewin, “Consistent Hashing and Random Trees:
Distributed Caching Protocols for Relieving Hot Spots on the
World Wide Web.” in Proc. of STOC, 1997.

[12] R. Rodrigues, B. Liskov, and L. Shrira, “The design of a robust
peer-to-peer system,” in Proc. of the Tenth ACM SIGOPS
European Workshop, September 2002.

[13] A. Gupta, B. Liskov, and R. Rodrigues, “One Hop Lookups for
Peer-to-Peer Overlays,” in Proc. of 9th Workshop on Hot
Topics in Operating Systems, May 2003.

[14] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris,
“Resilient overlay networks,” in Proc. of the eighteenth ACM
Symposium on Operating Systems Principles, 2001.

[15] L. Subramanian, S. Agarwal, J. Rexford, and R. H. Katz,
“Characterizing the Internet Hierarchy from Multiple Vantage
Points.” in Proc. of INFOCOM, 2002.

[16] N. Spring, R. Mahajan, and T. Anderson, “Quantifying the
Causes of Path Inflation,” in Proc. of ACM SIGCOMM, August
2003.

[17] Z. M. Mao, R. Govindan, G. Varghese, and R. H. Katz, “Route
flap damping exacerbates Internet routing convergence,” in Proc.
of ACM SIGCOMM, 2002.

[18] J. Abley, “A Software Approach to Distributing Requests for
DNS Service Using GNU Zebra, ISC BIND 9, and FreeBSD,” in
Proc. of USENIX Annual Technical Conference, FREENIX
Track, 2004.

[19] T. S. E. Ng and H. Zhang, “Predicting Internet Network
Distance with Coordinates-Based Approaches.” in Proc. of
INFOCOM, 2002.

[20] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: a
decentralized network coordinate system,” in Proc. of ACM
SIGCOMM, 2004.

[21] C. Alaettinoglu and S. Casner, “Detailed Analysis of ISIS
Routing Protocol on the Qwest Backbone,” February 2002,
NANOG TALK.

[22] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulie, “SCAMP:
Peer-to-Peer Lightweight Membership Service for Large-Scale
Group Communication,” in Proc. of the Third International
COST264 Workshop on Networked Group Communication,
2001.

[23] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet:
high bandwidth data dissemination using an overlay mesh,” in
Proc. of the Nineteenth ACM Symposium on Operating
Systems Principles, 2003.

[24] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman, “PlanetLab: An Overlay
Testbed for Broad-Coverage Services,” ACM SIGCOMM
Computer Communication Review, vol. 33, no. 3, pp. 3–12, July
2003.

[25] “ISC F-Root Sites,” www.isc.org/index.pl?/ops/f-root/.

[26] P. Barber, M. Larson, M. Kosters, and P. Toscano, “Life and
Times of J-Root,” www.nanog.org/mtg-0410/kosters.html,
October 2004, NANOG TALK.

[27] R. Bush, Mailing list posting www.ripe.net/ripe/maillists/
archives/routing-wg/2004/msg00183.html.

[28] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang, “The
feasibility of supporting large-scale live streaming applications
with dynamic application end-points,” in Proc. of ACM
SIGCOMM, 2004.

[29] X. Zhang, J. Wang, and P. Francis, “Scaling the Internet
through Tunnels,” pias.gforge.cis.cornell.edu/tbgp.pdf.

[30] “SSFNet,” www.ssfnet.org/homePage.html.

[31] “Netfilter,” www.netfilter.org.

[32] E. Basturk, R. Haas, R. Engel, D. Kandlur, V. Peris, and
D. Saha, “Using IP Anycast For Load Distribution And Server
Location,” in Proc. of IEEE Globecom Global Internet Mini
Conference, November 1998.

[33] S. Matsunaga, S. Ata, H. Kitamura, and M. Murata,
“Applications of IPv6 Anycasting,”
draft-ata-ipv6-anycast-app-00, February 2005.

[34] D. Katabi and J. Wroclawski, “A framework for scalable global
IP-anycast (GIA),” in Proc. of ACM SIGCOMM, 2000.

[35] E. W. Zegura, M. H. Ammar, Z. Fei, and S. Bhattacharjee,
“Application-layer anycasting: a server selection architecture
and use in a replicated Web service,” IEEE/ACM Trans. Netw.,
vol. 8, no. 4, pp. 455–466, 2000.

[36] Z. Fei, S. Bhattacharjee, E. W. Zegura, and M. H. Ammar, “A
Novel Server Selection Technique for Improving the Response
Time of a Replicated Service.” in Proc. of INFOCOM, 1998.

[37] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana,
“Internet Indirection Infrastructure,” in Proc. of ACM
SIGCOMM, 2002.

[38] “Mobility for IPv6 (mip6), IETF Working Group Charter,”
www.ripe.net/ripe/maillists/archives/routing-wg/2004/
msg00183.html.

[39] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, and
H. Levkowetz, “RFC 3748 - Extensible Authentication Protocol
(EAP),” June 2004.

[40] A. D. Keromytis, V. Misra, and D. Rubenstein, “SOS: secure
overlay services.” in Proc. of ACM SIGCOMM, 2002.

[41] H. Ballani and P. Francis, “Root-Server Anycast Deployment: A
Meaurement Study,” pias.gforge.cis.cornell.edu/am.pdf.

A Study of Prefix Hijacking and Interception in the Internet

Hitesh Ballani
Cornell University

Ithaca, NY
hitesh@cs.cornell.edu

Paul Francis
Cornell University

Ithaca, NY
francis@cs.cornell.edu

Xinyang Zhang
Cornell University

Ithaca, NY
jzhang@cs.cornell.edu

ABSTRACT
There have been many incidents of prefix hijacking in the In-
ternet. The hijacking AS can blackhole the hijacked traffic.
Alternatively, it can transparently intercept the hijacked traf-
fic by forwarding it onto the owner. This paper presents a
study of such prefix hijacking and interception with the fol-
lowing contributions: (1). We present a methodology for pre-
fix interception, (2). We estimate the fraction of traffic to
any prefix that can be hijacked and intercepted in the Internet
today, (3). The interception methodology is implemented and
used to intercept real traffic to our prefix, (4). We conduct a
detailed study to detect ongoing prefix interception.

We find that: Our hijacking estimates are in line with the
impact of past hijacking incidents and show that ASes higher
up in the routing hierarchy can hijack a significant amount of
traffic to any prefix, including popular prefixes. A less appar-
ent result is that the same holds for prefix interception too.
Further, our implementation shows that intercepting traffic
to a prefix in the Internet is almost as simple as hijacking
it. Finally, while we fail to detect ongoing prefix interception,
the detection exercise highlights some of the challenges posed
by the prefix interception problem.

Categories and Subject Descriptors: C.2.2 [Network
Protocols]: Routing Protocols.

General Terms: Measurement, Security.

Keywords: Routing, BGP, Hijacking, Interception.

1. INTRODUCTION
In the recent past, there have been many instances of “pre-

fix hijacking” in the Internet wherein an Autonomous System
“hijacks” routes simply by advertising the corresponding pre-
fixes. Such incidents are regularly reported on the NANOG
mailing list [1]; [2–6] report a few specific ones. This, in turn,
has prompted a number of proposals to address the prob-
lem [3,4,7–21] – some of these target the specific goal of de-
tecting prefix hijack attempts while others strive to improve
the general security of inter-domain routing.

Irrespective of whether it is caused by a misconfiguration

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’07, August 27–31, 2007, Kyoto, Japan.
Copyright 2007 ACM 978-1-59593-713-1/07/0008 ...$5.00.

or a malicious entity, the AS that hijacks a prefix can black-
hole all the hijacked traffic and thus, cause a denial-of-service
attack against the prefix owner [22]. It can also redirect the
traffic to an incorrect destination and use this for a phishing
attack [22]. Spammers have also been known to use hijacked
prefixes [23]. In all these cases, the prefix’s traffic does not
reach the destination. However, it is also possible for an AS
to hijack the traffic to a prefix and then forward this traffic on
to the prefix owner [22,24]. Hence, instead of blackholing the
destination’s traffic, this would allow the AS to “intercept”
the traffic without disrupting the destination’s connectivity
to the Internet and thus, become a man-in-the-middle. For
instance, this may be used by an AS in the USA to trans-
parently capture, record and subsequently deliver IP traffic
between end points in Europe and the Middle East.

While these attacks are a bleedingly obvious consequence
of the way inter-domain routing operates, their egregiousness
cannot be disputed. This is especially true for interception
since the intercepted traffic still reaches the proper destina-
tion. Consequently, it is less likely that an unsuspecting vic-
tim would notice ongoing interception and unlike the other
possibilities, this is one case where a prefix could actually be
hijacked for a long period. Indeed, it is possible that inter-
ception may be happening undetected, on a regular basis, on
the Internet today!

However, despite all the incidents and subsequent work in
the research community, an actual quantification of the im-
pact of prefix hijacks on the Internet is sorely missing. Mo-
tivated by this, in this paper we present an analysis of the
impact of an invalid advertisement on ASes in the Internet
with specific emphasis on the possibility and practical feasi-
bility of using routing advertisements for traffic interception.
To this effect, this paper studies the following aspects of Inter-
net prefix hijacking and interception (with our contributions
italicized):

First, we use common routing policies to analyze the prob-
ability of an AS hijacking the traffic to a prefix from another
AS. Note that while hijacking traffic to a prefix simply in-
volves advertising the prefix into inter-domain routing, prefix
interception seems trickier because the invalid advertisement
originated by the hijacking AS can impact the valid route that
it uses to forward the traffic to the prefix’s owner. Conse-
quently, we extend our analysis to determine scenarios where
interception is possible and propose a general methodology for
prefix interception. Our analysis shows that a hijacking AS,
with high probability, can statically determine the neighbors
to which it can safely advertise an invalid route for a prefix
while still being able to forward the hijacked traffic back to
the prefix owner.

Second, we use routing tables collected at the Route-Views
repository [25] to estimate the fraction of other Route-Views
ASes whose traffic to any prefix can be hijacked and inter-
cepted by a given Route-Views AS. As one would expect, our
estimates show that tier-1 ASes can, on average, hijack traf-
fic to any prefix from a significant fraction of ASes (52% to
79%). These estimates also apply to hijacking of popular pre-
fixes that carry a lot of traffic. Further, tier-1 ASes can route
all the hijacked traffic back to the owner and hence, can also
intercept traffic to any prefix from a significant fraction of
ASes. However, these fractions drop off for ASes lower down
in the routing hierarchy. For instance, tier-3 ASes and be-
yond can, on average, hijack traffic to any prefix from 13% to
31% of ASes and intercept traffic from 7% to 17% of ASes.
We also verified our estimates against known prefix-hijacking
events on the Internet and found them to be fairly accurate.

Third, we implement the aforementioned interception meth-
-odology and use it to actually intercept traffic to a prefix
belonging to us in five different scenarios. Further, in each
scenario, we probe the prefix from >20,000 vantage points
to quantify the fraction of traffic that can be hijacked and
the fraction that can be intercepted. These results, at the
very least, provide anecdotal evidence of the claim that a
significant amount of traffic to prefixes on the Internet can
be intercepted. Moreover, the implementation suggests that
intercepting traffic to a prefix in the Internet is almost as
simple as hijacking it, requiring changes only in BGP routing
policy at the intercepting AS.

Finally, we use a combination of control-plane and data-
plane information to look for actual interception in the In-
ternet. The study yielded a few unexplained anomalies that
could be due to prefix interception. However, our analysis
shows that these anomalies can just as well arise from valid
routing arrangements. While negative, this result captures
some of the challenges in detecting ongoing prefix intercep-
tion. More generally, the estimates presented in this paper
rely on a simplistic model of Internet routing and have sev-
eral other limitations that we discuss in section 7. However,
in spite of these limitations, our quantification and implemen-
tation efforts serve to highlight the severity of the problem.
In this context, we hope that this paper would bring to the
fore the (obvious) possibility of traffic interception in today’s
inter-domain routing and influence the design of Internet se-
curity protocols.

2. METHODOLOGY
ASes in the Internet can use invalid advertisements for a

target prefix, i.e. advertisements with an AS-PATH that does
not represent the true AS-PATH to the prefix, to convince
other ASs to route traffic for the prefix to itself and hence,
hijack the prefix. Among other things, the hijacking AS can
forward the hijacked traffic to the owner and hence intercept
the prefix. Consequently, prefix interception is always pre-
ceded by prefix hijacking.

The most obvious form of an invalid advertisement is one
where the hijacking AS, say X, claims to own the prefix and
hence, advertises the prefix with AS-PATH=[X]. We refer
to this as an advertisement with an invalid origin. However,
such an invalid advertisement would lead to a Multiple Origin
AS (MOAS) anomaly [26]. The hijacking AS can avoid this by
advertising the prefix with AS-PATH=[X, O] where AS O is
the owner of the prefix. We refer to this as an advertisement
with an invalid next hop. Of course, the hijacking AS can

AS-PATH
= [C1 ...]

C1

AS Y AS X

AS-PATH
= [C1 ...]

C1

AS-PATH = [... X]

Customer-to-Provider link Valid BGP advertisement

Path for p’s traffic from AS C2,

(a). Before Hijacking Attempt (b). After Hijacking Attempt

Invalid BGP advertisement

C2 C2

AS Y AS X

a customer of AS Y

Figure 1: AS Y has an existing customer-route to p
and hence, hijacking p’s traffic from Y with an invalid
provider or peer route is not possible.

advertise the prefix with an even longer AS-PATH but, as we
show later in the paper, that would significantly reduce the
amount of traffic it can hijack. Hence, we focus on hijacking
and interception with routing advertisements that have an
invalid origin or an invalid next hop.

Apart from advertising an invalid route for an already rout-
-able prefix, there are a couple of other approaches that an
AS could possibly use for hijacking traffic to a prefix:

(a). An AS could advertise a more specific prefix than the one
being advertised by the owner and this would hijack all
the traffic to the specific prefix. However, the hijacking
AS would not be able route this traffic onto the owner
and hence, interception would not be possible.

(b). As AS could advertise a less specific prefix than the one
being advertised by the owner. This would hijack traffic
to the prefix only when the owner withdraws its adver-
tisements. However, even in that situation, the hijacking
AS would not be able to route the hijacked traffic to the
owner.

Since the impact of such advertisements can be trivially pre-
dicted, we don’t study them here. Hence, our estimates for
the fraction of traffic that can be hijacked and the fraction
that can be intercepted are restricted to hijacking based on
advertisement of the same prefix as the one being advertised
by the owner.

The discussion in the rest of this section focusses on an
AS X trying to hijack (and intercept) the traffic for target
prefix p. In the first part of the section we analyze X’s ability
to hijack p’s traffic using an advertisement with an invalid
origin (though the arguments can trivially be extended to
advertisements with an invalid next hop), while in the second
part we study how X ensures that it can forward the hijacked
traffic back to p’s owner.

2.1 Hijacking Analysis
AS X advertises an invalid route for prefix p with AS-

PATH=[X]. We want to evaluate the impact of this adver-
tisement on AS Y that is (n-1) AS hops away from X and
thus, receives a route of AS-PATH length n.1 Specifically, we
would like to determine if Y chooses this invalid route over
its existing route to p, thus allowing AS X to hijack p’s traffic
sourced from it. Here, “traffic sourced from AS Y” refers to

1Y may be topologically closer to X than (n-1) hops but the
shortest path that the invalid advertisement needs to propa-
gate to reach Y comprises of (n-1) ASes.

traffic originating at Y plus “traffic sourced from any of Y’s
neighbors” that is routed through Y.

Obviously, AS Y’s choice depends on both its existing route
and the newly-received invalid route to p. We term a route to
be a “customer-route” or a “peer-route” or a “provider-route”
depending on whether the next-hop AS in the AS-PATH is a
customer, a peer or a provider respectively. Since both the
existing route and the invalid route could be any of these,
there are nine cases to consider. Below we try to answer the
aforementioned question for each of these cases, given two
assumptions:
(a). The invalid route advertised by AS X reaches AS Y.
ISPs are known to install route filters so as to accept ad-
vertisements only for specific prefixes from their neighbors,
especially if the neighbor is a stub AS [27]. Thus, route fil-
ters employed by any AS along the path from X to Y would
falsify this assumption. Further, for the invalid advertisement
to actually reach Y, it must be accepted and propagated by
all ASes along the path. Thus, an implicit assumption here
is that X is able to hijack traffic from all ASes along the path
from X to Y (in practice, one could verify this assumption by
applying the analysis presented below to each AS along the
path).
(b). AS Y’s choice also depends on its routing policies. Mea-
surement studies in the past have shown that a large ma-
jority of ASes on the Internet tend to assign higher local-
preference values to customer-routes than to peer-routes than
to provider-routes [28]. Since local-preference values are the
first step of the BGP decision process [29], ASes prefer cus-
tomer routes to peer routes to provider routes. We assume
that this holds for Y as this lets us analyze the possibility of
Y’s traffic being hijacked. Further, a part of the analysis also
assumes that AS Y assigns the same local-preference value to
all its customers, the same value to its peers and the same
value to its providers; however, most of the arguments below
apply even if this last assumption does not hold. As detailed
in section 3.1, we verified these assumptions for tier-1 ASes.

Cases 1-3. Existing route is customer-route, invalid route
is a customer/peer/provider route. If the invalid route that
AS Y receives is a peer or a provider route, irrespective of the
attributes (for example, the AS-PATH length) of this route, Y
prefers the existing customer-route (assumption (b)). Thus,
Y’s traffic is not hijacked. Figure 1 shows this scenario.

On the other hand, if the invalid route is a customer-route,
AS Y’s policy would give equal preference to both routes and
hence, the decision is based on the length of the route [29].
If the AS-PATH length of the existing route is less than n,
it is preferred. If the AS-PATH length of the existing route
is more than n, the invalid route is preferred. Finally, if Y’s
existing route is n AS-hops long, it must choose between two
routes with the same local preference and the same length.
This choice is based on other factors such as the IGP metric
of the routes [29]. Consequently, some routers belonging to Y
may choose to stick with the existing route while others may
choose to use the invalid route. Hence, in this case, some
fraction of Y’s traffic for p may be hijacked. Figure 2 shows
this scenario.

Case 4-6. Existing route is a peer route, invalid route is
a customer/peer/provider route. If the invalid route that AS
Y receives is a provider route, it prefers the existing peer-
route. Thus, Y’s traffic is not hijacked. As a contrast, if the
invalid route is a customer-route, Y prefers it and Y’s traffic
is hijacked.

AS-PATH
= [C1 ...]

C1

Customer-to-Provider link Valid BGP advertisement

(a). Before Hijacking Attempt (b). After Hijacking Attempt

Invalid BGP advertisement

C2

AS Y

customers of AS Y

AS-PATH
= [... X]

X

C3

Path for p’s traffic from

AS-PATH
= [C1 ...]

C1

C2

AS Y

X

C3

Figure 2: AS Y has an existing customer-route to p
and receives an invalid route (advertised by AS X) of
equal length through a customer. This causes some
fraction of p’s traffic to be hijacked.

Invalid route ⇒ Customer Peer Provider
Existing route Length

Customer
<n ✗ ✗ ✗

=n – ✗ ✗

>n ✓ ✗ ✗

Peer
<n ✓ ✗ ✗

=n ✓ – ✗

>n ✓ ✓ ✗

Provider
<n ✓ ✓ ✗

=n ✓ ✓ –
>n ✓ ✓ ✓

Table 1: AS Y’s traffic to prefix p can (✓), cannot
(✗) or can partly (–) be hijacked depending on its
existing route and the invalid route.

Finally, if the invalid route is a peer-route, AS Y’s policy
would give equal preference to both routes and hence, the
decision is based on the AS-PATH length of the route [29].
If the length of the existing route is less than n, traffic is not
hijacked; if the length is more than n, traffic is hijacked; if
the length is n AS hops, some fraction of the traffic may be
hijacked.

Case 7-9. Existing route is a provider route, invalid route
is a customer/peer/provider route. The possibility of hijack-
ing AS Y’s traffic in these cases follows from the arguments
presented above. Table 1 summarizes the hijacking possibility
for all nine cases.

2.2 Interception Analysis
In order to be able to intercept traffic to the prefix p, the

hijacking AS needs to forward the hijacked traffic on to p’s
owner. It can do so by forwarding the hijacked traffic along its
existing valid route to p. Figure 3 shows the process by which
hijacking AS X hijacks prefix p’s traffic from Y (originating
at Y’s customer C2) and then forwards it on to p’s owner
through its peer W. However, for this to work, X’s existing
route to p should not be impacted by the invalid route that
it advertises. Hence, the hijacking AS X would like to ensure
the following safety2 condition:

None of the ASes along the route to prefix p used by the
hijacking AS should choose the invalid route advertised
by it (if they do receive the invalid route) over their
existing route to p.

Note that the obvious way for AS X to satisfy the above

2Here, safety refers to the fact that X does not introduce
routing instability and is able to route the hijacked traffic to
its owner.

AS-PATH
= [C1 ...]

C1

AS-PATH
= [W, C1, ...]

AS-PATH = [W C1 ...]

AS-PATH = [X]

(a). Before Interception

C2

AS XAS W AS Y

AS-PATH
= [C1 ...]

C1

AS-PATH
= [W, C1, ...]

AS-PATH = [W C1 ...]

(b). Interception of Traffic

C2

AS XAS W AS Y

Figure 3: AS X uses an invalid advertisement to hi-
jack traffic from AS Y and then routes the traffic to
the owner using its existing route through peer AS
W.

X

Z

C1

Z

C1

C2

X C1

C2

C3

Z P

X

(a). (b). (c).

Routing Advertisment
Propagation

Peer Edge

Customer-to-Provider
Edge

Figure 4: Propagation of the invalid route advertised
by AS X to its (a) customer, (b) peer, (c) provider.

condition would be to advertise the invalid route such that
the traffic from the ASes along its existing route to p is not
hijacked. In theory, the discussion from the previous section
applies to the possibility of hijacking from these ASes. How-
ever, this observation doesn’t have much practical value since
X wouldn’t know how an invalid route advertised to any of
its neighbors would be propagated to these ASes and hence,
would not be able to determine if an invalid advertisement
can indeed hijack the traffic from a given AS along the path.

Instead, we would like to analyze if a hijacking AS can
ensure the safety condition based on local information alone.
Specifically, AS X would like to determine if advertising an
invalid route for p to a neighboring AS, say Z, can impact
its existing route for p. X’s existing route to p can be a
customer, peer or provider route and Z can be X’s customer,
peer or provider and hence, there are nine cases to consider.
Below we try to answer the aforementioned question, given
two assumptions:
(a). As with the hijacking analysis, we assume that ASes
prefer customer routes to peer routes to provider routes.
(b). We assume that Internet paths follow the “Valley-free”
property [30], i.e. after traversing a provider-to-customer
edge or a peer edge, the path cannot traverse another customer-
to-provider or peer edge. Analogously, once a routing ad-
vertisement traverses a provider-to-customer edge or a peer
edge, the advertisement cannot traverse another customer-to-
provider or peer edge.

X

W

C1

W

C1

C2

X C1

C2

C3

W P

X

(a). (b). (c).

Valid routing advertise-
-ment received by X

Peer Edge

Customer-to-Provider
Edge

Data-plane path

Figure 5: AS X’s existing route for prefix p is through
a (a) customer, (b) peer, (c) provider.

Consequently, when X advertises the invalid route to a
customer, the advertisement can only traverse provider-to-
customer edges. Hence, the advertisement is restricted to
ASes below X in the AS hierarchy and represents a provider
route for these ASes. When X advertises the invalid route to
a peer, the advertisement traverses one peer edge followed by
provider-to-customer edges only. Hence, other than the peer
being advertised to, the advertisement is restricted to ASes
below X in the AS hierarchy and represents a provider route
for these ASes. Figure 4(a,b) illustrate these scenarios.

When X advertises the invalid route to a provider, each
control plane path traversed by the advertisement comprises
of one or more customer-to-provider edges followed by zero or
one peer edges and zero or more provider-to-customer edges.
Hence, the advertisement is propagated to all levels of the AS
hierarchy. However, it is important to note that while ASes
that are above X in the AS hierarchy may receive the invalid
advertisement from a customer, peer or provider, ASes at the
same level or below X will always receive the advertisement
from a provider (i.e. a provider route). Figure 4(c) illustrates
this scenario.

Case 1-3. X’s existing route is a customer route, X ad-
vertises the invalid route to a customer/peer/provider. The
fact that X’s existing path to p is a customer-route implies
that the first edge along this path is a provider-to-customer
edge. Further, the valley-free property of Internet paths im-
plies that this is a “downhill path” (as defined by [30]) com-
prising of a sequence of provider-to-customer edges. Thus, all
ASes along the path are below X in the AS hierarchy and use
a customer route to p. Figure 5(a) illustrates this scenario.
As discussed in assumption (b), irrespective of whether X
advertises the invalid route to a customer/peer/provider, the
invalid route would appear as a provider route to ASes below
X and hence, will not be chosen by them over their existing
customer route. Thus, X can advertise the invalid route to
all its neighbors.

Case 4-6. X’s existing route is a peer route, X advertises
the invalid route to a customer/peer/provider. The valley-
free property implies that X’s existing path to p comprises of
one peer edge followed by a sequence of provider-to-customer
edges. Thus, all ASes along the path use a customer route to
p. Figure 5(b) illustrates this scenario. Also, as before, even
if the invalid route advertised by X propagates to any of the
ASes along the path, it will be a provider or a peer route and
hence, will not be chosen over the existing customer route.
Thus, X can advertise the invalid route to all its neighbors.

Case 7-9. X’s existing route is a provider route, X ad-
vertises the invalid route to a customer/peer/provider. The
valley-free property implies that X’s existing path to p com-
prises of one or more customer-to-provider edges followed by

Valid routing advertise-
-ment for prefix p

Peer Edge

Customer-to-Provider
Edge

C1

C2

C3

W

Q

X

Z C1

C2

C3

Q

X

Z

Invalid routing advert-
-isement for prefix p

(a). (b).

W

Figure 6: (a) Hijacking AS X has a route for p through
provider W. (b) The invalid route advertised by X to
another provider Z to intercept p’s traffic impacts its
existing route for p.

zero or one peer edge followed by zero or more provider-to-
customer edges. Hence, ASes along the path may be using a
customer or peer or provider route to p. However, any ASes
along the path that are at the same level or below X in the AS
hierarchy would be using a customer route to p. Figure 5(c)
illustrates this scenario.

As discussed in assumption (b), when X advertises the in-
valid route to a customer or a peer, the advertisement is re-
stricted to ASes at the same level or below X in the AS hier-
archy and represents a provider or peer route for them. This
implies that the invalid route will not be chosen by these
ASes. Hence, X can advertise the invalid route to its cus-
tomers and peers.

However, when X advertises the invalid route to a provider,
the route may be received by ASes above X in the AS hierar-
chy. For these ASes, both the invalid route and the existing
route can be a customer, peer or provider route implying
that it is possible they prefer the invalid route. This violates
the safety condition and hence, X cannot advertise the in-
valid route to its providers. Figure 6 shows such a scenario
wherein the invalid route advertised by AS X to its provider
AS Z impacts its existing route for prefix p.

The analysis presented above implies that an AS trying
to intercept traffic for target prefix p can advertise the in-
valid route to all its neighbors unless its existing route for p
is through a provider, in which case the invalid route should
not be advertised to other providers of the AS. However, there
are a couple of other things to note: First, while our assump-
tions regarding AS policies and valley-free paths hold for a
majority of ASes on the Internet, exceptions certainly do ex-
ist. Hence, the aforementioned policy for advertising invalid
routes ensures safety with a high probability; an AS adver-
tising invalid routes may still cause routing instability and
needs to account for it. It can do so by observing if its exist-
ing route for p changes as a result of advertising the invalid
route. If such a change occurs, the hijacking AS can pin point
the anomaly-causing neighbor based on the recently received
advertisements for p and hence, stop advertising the invalid
route to this neighbor.

Second, even when the hijacking AS’s existing route for p is
through a provider, advertising the invalid route to another
provider may not necessarily impact the AS’s route for p.
Hence, it is possible to imagine the hijacking AS using an
aggressive approach by advertising the invalid route to all
neighbors and then stopping the advertisement to specific
neighbors if route instability arises.

Based on the description above, the following pseudo-code
represents the conceptual process by which hijacking AS X
can intercept traffic to target prefix p from its neighbors:

If (existing route to p is through a provider)
then
Advertise to all peers and customers a route
for prefix p with AS-PATH [X];

else
Advertise to all neighbors a route for prefix
p with AS-PATH [X];

endif
If (the invalid advertisement causes the

existing route for p to change)
then

Stop the advertisement to the
anomaly-causing neighbor;

endif

3. HIJACKING AND INTERCEPTION ESTI-
MATES

Given the methodology described in the previous section,
we can estimate the fraction of ASes in the Internet whose
traffic to a target prefix that can be hijacked and intercepted
by any given AS.

3.1 Hijacking by tier-1 ASes
Here we focus on hijacking by tier-1 ASes and determine

the fraction of other tier-1 ASes whose traffic to a prefix can
be hijacked and intercepted by a tier-1 AS in the Internet
today. A tier-1 AS is an AS with no providers and a peering
with all other tier-1 ASes [31]. Hence, tier-1 ASes are at the
top of the routing hierarchy. We used CAIDA’s AS ranking
tool [31] and commercial reports on AS ranking [32] to come
up with a list of 15 highly ranked ASes that are considered
as tier-1 ASes in this paper. Note that we treat hijacking
by tier-1 ASes as a special case since we can verify the two
assumptions made by the analysis presented in section 2.1:
Assumption (a). An invalid route advertised by the hijack-
ing AS reaches the AS whose traffic ought to be intercepted.
The fact that all tier-1 ASes peer with each other makes this
trivially true. Further, it is unlikely that the invalid route
advertised by a hijacking tier-1 AS would be filtered out by
any of the other tier-1 ASes [27].
Assumption (b). Tier-1 ASes prefer customer-routes over
peer-routes and give the same preference to routes from dif-
ferent peers.3 A lot of tier-1 ASes offer publicly-accessible
route-servers and policy guides which let us determine their
import policies expressed in the form of local-preference val-
ues. We were able to do this for nine of the fifteen tier-1
ASes. While we don’t show the actual local-preference values
in the interest of brevity, we found that this assumption was
satisfied for all the nine ASes.

This validation of the assumptions improves our confidence
in the accuracy of the estimates presented here. The actual
estimates were guided by two observations. First, the fact
that tier-1 ASes don’t have any provider routes implies that
they can safely advertise the invalid route to all neighbors.
Consequently, (almost) all traffic that can be hijacked by a
tier-1 AS can also be routed back to its owner.

Second, from the point of view of other tier-1 ASes, the
invalid route advertised by hijacking AS X is a peer route
one AS-hop long. This, combined with table 1, implies that
X can hijack all traffic for prefix p from a peer AS if the

3Tier-1 ASes don’t have provider routes. Also, we focus on hi-
jacking from other tier-1 ASes that are peers of the hijacking
AS and hence, their preference amongst routes from different
customers is not relevant.

 50

 55

 60

 65

 70

 75

 80

NTTTiscaliSprintLevel3GXATTAOLAll

H
ija

ck
in

g
P

ro
ba

bi
lit

y
(%

)

Tier-1 AS

 50

 55

 60

 65

 70

 75

 80

NTTTiscaliSprintLevel3GXATTAOLAll

H
ija

ck
in

g
P

ro
ba

bi
lit

y
(%

)

Tier-1 AS

Figure 7: Probability of prefix hijacking on average
and for each of the tier-1 ASes that serve as hijacking
ASes in our estimation.

peer’s existing route for p is a provider route or a peer route
of length more than one AS hop. AS X can intercept some
fraction of the traffic if the peer’s existing route for p is a peer
route of length one. However, this fraction depends on both
the intra-domain metrics of the peer AS and the locations at
which X peers with it. Given that we lack this information,
we define the upper and the lower bounds of hijacking; the
lower bound assumes that none of p’s traffic from such peers is
hijacked while the upper bound assumes that all of p’s traffic
from such peers is hijacked.

Overall, we can determine if X can hijack traffic for prefix p
from a peer tier-1 AS based on the peer’s existing route for p.
Since the Route-Views repository collects routes from 7 of the
15 tier-1 ASes (AOL, ATT, Global Crossing, Level3, Sprint,
Tiscali and NTT), we focussed on these seven ASes and for
each of them, determined the prefixes in the Internet routing
table whose traffic from the other six tier-1 ASes (and their
customers) can be hijacked. For ease of exposition, we hereon
refer to the fraction of other ASes whose traffic is hijacked by
the hijacking AS (averaged across all prefixes) as the proba-
bility of hijacking. The probability of interception is defined
analogously. Thus, we were able to determine the probabil-
ity of hijacking for each of the seven ASes. The fact that
the hijacking AS is a tier-1 AS implies that the interception
probability is the same.

Figure 7 shows the lower and the upper bound for proba-
bility of prefix hijacking on average and for individual ASes.
The figure shows that a tier-1 AS can, on average, hijack
the traffic for a prefix from another tier-1 AS with ≈70-75%
probability. The fact that the ability to hijack a prefix’s traf-
fic from a peer depends only on the peer’s existing route for
the prefix shows up in that the hijacking probability does not
vary much across tier-1 ASes. Further, this implies that the
estimate also applies to hijacking of tier-1 traffic by multiple
colluding tier-1 ASes.

While we have focussed on the probability of prefix hijack-
ing, another important question is the amount of traffic that
can be hijacked. Note that the fact that a small number of
prefixes carry a majority of the Internet’s traffic [33] implies
that the probability estimates can be misleading. To address
this, we focussed on the top 100 web-sites in terms of the
traffic carried according to the Alexa’s web-site rankings [34].
We mapped these sites to the corresponding prefixes and de-
termined if a tier-1 AS can hijack traffic for these popular
prefixes from its peers. Figure 8 plots the hijacking proba-
bility for the popular prefixes. As can be seen, a tier-1 AS
can hijack traffic for these prefixes with a probability of ≈60-
70%, which is close to the overall estimate.4 This suggests

4In practice, their popularity suggests that these prefixes are
well engineered and monitored and hence, we believe that it
is unlikely that an AS will attempt to hijack or intercept their

 50

 55

 60

 65

 70

 75

 80

NTTTiscaliSprintLevel3GXATTAOLAll

H
ija

ck
in

g
P

ro
ba

bi
lit

y
 fo

r
to

p
si

te
s

Tier-1 AS

 50

 55

 60

 65

 70

 75

 80

NTTTiscaliSprintLevel3GXATTAOLAll

H
ija

ck
in

g
P

ro
ba

bi
lit

y
 fo

r
to

p
si

te
s

Tier-1 AS

Figure 8: Probability of prefix hijacking for prefixes
corresponding to top-100 sites.

 0

 20

 40

 60

 80

 100

T>=3T-2T-1All

P
ro

ba
bi

lit
y

(%
)

Type of Intercepting AS

Hijacking (LB)
Hijacking (UB)

Interception (LB)
Interception (UB)

 0

 20

 40

 60

 80

 100

T>=3T-2T-1All

P
ro

ba
bi

lit
y

(%
)

Type of Intercepting AS

Hijacking (LB)
Hijacking (UB)

Interception (LB)
Interception (UB)

Figure 9: Probability of prefix hijacking and prefix
interception for ASes in the RV-set.

that our estimates should closely approximate the fraction of
traffic that a tier-1 AS can intercept from its peers.

3.2 Hijacking by any AS
We now try to estimate the probability of prefix hijacking

and the probability of prefix interception for ASes in general,
not just tier-1 ASes. To this effect we focus on all the 34 ASes
that contribute to the Route-Views repository – these ASes
are hereon referred to as the RV-set. This includes 7 tier-1
ASes, 19 tier-2 ASes and 8 other ASes (tier≥3). For each
AS in the RV-set, we determined the prefixes in the Internet
routing table whose traffic from the other ASes in the set can
be hijacked and routed back to the prefix owner. Specifically,
the estimation procedure required us to answer the following
questions: Can an AS in the RV-set, say X, hijack traffic for
target prefix p from another AS, say Y, in the RV-set? If yes,
can it route this hijacked traffic on to p’s owner?

As described in section 2.1, AS X’s ability to hijack p’s
traffic from AS Y depends on both Y’s existing route for p
and the invalid route received by Y. The Route-Views data
provides Y’s existing route for each prefix p. As far as the
propagation of the invalid route advertised by X is concerned,
we determined a prefix owned by X (i.e. the origin AS in the
AS-PATH for the prefix is X) and used Y’s route to this prefix
as an approximation of the invalid route that Y would receive.
Lets assume that the AS next to the origin AS in the AS-
PATH for this route is Z. Hence, AS X advertises the invalid
route to its neighbor Z and this propagates onto AS Y. Sec-
tion 2.2 detailed that the safety of X advertising the invalid
route to its neighbor Z depends on both X’s existing route for
p and X’s relation with Z. As before, the Route-Views data
provides X’s existing route for each prefix p. Finally, we used
CAIDA’s AS relationship data [35] to determine X’s relation
with Z.

Using this basic methodology, we estimated the upper (UB)
and lower bound (LB) for the probability of hijacking and the
probability of interception for the ASes in the RV-set. These

traffic.

 0

 20

 40

 60

 80

 100

T>=3T-2T-1All

P
ro

ba
bi

lit
y

(%
)

fo
r

to
p-

si
te

s

Type of Intercepting AS

Hijacking (LB)
Hijacking (UB)

Interception (LB)
Interception (UB)

 0

 20

 40

 60

 80

 100

T>=3T-2T-1All

P
ro

ba
bi

lit
y

(%
)

fo
r

to
p-

si
te

s

Type of Intercepting AS

Hijacking (LB)
Hijacking (UB)

Interception (LB)
Interception (UB)

Figure 10: Probability of prefix hijacking and prefix
interception for popular prefixes.

 0

 20

 40

 60

 80

 100

T>=3T-2T-1All

P
ro

ba
bi

lit
y

(%
)

Type of Intercepting AS

Hijacking (LB)
Hijacking (UB)

Interception (LB)
Interception (UB)

 0

 20

 40

 60

 80

 100

T>=3T-2T-1All

P
ro

ba
bi

lit
y

(%
)

Type of Intercepting AS

Hijacking (LB)
Hijacking (UB)

Interception (LB)
Interception (UB)

Figure 11: Probability of prefix hijacking and prefix
interception with routes that have an invalid next-
hop.

are plotted in figure 9 – the error bars in the figure represent
the 95% confidence interval for the corresponding bound. The
graph shows that the overall probability of hijacking a prefix
varies between 38% and 63% while the probability of inter-
cepting a prefix varies between 29% and 48%. Also plotted
are the probabilities for ASes of different kinds. As mentioned
earlier, for tier-1 ASes, the hijacking and interception prob-
abilities are the same and these vary between 52% and 79%.
Note that this encompasses the range in the previous section.
However, as one would expect, both the hijacking and the in-
terception probabilities drop off for tier-2 ASes and onwards.
Also, such ASes have a higher variance and hence, a larger
confidence interval for the various bounds.

As before, we also determined these probabilities for pop-
ular prefixes corresponding to the top-100 sites. These are
plotted in figure 10. The figure shows that both the hijacking
and interception probabilities for the popular prefixes are only
slightly lower (≈5-10%) than for all prefixes. Overall, our re-
sults show that ASes higher up in the AS hierarchy (tier-1
and some tier-2 ASes) can both hijack and intercept any pre-
fix with a high probability (>50%). However, invalid routes
advertised by ASes lower down in the hierarchy wouldn’t have
as significant an impact.

Note that the estimates in this and the previous section
have assumed that the hijacking AS advertises routes with an
invalid origin. As mentioned earlier, this can lead to a MOAS
anomaly and the hijacking AS can avoid this by advertising
routes with an invalid next hop. This would increase the
length of the invalid route and hence, reduce the amount of
traffic that can be hijacked (and intercepted) but would make
detection harder. We measured the hijacking and intercep-
tion probabilities for ASes in the RV-set with such advertise-
ments. These are plotted in figure 11. The figure shows that
using advertisements with an invalid next-hop reduces the hi-
jacking and interception probabilities by ≈10-20% with the
probabilities for tier-1 ASes ranging between 30% to 70%.

Prefix Owner Hijac- Estimated Actual
(AS name) -ker Hijacking Hijack-

LB-UB % -ing (%)

64.233.161.0/24 Google Cogent 35.5-64.5 45.2
12.173.227.0/24 MarthaStewart

Living
ConEd. 36.4-84.9 42.4

63.165.71.0/24 Folksamerica ” 39.4-72.7 39.4
64.132.55.0/24 OverseasMedia ” 18.2-51.5 18.2
65.115.240.0/24 ViewTrade ” 27.2-54.5 21.2
65.209.93.0/24 LavaTrading ” 39.4-72.7 45.5
66.77.142.0/24 Folksamerica ” 90.9-90.9 90.9
66.194.137.0/24 MacKayShields ” 18.2-57.5 27.3
66.207.32.0/20 ADI ” 45.5-66.7 63.6
69.64.209.0/24 TheStreet.Com ” 72.7-81.8 84.8
160.79.45.0/24 RhodesASN ” 27.3-75.8 51.5
160.79.67.0/24 TheStreet.Com ” 60.6-75.8 69.7
192.251.16.0/24 T&TForex ” 27.3-57.6 27.3
198.15.10.0/24 TigerFund ” 0-1 60.6
204.13.72.0/24 FTENNY ” 93.9-93.9 75.8
216.223.46.0/24 SDSNY ” 51.5-78.8 18.2

Table 2: Comparing our estimates for known prefix
hijacking events with the actual hijack probability.

3.3 Verifying against known events
We now verify our estimates against known prefix hijack

events. For instance, Cogent (AS 174) hijacked a prefix
(64.233.161.0/24) belonging to Google (AS 15169) on May 07,
2005 through an advertisement with an invalid origin [5]. Ac-
cording to BGP updates collected at the Route-Views repos-
itory, Cogent started advertising the prefix on May 07, 2005
14:37:56 and this caused 14 of the 31 (45.2%) distinct ASes
part of the RV-set at that time to choose the invalid route.
It is not known if the hijacked traffic was blackholed or actu-
ally routed back to Google. We ran our analysis on a routing
table collected earlier that day (before the hijack) and esti-
mated that the probability that an invalid route for the prefix
advertised by Cogent would hijack traffic from ASes in the
RV-set ranges between 35.5% and 64.5%. Further, the fact
that Cogent is a tier-1 AS implies that the same applies to
the probability of interception. As can be seen, our estimate
encompasses the fraction of ASes from which traffic was ac-
tually hijacked. Further, amongst the 11 ASes whose traffic
our analysis predicted would be surely be hijacked (i.e. they
were included in the lower bound), only one was not hijacked
in reality.

We performed the same exercise for other known hijack
events. Since we did not have BGP routing tables from the
hijacking AS in these cases, we were only able to predict
the probability of hijacking. Table 2 shows the results. As
can be seen, our estimate encompasses the actual hijacking
probability for 11 of the 16 prefixes analyzed, in 3 cases we
over-estimate, in 1 case we under-estimate while in 1 case
our estimate provides no information. Note that the assump-
tion that the invalid route actually reaches the ASes in the
RV-set cannot be verified and this is a frequent cause for over-
estimation. More importantly, the outliers show that Internet
routing is certainly more complex than the simplified model
used for our analysis. However, the proportion of cases where
our estimates were accurate and the exercise in the next sec-
tion fortify our confidence in the results presented.

4. INTERNET TRAFFIC INTERCEPTION
There have been instances of prefix hijacking in the In-

ternet. However, we are not aware of incidents where the
hijacked traffic was still being routed to the owner. While

Otemachi
Japan

Internet

ATT
gg

WCG

Seattle
US Ithaca

US

Berkeley
US Pittsburgh

US

NTT

Valid routing
advertisement

Invalid routing
advertisement

Path for traffic
to target prefix

IP-IP tunnels

Sites emulating POPs of the Intercepting ISP

Figure 12: Intercepting traffic from the prefix owner
at the Berkeley site. The four other sites emulate an
ISP, use invalid routes to hijack traffic and route it
back to the owner.

the fact that ISPs can use invalid routing advertisements to
intercept traffic is pretty obvious, we still wanted to attempt
interception in practice. Apart from serving as a proof of
concept, our hope was to derive insights from this exercise
into the practicality of intercepting traffic within the existing
routing framework. In this section, we detail our deployment
and implementation efforts for intercepting traffic in the In-
ternet. We used this to actually intercept a prefix’s traffic (of
course, the prefix belonged to us).

For these experiments, we deployed hosts at five different
sites and used the Quagga software router [36] on these hosts
to establish EBGP peerings with different ISPs. Effectively,
this allowed us to advertise our prefix (204.9.168.0/22) into
the Internet through the peerings. These sites and the up-
stream ISP at each site are shown in figure 12. The idea be-
hind the experiments was to use our prefix as the target prefix
with one of the sites serving as the owner of the prefix and
the four other sites serving as the geographically distributed
POPs of an ISP trying to intercept the prefix. We used IP-IP
tunnels between these sites for any intra-domain communica-
tion between the POPs of our emulated ISP. Figure 12 shows
one such set-up with the site in Berkeley acting as the prefix
owner. Invalid routes for the prefix are advertised through
the sites at Ithaca and Otemachi. These invalid advertise-
ments hijack traffic for the target prefix which is tunneled to
the other two sites and is then routed to its owner.

For hijacking the target prefix’s traffic from a given site,
we simply advertised the prefix through all the four other
sites. However, for interception, the traffic ought to be routed
back to the owner. This is tricky since all our sites are effec-
tively stub sites peering with providers and hence, all outgo-
ing edges for the ISP emulated by our sites are customer-to-
provider edges. Consequently, the existing route used by the
ISP for the target prefix is bound to be a provider route. Also,
the invalid route can only be advertised through a provider.
As we detailed in section 2.2, this can lead to a routing insta-
bility impacting the ISP’s existing route for the target prefix.
Hence, we manually determined the optimal way of advertis-
ing the invalid route so that the ISP is still able to route the
hijacked traffic to the designated owner.

We used recursive DNS nameservers across the Internet
to generate actual traffic destined to the prefix. To this ef-
fect, we collected a list 23,858 of recursive nameservers be-
longing to 7,566 of the 18,391 routable ASes on the Internet
(based on a BGP routing table obtained from the Route-
Views repository). We also pointed the NS record for a do-
main name under our control (prefix.anycast.guha.cc) to

Ber Pit Sea Ith Ote % of traffic % of traffic
Hijacked Intercepted

O ✗ ✗ ✓ ✓ 91.7 78.8
✗ O ✗ ✓ ✓ 68.8 67.5
✗ ✗ O ✓ ✓ 97.4 66.2
✗ ✗ ✗ O ✓ 66.0 47.3
✓ ✓ ✓ ✗ O 76.1 23.4

Table 3: Percentage of Traffic Hijacked and Intercepted.

Each row corresponds to a scenario with one site acting

as the prefix owner (O) and the four other sites emulating

the Intercepting ISP – some of these sites advertise the

invalid route (✓) while others don’t (✗).

point to an address in the prefix. Thus, a query for a name
such as query.prefix.anycast.guha.cc to a nameserver in
the aforementioned list causes it to send a DNS packet to
our prefix and thus, allows us to probe our prefix from the
nameserver. We loosely term the fraction of probes received
at a given site as the “fraction of traffic” received at the site.

The probing methodology described above was used to
measure the fraction of traffic that can be hijacked and in-
tercepted from individual sites in our deployment. Table 3
shows these results. For our deployment, the fraction of traf-
fic hijacked varies between 66% and 97.4% while the fraction
of traffic intercepted varies between 23.4% and 78.8%. This,
at the very least, provides anecdotal evidence that a signif-
icant fraction of traffic to prefixes on the Internet can be
intercepted.

More importantly, our proof-of-concept implementation, as
described below, represents one approach that ISPs might use
to intercept traffic to a prefix with existing routers and rout-
ing framework. Given a target prefix, the hijacking AS can
determine the next hop AS for its existing valid route to the
target prefix - let this be the preferred AS. The routers of the
hijacking AS that peer directly with the preferred AS and
thus, receive valid BGP advertisements for the target pre-
fix are left with unmodified configurations. All other routers
are configured with static routes to send traffic destined to
the target prefix to one of the unmodified routers. Also,
these routers are configured to advertise this internal static
route through BGP to the external routers they peer with
(while satisfying the advertisement constraints discussed in
section 2.2). This ensures that all neighbors of the hijacking
AS receive a one AS-hop route to the target prefix while the
hijacking AS can forward the hijacked traffic to the destina-
tion. All this can be achieved with standard management
interfaces and tools used by ISPs today. Thus, intercepting
traffic to a prefix in the Internet is almost as simple as hi-
jacking it.

5. INTERCEPTION DETECTION
We wanted to determine if traffic to any prefix is being

intercepted in the Internet today. Note that there has been
work towards detecting prefix hijacks [3,15,18–21] and since
the interception of a prefix necessarily involves hijacking it,
these would seem to apply. However, they either look for
anomalies in routing advertisements [15,18] and hop count
changes [21] which are not effective for detecting ongoing in-
terception or use fingerprinting to detect blackholing/redirec-
-tion of the hijacked traffic [20] and hence, would not work
for prefix interception. Alternatively, MyASN [19] uses BGP
updates collected at route-repositories and information pro-
vided by a prefix owner about the origin AS of the prefix to
alert the owner of any attempts to hijack their prefix through

N j N i

O

S Data-plane path

Control-plane
Adjacency

Figure 13: Next-hop Anomaly: a signature for In-
ternet interception. Here, AS Nj uses fake advertise-
ments to claim to be a next-hop for origin AS O and
routes intercepted traffic for prefix p through AS Ni.

advertisements with an invalid origin. PHAS [3] is a sim-
ilar service. These services are guided by the observation
that it is the prefix owner that can authoritatively distin-
guish valid prefix advertisements from invalid ones [37] and
hence, require proactive participation of prefix owners. Here
we explore the possibility of detecting ongoing prefix inter-
ception in the Internet without pro-active participation by
prefix owners.

Note that detecting interception (and hijacking) based solely
on control plane information is not possible. For instance, a
change in the origin AS for a prefix is a frequent occurrence
in the Internet [3] and hence, a MOAS conflict cannot be
used as an indicator of hijacking based on routes with an in-
valid origin. Guided by this observation, we attempted to
use a combination of control-plane and data-plane informa-
tion from a number of vantage points to detect interception
scenarios in the Internet.

5.1 A Signature for Internet Interception
The key insight guiding our approach for interception de-

tection is that the intercepting ISP relies on its existing route
for the target prefix to send the prefix’s traffic to its owner.
Consider a prefix p with origin AS O and with next-hop ASes
N1, . . ., Nn. Here, next-hop AS refers to an AS that appears
next to O in the control-plane AS-level paths to p. Given
this, in all likelihood, a packet destined to p that reaches AS
Nj should be routed directly to the origin AS O. Thus, a
data-plane trace wherein packets to p traverse AS Ni after
traversing AS Nj (j6=i) would suggest that AS Nj is not a
next-hop AS for prefix p and is advertising a route with an
invalid next-hop to intercept the prefix’s traffic. Figure 13
illustrates this scenario – we refer to such an occurrence as a
next-hop anomaly and use it as a signature for interception
on the Internet. The following sections detail our study of
such anomalies in the Internet.

5.2 Data Sources
For control-plane information, we used the BGP routing

tables collected at the Route-Views repository. This provides
us with a view of the Internet’s routing state from a total
of 43 vantage points belonging to 34 distinct ASes. For the
analysis on any given day, we used a routing table collected
on that day to determine the set of next-hop ASes for each
routable prefix.

For data-plane information, we use the traceroutes col-
lected as part of the IPlane project [38]. This includes daily
traceroutes to ≈100,000 routable prefixes from ≈200 Planet-
Lab nodes [39].5 Thus, our data-set for each day of analysis
comprised of ≈20 million IP-level traceroutes. We processed
these traces to map the IP-level traceroutes to the corre-
sponding AS-level traceroutes by mapping IP addresses to
their origin ASes based on BGP routing tables.

5Instead of traceroutes to all routable prefixes, the data set
contains traceroutes only to one prefix in each BGP atom [40].
However, this suffices for the detection exercise.

Oct 31 Nov 25 Dec 2 Dec 4

Anomalous Prefixes 5977 6125 4760 4904
Anomalous Clusters 834 749 545 619
After accounting for 440 392 306 348

IP-to-AS mapping errors
After validation based on 32 26 27 28
data-plane information

After validation based on 11 11 10 12
whois information
After e-mail survey 9 11 10 11

Table 4: Number of next-hop anomalies at various stages

of our analysis.

AS 174 AS 4637

Cogent (AS174) machine at PAIX with an Abovenet (AS6461)
address and DNS name "paix.cogentco.com"

O

Figure 14: Erroneous AS-level paths due to presence
of IXP machines. Here, Next-Hop ASes for O =
{6461, 4637}, Original AS-level Path = { .., 174,
6461, 4637, O} and Rectified AS-level Path = { ..,
174, 4637, O}

.

5.3 Detecting Next-hop Anomalies
We used the AS-level traceroutes and the next-hop in-

formation extracted from the routing tables to determine
instances of next-hop anomalies on four days in Oct-Dec,
2006. The number of prefixes for which we detected next-
hop anomalies on each of these days are shown in the first
row of table 4. To make the analysis of these anomalies more
manageable, we clustered them using triples of the form {Nj ,
Ni, O}. Thus, anomalies involving the same next-hop ASes
(Nj and Ni) and the same origin AS (0) were clustered as
one. It is reasonable to assume that anomalies that are clus-
tered together occur due to the same root-cause. The second
row of table 4 displays the number of anomalous clusters on
each day.

However, a majority of these anomalies are due to errors in
IP-to-AS mappings based on BGP routing tables. These are
similar to the errors that Mao et. al. [41] had to account for
as part of their AS-level traceroute tool. A brief explanation
of these error possibilities and how we accounted for them is
given below:
(a). Internet Exchange Points (IXPs) refer to locations that
host a number of ISPs who can, in turn, peer with each other
on top of the IXP infrastructure. Since IXP-hosted machines
are typically assigned addresses from address space of the IXP
or one of the participating ISPs, this can lead to an additional
AS along the data-plane AS-level path. If this additional AS
happens to be a next-hop of the prefix being traced, the trace
would be falsely flagged as being anomalous. Figure 14 illus-
trates a scenario at Palo Alto Internet Exchange (PAIX) using
AS 6461’s (Abovenet) address space that causes Abovenet to
be erroneously flagged as an Intercepting ISP.

We detect such errors based on the DNS names of the IXP
machines. In figure 14, the DNS name for the IXP machine
suggests that it belongs to a participant ISP, AS 174 (Co-
gent). Consequently, the rectified data-plane AS-level path
does not include AS 6461 and hence, is not anomalous.
(b). Sibling ASes: ASes from sibling organizations may share
their address space and may also have cooperative routing
arrangements. Thus, next-hop anomalies wherein the two

N 1 N 3S Data-plane path

Control-plane
Adjacency

2N

O
Part of AS O uses

N ’s address space2

addresses from AS

Figure 15: AS O uses part of its provider N2’s address
space and this leads to erroneous AS-level paths.
Here, Original AS-level Path = {S, N1, N2, O} and
Rectified AS-level Path = {S, N1, O}

.

next-hop ASes are sibling ASes should not be flagged as such.
We achieve this by utilizing the similarity in the DNS names
for IP hops in the two ASes, though in some cases we had to
directly feed the sibling relationships to the analysis.
(c). Using Provider Address space: In many scenarios, an
ISP will provide its customer with a small part of its address
space that the customer ends up using for its peerings with
others ISPs too. For instance, in figure 15, AS N2 assigns its
customer O with a part of the address space announced by it
and is used by O for its peerings with N1 and N3 too. In this
scenario, the AS-level path of packets routed to O from N1

will include N2 and will be erroneously flagged as a next-hop
anomaly.

As before, we detect such errors based on the DNS names
of the IP hops involved - the IP hops attributed to N2 would
have the same DNS name suffix as the IP hops belonging to
O. In cases where the reverse name lookup for the IP hops in
O failed, we looked for similarity between the DNS names of
the IP hops attributed to N2 and the AS name for O.

Thus, by utilizing ownership information encoded in DNS
names and AS names we were able to account for almost all
the IP-to-AS mapping errors in an automated fashion. The
number of anomalous clusters after this step of the analysis
are shown in the third row of table 4.

5.4 Anomalies due to Traffic Engineering
Apart from active interception by an ISP, a next-hop anom-

-aly may also result due to traffic engineering by the ASes
involved. For instance, the data-path shown in figure 13 may
arise if O is a stub-AS multihomed to two providers and is
using one as its primary provider (AS Ni) while the other as a
backup (AS Nj). As described below, such a primary-backup
arrangement can be achieved using a number a techniques
and some of these can result in next-hop anomalies.

First, the origin AS O may advertise the prefix p to provider
Ni while advertising a less specific prefix that covers p to
provider Nj . The more specific advertisement to Ni ensures
its primary status. However, when determining the next-
hop ASes for the destination being traced, we use only the
routing table entries for the longest prefix that matches the
destination address. Thus, with such specific advertisements,
our analysis would consider only AS Ni as AS O’s next-hop
for prefix p and so the data-path shown in figure 13 would
not be flagged as a next-hop anomaly.

Second, the origin AS O may use AS-Path prepending to
advertise a longer path for prefix p to Nj than to Ni. This
can lead to scenarios where a part of Nj chooses to route
packets destined to p directly to O (and hence, it emanates
a routing advertisement claiming to be a next-hop for O)
while the rest of Nj routes the packets through Ni. Finally,
a number of ISPs offer customers community-attribute based
control over how their prefix advertisements are propagated

by the ISP [42]. For instance, AS O may advertise prefix p
to AS Nj and direct Nj to propagate this advertisement only
to specific peers. As before, such inbound traffic control can
result in different parts of Nj using different routes to p.

To account for traffic-engineering induced anomalies and
any remaining mapping errors, we use the following tests to
verify if AS Nj has direct data-path connectivity to origin AS
O:
(a). We utilize the fact that our data-plane information for a
given prefix includes probes from a large number of vantage
points. If the trace from any of our vantage points indicates
that AS Nj can indeed route packets for p directly to AS O,
we have conclusive evidence that Nj is a next-hop AS for O
and we assume that Nj cannot be an intercepting ISP for p.
The fourth row of table 4 shows the number of anomalous
clusters after validation of the anomalies based on data-plane
information.
(b). Some ASes publish information about their peers and
their route import/export policies as part of the whois reg-
istries. As before, a whois entry for AS O indicating that it
peers with Nj would imply that Nj cannot be an intercept-
ing ISP for p. The fifth row of table 4 shows the number of
anomalous clusters after accounting for such whois informa-
tion.

Thus, we were able to attribute a majority of the observed
anomalies to traffic engineering by the origin. More impor-
tantly, the fact that the interception signature used here can
also result from valid scenarios in the Internet implies that we
have to rely on the prefix owners for conclusive evidence of
interception. Consequently, for the remaining anomalies, we
conducted an e-mail survey asking the prefix owner if they
had a peering relation with the next-hop AS suspected of
interception. We received only three responses; in all three
cases the prefix owner was indeed peering with the next-hop
AS in question.

5.5 Unexplained Anomalies
The analysis above yielded a total of thirteen distinct next-

hop anomalies that were not explained by any of the heuristics
described above. Interestingly, the whois entries for the origin
ASes in five of the anomalies included information about the
ASes they peer with and this did not include the next-hop
AS suspected of interception. However, this could just be a
result of the whois information being outdated.

Further, we manually inspected these anomalous traces and
while they look like interception scenarios, we can just as well
imagine them resulting from traffic engineering arrangements.
These could also result from routing events that impact the
link connecting the suspected next-hop AS and the origin AS.
Since our control-plane information consists of a routing table
snapshot on the same day as the trace, such a routing event
is not captured in our next-hop calculations.

Overall, we are unable to conclusively classify any of the
unexplained anomalies as actual prefix interception. Funda-
mentally, this is because other than observing the links tra-
versed by the probes from our vantage points, there is no
way for us to verify the data-plane adjacency of two ASes as
claimed by the corresponding control-plane advertisements.
However, this surely does not rule out ongoing prefix inter-
ception. For instance, our study focussed only on interception
through advertisement of a route with an invalid next-hop.
It is also possible for the intercepting ISP to pose as the ori-
gin AS or as an AS that is two or more hops away from the

origin. Further, our study also makes a number of rather
simplistic assumptions about the behavior of the intercept-
ing ISP and hence, could have missed interception scenarios.
For instance, we assume that the intercepting ISP does not
manipulate the responses to traceroute-based probes to evade
detection – something as a simple as the intercepting ISP con-
figuring its routers to stop generating ICMP responses would
defeat our detection. In spite of these limitations, we think
that this simple attempt at detection highlights some of the
challenges posed by the interception detection problem.

6. RELATED WORK
A lot of recent work has focussed on BGP security with

particular emphasis on preventing the hijacking of prefixes.
Some of these efforts use cryptography to secure BGP [7–13],
while others propose new protocols [14], non-cryptographic
additions to BGP [17] or rely on route characteristics [4,16]
such as the stability of routes [4]. Wendlandt et. al. [43]
argued that securing data delivery is more important than
securing routing for secure communication. Our intercep-
tion estimates show that communication confidentiality can
be breached even when data delivery is secured. As discussed
in section 5, there have also been efforts towards detecting
prefix hijacks in the Internet [3,15,18–21].

The possibility of traffic interception by using invalid ad-
vertisements has been discussed by [22,24]. In recent work,
Lad et. al. [44] estimate the impact of prefix hijacks through
simulations across the Internet’s AS-level topology. Such an
approach allows them to evaluate the impact of hijacks by a
much larger set of ASes than considered in this paper. On
the other hand, by restricting ourselves to the ASes that con-
tribute to the Route-Views repository, we observe each AS’s
actual route for any given prefix and don’t need to simu-
late route propagation. As a matter of fact, the authors
of [45] argue that it is difficult to accurately predict Inter-
net routes through simulation over topologies where ASes are
represented as nodes.

Apart from specification of attacks on BGP [46], past re-
search has also shown the possibility of invalid advertisements
resulting from misconfigurations [26,47]. Feamster et. al. [48]
studied the presence of advertisements for unallocated pre-
fixes in Internet routing. Ramachandran et. al. [23] analyzed
the use of short-lived invalid routing advertisements by spam-
mers.

7. DISCUSSION
The estimates in section 3 are based on ASes contributing

to Route-Views. Further, the analysis itself relies on a rather
simplistic model of Internet routing. For instance, the as-
sumptions regarding routing preferences and the valley-free
nature of routes don’t always hold. The analysis does not ac-
count for special arrangements between ASes such as sibling
ASes, mutual transit, etc. Also, ASes apply ingress-filters
to restrict the prefixes that their neighbors can advertise to
them. However, such filtering of advertisements varies greatly
with the AS’s size [49], relationship with the neighbor [27]
and even the AS’s location (for example, ASes in Europe are
known to use filters aggressively [47]). Overall, a majority of
the ASes struggle to maintain up-to-date filters or any filters
at all [27,47,49]. More generally, the fact that these assump-
tions hold in the common case indicates that our estimates
should closely reflect the actual amount of hijacking possible
and this claim is fortified by our verification efforts.

It seems unlikely that an AS would intentionally hijack a
prefix and then blackhole or redirect the hijacked traffic since
this would impact the destination’s connectivity and hence,
would be immediately noticed. Misconfigurations or router
compromises are more likely to lead to such an occurrence;
to the best of our knowledge, this was the case for all prefix
hijacking incidents reported in the past. In this context, it
is important to note that our hijacking estimates implicitly
assume that the hijacking AS advertises an invalid route to
all its neighbors. However, by the very nature of BGP, both
misconfigurations at and compromises of only a few (or even
a single) well-placed routers can cause the ISP to advertise
an invalid route to all of its neighbors and thus, our hijacking
estimates capture an extreme yet realistic scenario.

The more interesting scenario is that of prefix interception
since the hijacked traffic still reaches the destination. Con-
sequently, it is less likely that an unsuspecting prefix owner
would notice the interception which may have been going
on for a long period. On the other hand, the presence of
easily accessible route-repositories and router-servers implies
that an informed prefix-owner can detect most interception
attempts. Still, it wouldn’t be a stretch to imagine ASes
intentionally intercepting the traffic to a not-well-monitored
prefix. For instance, this would (for good or for bad) ease law-
ful interception [50] since law enforcement agencies wouldn’t
necessarily need to go to different ISPs on a case-by-case ba-
sis.

In the past, ARP poisoning, DNS spoofing and other attack
vectors have been proposed for man-in-the-middle (mitm) at-
tacks in the Internet [51–53]. The increasing use of encryption
for Internet communication would seem to alleviate the pri-
vacy concerns arising from such attacks. However, the use of
a number of security protocols in the Internet leaves a lot to
be desired and hence, the fact that traffic can be intercepted
in the Internet does magnify the scope of the problem. For
instance, launching a mitm attack on SSL through self-signed
certificates leads to an “invalid certificate” warning on most
browsers but these are often disregarded not just by common
users [52] but by well-informed technical users too [53]. This
and other social issues are compounded by technical problems
such as frequent warnings resulting from multiple trusted au-
thorities and even flaws in browsers that allow certificates to
be forged and hence, allow for attacks where the user is not
even warned [52]. All this suggests that even small ISPs that
can intercept a small fraction of traffic from other ASes can
cause a lot of damage.

8. CONCLUSION
This paper presents a study of Internet prefix hijacking

and interception. We estimate that ASes higher up in the
routing hierarchy can both hijack and intercept traffic to any
prefix from a significant fraction (>50%) of ASes in the In-
ternet. More surprising and perhaps more egregious is that
even small ASes can hijack and intercept traffic from a non-
negligible fraction of ASes. Further, we implemented the pro-
posed interception methodology and used it for actually inter-
cepting traffic to our prefix. Our experience suggests that it
is indeed very simple for ASes to intercept traffic for prefixes
within the existing routing set-up. Finally, we conducted a
simple study to detect ongoing prefix interception. The study
neither detected interception nor did it determine that there
is no interception in the Internet; however, it did shed light
on some of the issues involved in detecting prefix interception.

On a broader note, while our hijacking and interception esti-
mates are (mostly) along expected lines, the notion of being
able to intercept traffic in the Internet has far reaching impli-
cations for all aspects of Internet security, both at a technical
level and a social level, and we hope that this paper will force
a rethink on some of these issues.

Acknowledgements
We would like to thank the anonymous reviewers for their use-
ful feedback. This work was partially supported by AFOSR
under Award No. F49620-02-1-0233 and PA8750-05-C-0268
and by a grant from Intel.

9. REFERENCES
[1] “Nanog Mailing List,” http://www.nanog.org/mailinglist.html.

[2] “7007 Explanation and Apology,” Apr 1997, http:
//www.merit.edu/mail.archives/nanog/1997-04/msg00444.html.

[3] M. Lad, D. Massey, D. Pei, Y. Wu, B. Zhang, and L. Zhang,
“PHAS: A prefix hijack alert system,” in Proc. of USENIX
Security symposium, 2006.

[4] J. Karlin, S. Forrest, and J. Rexford, “Pretty Good BGP:
Improving BGP by Cautiously Adopting Routes,” in Proc. of
ICNP, 2006.

[5] T. Wan and P. C. van Oorschot, “Analysis of BGP Prefix
Origins During Google’s May 2005 Outage,” in Proc. of
Security in Systems and Networks, 2006.

[6] P. Boothe, J. Hiebert, and R. Bush, “Short-Lived Prefix
Hijacking on the Internet,” NANOG 36 meeting, 2006,
http://www.nanog.org/mtg-0602/pdf/boothe.pdf.

[7] Y.-C. Hu, A. Perrig, and M. Sirbu, “SPV: secure path vector
routing for securing BGP,” in Proc. of ACM SIGCOMM, 2004.

[8] S. Kent, C. Lynn, and K. Seo, “Secure border gateway protocol
(S-BGP),” IEEE Journal on Selected Areas in
Communication, vol. 18, no. 4, 2000.

[9] L. Subramanian, V. Roth, I. Stoica, S. Shenker, and R. Katz,
“Listen and whisper: Security mechanisms for BGP,” in Proc.
of USENIX/ACM NSDI, 2004.

[10] T. Wan, E. Kranakis, and P. van Oorschot, “Pretty Secure
BGP, psBGP,” in Proc. of NDSS, 2005.

[11] R. White, “Architecture and Deployment Considerations for
Secure Origin BGP (soBGP),”
draft-white-sobgp-architecture-01, Nov 2005.

[12] W. Aiello, J. Ioannidis, and P. McDaniel, “Origin authentication
in interdomain routing,” in Proc. of conference on Computer
and communications security (CCS), 2003.

[13] B. Smith and J. Garcia-Luna-Aceves, “Securing the Border
Gateway Routing Protocol,” in Proc. of Global Internet, 1996.

[14] G. Goodell, W. Aiello, T. Griffin, J. Ioannidis, P. McDaniel, and
A. Rubin, “Working Around BGP: An Incremental Approach to
Improving Security and Accuracy of Interdomain Routing,” in
Proc. of NDSS, 2003.

[15] C. Kruegel, D.Mutz, W. Robertson, and F. Valeur,
“Topology-based Detection of Anomalous BGP Messages,”
LNCS, 2003.

[16] L. Wang, X. Zhao, D. Pei, R. Bush, D. Massey, A. Mankin, S. F.
Wu, and L. Zhang, “Protecting BGP Routes to Top Level DNS
Servers,” in Proc. of ICDCS, 2003.

[17] X. Zhao, D. Pei, L. Wang, D. Massey, A. Mankin, S. F. Wu, and
L. Zhang, “Detection of Invalid Routing Announcement in the
Internet,” in Proc. of DSN, 2002.

[18] S. T. Teoh, K. Zhang, S.-M. Tseng, K.-L. Ma, and S. F. Wu,
“Combining visual and automated data mining for
near-real-time anomaly detection and analysis in BGP,” in
Proc. of ACM workshop on Visualization and data mining for
computer security, 2004.

[19] “RIPE MyASN service,” http://www.ris.ripe.net/myasn.html.

[20] X. Hu and Z. M. Mao, “Accurate Real-time Identification of IP
Prefix Hijacking,” in Proc. of IEEE Security and Privacy
(Oakland), 2007.

[21] C. Zheng, L. Ji, D. Pei, J. Wang, and P. Francis, “A
Light-Weight Distributed Scheme for Detecting IP Prefix Hijacks
in Realtime,” in Proc. of ACM SIGCOMM, August 2007.

[22] O. Nordstrom and C. Dovrolis, “Beware of BGP attacks,”
SIGCOMM Comput. Commun. Rev., vol. 34, no. 2, 2004.

[23] A. Ramachandran and N. Feamster, “Understanding the
Network-Level Behavior of Spammers ,” in Proc. of ACM
SIGCOMM, 2006.

[24] J. Kim, S. Y. Ko, D. M. Nicol, X. A. Dimitropoulos, and G. F.
Riley, “A BGP Attack Against Traffic Engineering,” in Proc. of
WSC, 2004.

[25] “Route Views Project Page,” May 2006, www.route-views.org.

[26] X. Zhao, D. Pei, L. Wang, D. Massey, A. Mankin, S. F. Wu, and
L. Zhang, “An analysis of BGP multiple origin AS (MOAS)
conflicts,” in Proc. of ACM SIGCOMM IMW, 2001.

[27] C. Labovitz, A. Ahuja, R. Wattenhofer, and V. Srinivasan, “The
Impact of Internet Policy and Topology on Delayed Routing
Convergence,” in Proc. of IEEE INFOCOM, 2001.

[28] F. Wang and L. Gao, “On Inferring and Characterizing Internet
Routing Policies,” in Proc. of ACM SIGCOMM conference on
Internet measurement, 2003.

[29] “BGP Best Path Selection Algorithm,” July 2006,
http://www.cisco.com/warp/public/459/25.shtml.

[30] L. Gao, “On Inferring Autonomous System relationships in the
Internet,” IEEE/ACM Trans. Netw., vol. 9, no. 6, 2001.

[31] B. Huffaker, “CAIDA AS Ranking Project,” July 2006,
http://www.caida.org/analysis/topology/rank as/.

[32] “Tier 1 network - Wikipedia entry,” July 2006,
http://en.wikipedia.org/wiki/Tier 1 network.

[33] J. Rexford, J. Wang, Z. Xiao, and Y. Zhang, “BGP routing
stability of popular destinations,” in Proc. of Internet
Measurment Workshop, 2002.

[34] “Alexa Top Sites,”
http://www.alexa.com/site/ds/top sites?ts mode=global.

[35] A. Ma, “CAIDA AS Relationships,” July 2006,
http://www.caida.org/data/active/as-relationships/.

[36] “Quagga Routing Suite,” Apr 2006, http://www.quagga.net/.

[37] G. Huston, “Auto-Detecting Hijacked Prefixes?” RIPE 50
meeting, 2005, http://www.ripe.net/ripe/meetings/ripe-50/
presentations/index.html.

[38] H. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson,
A. Krishnamurthy, and A. Venkataramani., “iPlane: An
Information Plane for Distributed Services,” in Proc. of OSDI,
2006.

[39] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman, “PlanetLab: An Overlay
Testbed for Broad-Coverage Services,” ACM SIGCOMM
Computer Communication Review, vol. 33, no. 3, July 2003.

[40] A. Broido and kc claffy, “Analysis of RouteViews BGP data:
policy atoms,” in Proc. of network-related data management
(NRDM) workshop, 2001.

[41] Z. M. Mao, J. Rexford, J. Wang, and R. H. Katz, “Towards an
accurate AS-level traceroute tool,” in Proc. of ACM
SIGCOMM, 2003.

[42] “SprintLink’s BGP Policy,” May 2006,
http://www.sprintlink.net/policy/bgp.html.

[43] D. Wendlandt, I. Avramopoulos, D. G. Andersen, and
J. Rexford, “Don’t Secure Routing Protocols, Secure Data
Delivery,” in Proc. of workshop on Hot Topics in Networks,
2006.

[44] M. Lad, R. Oliveira, B. Zhang, and L. Zhang, “Understanding
Resiliency of Internet Topology Against Prefix Hijack Attacks,”
in Proc. of IEEE/IFIP DSN, 2007.

[45] W. Mühlbauer, A. Feldmann, O. Maennel, M. Roughan, and
S. Uhlig, “Building an AS-topology model that captures route
diversity,” in Proc. of ACM Sigcomm, 2006.

[46] S. Convery, D. Cook, and M. Franz, “An Attack Tree for the
Border Gateway Protocol,” draft-convery-bgpattack-01, July
2001.

[47] R. Mahajan, D. Wetherall, and T. Anderson, “Understanding
BGP misconfiguration,” in Proc. of ACM SIGCOMM, 2002,
pp. 3–16.

[48] N. Feamster, J. Jung, and H. Balakrishnan, “An empirical study
of ”bogon” route advertisements,” SIGCOMM Comput.
Commun. Rev., vol. 35, no. 1, 2005.

[49] N. Feamster and H. Balakrishnan, “Detecting BGP
Configuration Faults with Static Analysis,” in Proc. of Symp.
on Networked Systems Design and Implementation (NSDI),
2005.

[50] F. Baker, B. Foster, and C. Sharp, “RFC 3924 - Cisco
Architecture for Lawful Intercept in IP Networks,” Oct 2004.

[51] “Content Verification - Man in the Middle Attack,” Jan 2007,
http:
//www.contentverification.com/man-in-the-middle/index.html.

[52] “Mattias Eriksson, An Example of a Man-in-the-middle Attack
Against Server Authenticated SSL-sessions,” Jan 2007,
http://www.cs.umu.se/education/examina/Rapporter/
MattiasEriksson.pdf.

[53] K. Fujiwara, “DNS Process-in-the-middle Attack,” ICANN
Presentation, 2005, http:
//www.icann.org/presentations/dns-attack-MdP-05apr05.pdf.

Mitigating DNS DoS Attacks

Hitesh Ballani
Cornell University

Ithaca, NY
hitesh@cs.cornell.edu

Paul Francis
Cornell University

Ithaca, NY
francis@cs.cornell.edu

ABSTRACT
This paper considers DoS attacks on DNS wherein attackers flood
the nameservers of a zone to disrupt resolution of resource records
belonging to the zone and consequently, any of its sub-zones. We
propose a minor change in the caching behavior of DNS resolvers
that can significantly alleviate the impact of such attacks. In our
proposal, DNS resolvers do not completely evict cached records
whose TTL has expired; rather, such records are stored in a sepa-
rate “stale cache”. If, during the resolution of a query, a resolver
does not receive any response from the nameservers that are re-
sponsible for authoritatively answering the query, it can use the
information stored in the stale cache to answer the query.

In effect, the stale cache is the part of the global DNS database
that has been accessed by the resolver and represents an insurance
policy that the resolver uses only when the relevant DNS servers are
unavailable. We analyze a 65-day DNS trace to quantify the bene-
fits of a stale cache under different attack scenarios. Further, while
the proposed change to DNS resolvers also changes DNS seman-
tics, we argue that it does not adversely impact any of the funda-
mental DNS characteristics such as the autonomy of zone operators
and hence, is a very simple and practical candidate for mitigating
the impact of DoS attacks on DNS.

Categories and Subject Descriptors: C.4 [Performance of Sys-
tems]: Reliability, Availability.

General Terms: Reliability, Security.

Keywords: DNS, Denial of Service, stale cache.

1. INTRODUCTION
In the recent past, there have been many instances of flooding

attacks on the Domain Name System (DNS) aimed at preventing
clients from resolving resource records belonging to the zone un-
der attack [26-29]. While these attacks have had varying success in
disrupting the resolution of names belonging to the targeted zone,
the threat posed by them to DNS operation is obvious. As a mat-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’08, October 27–31, 2008, Alexandria, Virginia, USA.
Copyright 2008 ACM 978-1-59593-810-7/08/10 ...$5.00.

ter of fact, DNS’s pivotal role as a precursor to almost all Internet
services implies that such attacks represent a severe threat to the
Internet in general.

In response to such attacks, some of the DNS root-servers and
top-level domain (TLD) servers have been replicated through IP
Anycast [10]. Lately, a number of research efforts have proposed
new architectures for the Internet’s naming system. The key insight
behind these proposals is to decouple the distribution of DNS data
from the hierarchy of authority for the data [8,9]. Once this decou-
pling is done, several mechanisms can be used to make the data dis-
tribution infrastructure highly robust and to ensure its availability in
the face of attacks. For instance, efforts arguing for centralized data
distribution [8] and peer-to-peer based data distribution [7,9,22,24]
represent the two extremes of the design space for such a robust
distribution infrastructure.

However, we are not convinced of the need for a new DNS archi-
tecture involving a new dissemination mechanism to ensure DNS
operation when nameservers are unavailable. Rather, we argue that
a complementary and a much more modest tack to handle DoS at-
tacks on DNS infrastructure is to do away with the need for 100%
availability in the existing architecture. In this paper, we follow this
argument and show that the need for nameserver availability in the
existing DNS framework can be reduced simply through a minor
modification in the caching behavior of DNS resolvers.

Today, DNS resolvers cache the responses they receive from
nameservers to improve lookup performance and reduce lookup
overhead. A resolver can use the cached responses to answer queries
for a duration specified by the time-to-live (TTL) value associated
with the response. We propose to modify the operation of resolvers
such that they do not expunge cached records whose TTL value has
expired. Rather, such records are evicted from the cache and stored
in a separate “stale cache”. Given a query that cannot be answered
based on the cached information, resolvers today traverse down a
hierarchy of DNS zones by querying the authoritative nameservers
for the zone at each step. However, this resolution process fails
if all the nameservers for the zone at any step of this traversal are
unavailable. In such a scenario, we allow resolvers to use the in-
formation stored in their stale cache to answer the query for the
unavailable zone and thus, allow the resolution process to continue.

Modifying DNS resolvers as specified above results in normal
DNS operation when resolvers are able to access nameservers; only
when all the nameservers for a zone do not respond to the queries
from a resolver does the resolver resort to using records for the
zone from its stale cache (stale records). This modification im-
plies that DNS resolvers store the part of the global DNS database
that has been accessed by them and use it when the relevant DNS
servers are unavailable. Consequently, while attackers may be able
to flood nameservers and overwhelm them, resolvers would still

Client

Resolver

Cache

Root-Server

Nameserver
(.edu TLD)

Nameserver
(.cornell.edu)

A? www.cornell.edu

Traversal fails

Figure 1: Traversal down the DNS hierarchy during the reso-
lution of the A-record for www.cornell.edu fails if the .edu TLD
nameservers are under attack.

have the stale records to rely upon. To this effect, this paper makes
the following contributions:

• We present a simple modification in the caching behavior of
DNS resolvers that would make nameserver availability less
critical than it is today and hence, mitigate the impact of DoS
attacks on DNS infrastructure.

• We discuss some details concerning the implementation of a
stale cache in a DNS resolver. Further, our scheme has a num-
ber of practical advantages with regards to protection against
flooding attacks that we discuss in section 4.1.

• We analyze a 65-day DNS trace to quantify the benefits of hav-
ing a stale cache under different attack scenarios and find that
the stale cache can be used to resolve a significant fraction of
client queries even under severe attacks of long duration.

• Using trace-based simulation, we determine the memory foot-
print of the stale cache and find that maintaining even a month’s
worth of stale records requires a small amount of memory.

• While DNS resolvers rely on their stale cache only when the rel-
evant nameservers are unavailable, the fact that the TTL-value
for stale records has expired implies that it is possible that these
records may not be the same as those returned by the actual
nameservers (had they been available). We use the aforemen-
tioned trace to quantify this possibility and find that the proba-
bility of inaccurate records being returned in case of an attack
is very small (<0.5%).

On the flip side, our proposal changes DNS semantics. For ex-
ample, zone owners cannot expect the records served by their name-
servers to be completely evicted by all resolvers within one TTL
period. We analyze problems that may arise due to such semantic
changes; the impact of this and other drawbacks of our scheme are
discussed in section 4.2. This analysis leads us to conclude that
the scheme does not adversely impact any of the fundamental DNS
characteristics such as the autonomy of zone owners. Hence, we
believe that the proposed resolver modification represents a very
simple and practical candidate for alleviating the impact of DoS
attacks on DNS.

2. A SIMPLE IDEA

2.1 DNS Resolvers Today
Clients rely on DNS primarily to map service names to the IP ad-

dresses of the corresponding servers. Typically, clients issue their

queries to a local DNS resolver which maps each query to a match-
ing resource record set (hereon simply referred to as a matching
record) and returns it in the response.1 Each record is associated
with a time-to-live (TTL) value and resolvers are allowed to cache
a record till its TTL expires; beyond this, the record is evicted from
the cache. Given a query to resolve, a resolver executes the follow-
ing actions2:

1. Look up the cache for a matching record. If a matching record
is found, it is returned as the response.

2. If a matching record is not found in the cache, the resolver uses
the DNS resolution process to obtain a matching record. This
involves:

(a) Determine the closest zone that encloses the query and has
its information cached (if no such zone is cached, the en-
closing zone is the root zone and the resolver resorts to
contacting the DNS root-servers). For example, given an A-
record query for the name www.cornell.edu, the resolver de-
termines if records regarding the authoritative nameservers
for the zones .cornell.edu, or .edu (in that order) are present
in its cache.

(b) Starting from the closest enclosing zone, traverse down the
DNS zone hierarchy by querying subsequent sub-zones un-
til the zone responsible for authoritatively answering the
original query is reached or an error response from a zone’s
nameservers implies that the traversal cannot proceed. In
either case, the resolver returns the appropriate response to
the client. Also, all responses (including negative responses
indicating error) during this resolution process are cached
by the resolver.

3. In case the resolution process in (2.b) fails due to the inability
of the resolver to contact all the nameservers of the relevant
zone at any step of the traversal, return a response indicating the
failure. Note that the term “failure” refers only to the scenario
when the traversal is not completed due to the unavailability of
the nameservers of a zone. Figure 1 illustrates this scenario.

2.2 DNS Flooding Attacks
We consider DoS attacks on DNS servers where attackers flood

the nameservers of a zone to disrupt the resolution of records be-
longing to the zone and consequently, any of its sub-zones. In gen-
eral, flooding attacks aimed at denying service to clients take ad-
vantage of the skewed distribution of functionality between clients
and servers. In the case of DNS, the fact that the nameservers for a
zone are completely responsible for serving the zone’s records and
in turn, for the operation of any sub-zones implies that their avail-
ability is critical and makes them an attractive target for flooding
attacks.

2.3 Proposed Resolver Modification
We argue that changing the caching behavior of DNS resolvers

so that they shoulder more of the resolution burden, especially when
nameservers are unavailable, is an effective way to address DNS
flooding attacks. Further, such a modification is possible within

1Note that the matching record may not answer the query; for ex-
ample, it may reflect an error condition due to which the query can-
not be answered. Hence, the term “response” includes both positive
and negative responses.
2This is a simplification of the algorithm used by resolvers but suf-
fices for the purpose of exposition. See [14] for a more detailed
version.

Client

Resolver

Cache

Root-Server

Nameserver
(.edu TLD)

Nameserver
(.cornell.edu)

A? www.cornell.edu

Traversal fails

Stale Cache

NS Lookup
.cornell.edu

Lookup
successful

Figure 2: Resolution of the A-record for www.cornell.edu suc-
ceeds: a stale NS record for .cornell.edu allows the traversal to
continue even though the .edu TLD nameservers are inaccessi-
ble.

the existing DNS framework. To this effect, DNS resolvers should
store the responses of the queries they resolve beyond the TTL val-
ues associated with the respective responses and use stale informa-
tion if all the authoritative nameservers for a zone are unavailable.
Thus, the resolvers have the stale information to rely on, in case the
authoritative servers for a zone are overwhelmed due to a flood of
requests. More concretely, we propose the following change in the
operation of DNS resolvers–

Stale Cache: Resolvers do not completely expunge cached records
whose TTL value has expired. Rather, such records are evicted
from the cache and stored in a separate stale cache. In effect, the
stale cache together with the resolver cache represents the part of
the global DNS database that has been accessed by the resolver.

Resolving Queries: In our proposal, the first two steps executed by
a resolver when resolving a query are the same as before. Hence,
given a query, the resolver attempts to respond to it based on the
cached information or through the resolution process. The third
step is modified as follows:

3) In case the resolution process in (2.b) fails due to the inability of
the resolver to contact all the nameservers of the relevant zone at
any step of the traversal, search the stale cache for the required
record. If such a record is found, the resolution process in (2.b)
can continue based on this stale record. Figure 2 illustrates this
scenario.

This modification implies that when (and only when) the authorita-
tive nameservers for a zone are unavailable, the resolver can resort
to using responses from a previously resolved query.

Stale Cache clean-up: Existing resolvers cache the responses to
the queries made during the resolution process in step (2.b). In our
proposal, these responses are also used to evict the corresponding
stale records from the stale cache. For example, during the resolu-
tion of the A record for the name www.cornell.edu, the resolver may
query the authoritative nameservers of the zone .edu for the author-
itative nameservers of the sub-zone .cornell.edu. When a response
containing records regarding these nameservers is received, it is
cached and is also used to evict any nameserver records for .cor-
nell.edu present in the stale cache. Note that this newly cached re-
sponse will be evicted to the stale cache upon expiration of its TTL
value. Also note that all responses (including negative responses)
are used to evict the stale cache. For example, a NXDOMAIN re-
sponse from the nameserver for .edu indicating that the sub-zone
.cornell.edu no longer exists will also lead to eviction of the exist-

ing nameserver record for .cornell.edu in the stale cache. Hence,
this clean-up process ensures that a record stored in the stale cache
always corresponds to the latest authoritative information that the
resolver received.

2.4 Stale Cache Details
From an implementation point of view, a resolver can perform

steps (2.b) and (3) of the query lookup concurrently. For instance,
continuing the earlier example, while the resolver queries the zone
.edu’s nameserver for the nameservers of the sub-zone .cornell.edu,
it can lookup its stale cache for information regarding the name-
servers for .cornell.edu. As mentioned earlier, the information from
the stale cache is used only if the resolver is unable to contact all
the nameservers for .edu and hence, the latency of the stale cache
lookup is not critical. Consequently, the stale cache can even be
maintained on the resolver’s disk. However, as we show in sec-
tion 3.3, even a month’s worth of stale records require a small
amount of storage space and hence, we envision resolvers main-
taining their stale cache in memory.

3. EVALUATION
In order to evaluate the advantages of a stale cache, we collected

DNS traffic at the link that connects the Cornell Computer Science
department’s network to the Internet. The network comprises of
≈1300 hosts. The trace was collected for a period of 65 days – from
21st Nov, 2007 to 24th Jan, 2008. It consists of 84,580,513 DNS
queries and 53,848,115 DNS responses for a total of 4,478,731
unique names. Each collected packet was anonymized to preserve
the privacy of the network’s clients. This included anonymizing the
source and destination IP addresses and the names and addresses in
the DNS part of packet. The fact that the trace was collected at the
network’s border router and not at the resolvers (i.e., the caching
nameservers) that reside inside the network implies that we do not
see all the queries generated by clients. Specifically, client queries
that can be answered based on the cached contents of the resolvers
do not appear in our trace. This quirk of the collection process has
important implications for the results presented here and we discuss
these later in the section.

Given the trace, we can simulate the operation of a stale cache
serving clients in the network under different attack scenarios. Such
a simulation is governed by two key parameters:

• Stale cache size: A stale cache size of x days implies that stale
records are kept in the stale cache for a maximum of x days. In
our simulations, we vary the stale cache size from 1 to 30 days.
Further, in section 3.3 we measure the actual memory footprint
for a stale cache of x days.

• Attack duration: This allows us to evaluate the operation of the
stale cache under attacks of varying durations. For any given
type of attack, we simulate the attack lasting for a duration of 3,
6, 12 and 24 hours.

Hence, to simulate the operation of a 7-day stale cache under an
attack lasting 3 hours, we populate the stale cache using the DNS
queries and responses in the first 7 days of the trace. We then sim-
ulate an attack every 3 hours while ensuring that the stale cache
contains trace data for the past 7 days. This allowed us to have 464
simulation runs ((65-7) days * 8 simulations per day) for a 3-hour
attack while using a 7-day stale cache. Thus, we were able to sim-
ulate a number of attacks for any given stale cache size and attack
duration.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

3021141075321

F
ra

ct
io

n
of

 Q
ue

rie
s

A
ns

w
er

ed

Stale Cache Size (days)

03 Hr
06 Hr
12 Hr
24 Hr

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

3021141075321

F
ra

ct
io

n
of

 Q
ue

rie
s

A
ns

w
er

ed

Stale Cache Size (days)

03 Hr
06 Hr
12 Hr
24 Hr

Figure 3: Fraction of Queries Answered using a stale cache of
varying size during an attack wherein none of the nameservers
are operational.

 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

3021141075321

F
ra

ct
io

n
of

 A
cc

ur
at

e
R

ec
or

ds

Stale Cache Size (days)

03 Hr
06 Hr
12 Hr
24 Hr

 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

3021141075321

F
ra

ct
io

n
of

 A
cc

ur
at

e
R

ec
or

ds

Stale Cache Size (days)

03 Hr
06 Hr
12 Hr
24 Hr

Figure 4: Fraction of Accurate Records in responses based on
a stale cache of varying size during an attack wherein none of
the nameservers are operational.

3.1 Is history useful?
We wanted to determine if there is any value to maintaining his-

torical information in the form of DNS records beyond their TTL-
values. To this effect, we consider an attack wherein none of the
DNS nameservers are operational and hence, all queries that cannot
be answered based on the information cached at the resolvers rely
on the simulated stale cache. Note that this is does not represent
a realistic flooding attack; instead, the objective here is to use an
extreme scenario to test the limits of the value of keeping around
stale DNS information.

We simulated the attack scenario described above for varying
attack durations and varying stale cache sizes. Here we focus on
those queries that cannot be answered based on the resolver cache.
Figure 3 plots the fraction of such queries that can be answered
based on the stale cache. The figure shows that a 1-day stale cache
can be used to answer 68% of such queries over the course of a
3-hour attack. The fraction of queries answered increases with the
stale cache size; for instance, a 3-day stale cache can answer 73.7%
and a 14-day stale cache can answer 79.6% of the queries. How-
ever, increasing the stale cache size beyond 14 days yields dimin-
ishing returns; for instance, a 21-day stale cache can answer 80.7%
and a 30-day stale cache can answer 81.5% of the queries.3 Past
studies have found that the popularity of DNS names follows a zipf
distribution [11] and the diminishing returns from increasing the
stale cache size appear to be a consequence of this.

The variation of the fraction of queries answered with the at-

3For clarity, the X-axis in figure 3 and the figures in the rest of this
section is limited to some chosen stale cache sizes.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

3021141075321
 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

F
ra

ct
io

n
of

 N
S

-Q
ue

rie
s

A
ns

w
er

ed

F
ra

ct
io

n
of

 A
cc

ur
at

e
R

ec
or

ds

Stale Cache Size (days)

Queries Answered
Accurate Records

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

3021141075321
 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

F
ra

ct
io

n
of

 N
S

-Q
ue

rie
s

A
ns

w
er

ed

F
ra

ct
io

n
of

 A
cc

ur
at

e
R

ec
or

ds

Stale Cache Size (days)

Queries Answered
Accurate Records

(a) NS-queries

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

3021141075321
 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

F
ra

ct
io

n
of

 A
-Q

ue
rie

s
A

ns
w

er
ed

F
ra

ct
io

n
of

 A
cc

ur
at

e
R

ec
or

ds

Stale Cache Size (days)

Queries Answered
Accurate Records

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

3021141075321
 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

F
ra

ct
io

n
of

 A
-Q

ue
rie

s
A

ns
w

er
ed

F
ra

ct
io

n
of

 A
cc

ur
at

e
R

ec
or

ds

Stale Cache Size (days)

Queries Answered
Accurate Records

(b) A-queries

Figure 5: For (a) NS-queries and (b) A-queries, Fraction of
Queries Answered and Accurate Records when using a stale
cache during an 3-hour attack.

tack duration for a given stale cache size is a little more compli-
cated. For a small stale cache (<=2 days), the fraction of queries
answered increases with attack duration. While non-intuitive, this
can be explained based on the facts that, 1). for attacks of short-
duration, many queries can be answered based on the resolver’s
cache and 2). the focus here is on queries that can be answered
using the stale cache. Consequently, for an attack lasting 3 hours,
many queries can already be answered based on the resolver’s cache
and the probability that a query whose answer is not cached can be
answered based on the stale cache is small. For attacks of longer
duration, most of the cached records have expired and hence, the
stale cache is able to answer more queries.

However, this effect diminishes for larger stale caches. The fig-
ure shows that for larger stale cache sizes, there is a small reduction
in the fraction of queries answered as the attack duration increases.
For instance, a 14-day stale cache can be used to answer 79.4% of
the queries during an attack lasting 6 hours and 79% of the queries
during an attack lasting 24 hours.

As mentioned earlier, an important thing to note is that the trace
does not include queries that are answered based on the cached
contents of the network’s resolvers. This implies that the numbers
regarding the fraction of queries answered (and similar numbers in
the rest of this section) vastly underestimate the actual fraction of
client queries that succeed in case of an attack with a stale cache in
place.

However, the fact that the TTL-value for the stale records has
expired implies that responses to client queries based on the stale
cache may not be the same as the responses that would be received
in case the actual nameservers were operational. This leads to the
notion of accurate and inaccurate records. Note that using an inac-
curate record in the resolution process does not necessarily imply
that the name being queried is resolved to a wrong address. In-

stead, in spite of the use of an inaccurate record, a name may be
resolved properly or may not be resolved at all – we discuss these
possibilities and their implications in section 4.2.

Our trace-based simulation allows us to determine the accuracy
of the DNS records in responses that utilize the stale cache. Specif-
ically, for each query received during a simulated attack, we com-
pare the response based on the stale cache and the actual response
from the nameserver had it been accessible (we get this information
from the trace) and all matching records are counted as accurate
records. Figure 4 plots the fraction of accurate records for varying
stale cache size and attack duration. The accuracy percentage in-
creases with increasing stale cache size. This results from the fact
that as the stale cache increases in size, it can answer more and
more queries for NS records that tend to be more stable and hence,
the increase in accuracy.4 However, the increase tapers off beyond a
stale cache size of 10-14 days; a 10-day stale cache yielded 99.6%
accurate records during a 3-hour attack. Also, the fraction of ac-
curate records reduces by a small amount as the attack duration
increases.

Next, we focussed on different kinds of queries. Specifically, we
studied queries for NS-records (i.e. NS-queries) and queries for A-
records (i.e. A-queries) and determined the fraction of such queries
that can be answered using the stale cache and the accuracy of the
corresponding stale records. In case of an attack lasting 3-hours,
the values for these fractions are plotted in figure 5. The figures
show that while the fraction of queries answered increases with
increasing stale cache size in both cases, the fraction of NS-queries
answered is much less than the fraction of A-queries answered. For
instance, a 14-day stale cache can answer 63% of NS-queries and
85.4% of A-queries.

This results from the fact that NS-records tend to have higher
TTL values as compared to A-records (especially A-records for
names not belonging to nameservers). Consequently, most of the
NS queries can be answered using the resolver cache. Further, if a
NS-query cannot be answered through the resolver cache, it is more
likely that the corresponding NS-records weren’t queried for in the
past and hence, would not be present in the stale cache too. This
also implies that the fraction of NS-queries answered hits the point
of diminishing returns much later than the fraction of A-queries
answered. The figure also shows that, as expected, the accuracy
of NS-records is higher than that of A-records. In both cases, the
accuracy of the stale records returned to clients increases with the
stale cache size and is >99.5% with a stale cache of more than 10
days.

Overall, these results show that even in the extreme attack sce-
nario considered here, the stale cache can answer a significant frac-
tion of the client queries in a surprisingly accurate fashion.

3.2 Performance under different attack sce-
narios

We now evaluate the performance of the stale cache under three
different attacks scenarios. The first attack involves the root-servers
not being accessible to the clients. Today, such an attack would
cause any queries for NS records corresponding to the top-level
domains (TLDs) to fail.5 However, in case of the trace-based simu-
lation of a stale cache, all such queries succeeded. This is because,
for the query and response pattern captured in our trace, the NS
records for all the TLDs were present either in the cache or the stale
cache at all times. Thus, the stale cache would have ensured that all

4We explain the increase in the fraction of NS-queries answered
later in the section.
5This assumes that the NS records are not present in the cache of
the network resolvers or have expired since the attack started.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

3021141075321
 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

F
ra

ct
io

n
of

 Q
ue

rie
s

A
ns

w
er

ed

F
ra

ct
io

n
of

 A
cc

ur
at

e
R

ec
or

ds

Stale Cache Size (days)

Queries Answered
Accurate Records

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

3021141075321
 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

F
ra

ct
io

n
of

 Q
ue

rie
s

A
ns

w
er

ed

F
ra

ct
io

n
of

 A
cc

ur
at

e
R

ec
or

ds

Stale Cache Size (days)

Queries Answered
Accurate Records

Figure 6: Fraction of Queries (for two-level names) Answered
and Accurate Records when using a stale cache during an 3-
hour attack on the TLD nameservers.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

3021141075321
 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

F
ra

ct
io

n
of

 Q
ue

rie
s

A
ns

w
er

ed

F
ra

ct
io

n
of

 A
cc

ur
at

e
R

ec
or

ds

Stale Cache Size (days)

Queries Answered
Accurate Records

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

3021141075321
 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 0.996

 0.998

 1

F
ra

ct
io

n
of

 Q
ue

rie
s

A
ns

w
er

ed

F
ra

ct
io

n
of

 A
cc

ur
at

e
R

ec
or

ds

Stale Cache Size (days)

Queries Answered
Accurate Records

Figure 7: Fraction of Queries (for three-level names) Answered
and Accurate Records when using a stale cache during an 3-
hour attack on second-level nameservers.

names would still resolve and hence, would effectively shield the
network from an attack on the root-servers.

The second attack involves clients not being able to access TLD
nameservers. Today, this would cause queries for any records cor-
responding to two-level names such as a.com to fail. Further, any
queries for longer names that rely on the resolution of two-level
names would fail too. Here we restrict ourselves to the queries
for two-level names that cannot be answered based on the resolver
cache. Figure 6 plots both the fraction of such queries that the stale
cache can answer and the fraction of records in these responses
that are accurate in case of a 3-hour attack. The trends for longer
duration attacks are similar. The fraction of queries answered in-
creases with an increasing stale cache size though it tapers off for a
stale cache of more than 14 days. A 14-day stale cache can answer
75% of the queries for two-level names. The reason for the lower
fraction of queries answered is that clients typically access the NS
records for names such as a.com and these records tend to have a
high TTL-value. As explained earlier, this implies that most such
queries are answered based on the resolver cache and if a record is
not cached, there is a higher probability that it has not been queried
at all and hence, is not present in the stale cache too. Of course,
the fraction of total client queries that succeed when using the stale
cache is much higher. The graph also shows that records from a
14-day stale cache are 99.4% accurate and accuracy increases with
the stale cache size too.

Similarly, the last attack scenario involves second-level name-
servers being inaccessible. This would cause queries for any records
corresponding to a three-level name such as b.a.com to fail. We
focus on such queries that are not cached by the network’s re-

 0

 500

 1000

 1500

 2000

 2500

 3000

302520151051
 0

 50

 100

 150

 200

 250

 300

 350
S

ta
le

 C
ac

he
 S

iz
e

 (

of
 r

ec
or

ds
 in

 th
ou

sa
nd

s)

S
ta

le
 C

ac
he

 S
iz

e
(M

B
)

Stale Cache Size (days)

of records
MB

 0

 500

 1000

 1500

 2000

 2500

 3000

302520151051
 0

 50

 100

 150

 200

 250

 300

 350
S

ta
le

 C
ac

he
 S

iz
e

 (

of
 r

ec
or

ds
 in

 th
ou

sa
nd

s)

S
ta

le
 C

ac
he

 S
iz

e
(M

B
)

Stale Cache Size (days)

of records
MB

Figure 8: Stale cache memory footprint

solvers. Figure 7 plots the fraction of such queries answered using
stale records during a 3-hour attack and the accuracy of these stale
records. As before, the fraction of queries answered increases with
an increasing stale cache size. However, in this case, the returns
from increasing the stale cache size are diminished much sooner
that the previous attack scenario. A 14-day stale cache can answer
85% of the queries for three-level names. Both A and NS records
for names such as b.a.com are accessed by clients and these tend to
have lower TTL-values than the records for two-level names. This
explains the higher percentage of queries answered. The graph also
shows that records from a 4-day stale cache are 99.8% accurate.

3.3 Memory Footprint
We now evaluate the memory requirements of the stale cache.

Figure 8 plots both the number of DNS records and the actual mem-
ory used by a stale cache of size 1 to 30 days. As one would expect,
the memory requirements of the stale cache increase as the number
of days increase. Note that the simulated stale cache stores DNS
records without any encoding and hence, there is scope for further
reducing the memory required for the stale cache. More impor-
tantly, the figure shows that even for a network with 1300 hosts and
a query-response rate of ≈25 DNS packets per second, the stale
cache memory footprint is very small. For instance, maintaining
stale records for a period of 30 days given the query pattern in our
trace requires <313MB of storage space.

Of course, the stale cache memory requirements depend on the
number of clients being served by the resolver and their query pat-
terns. Also, the evaluation in the previous section shows that the
gains to be obtained from stale records older than two weeks are
minimal. These factors suggest that, in practice, resolvers will keep
stale records only for a configurable number of days, for example
stale records for the past couple of weeks. Further, the resolver
will be limited to at most a certain amount of memory for the stale
cache. In case the stale cache fills up, the resolver would evict
records based on some criterion. For instance, the resolver could
use the query pattern of clients to evict the least recently used DNS
records (LRU eviction). However, given the amount of memory on
modern machines, we believe that resolvers should easily be able to
maintain a stale cache containing records for a couple of weeks and
there shouldn’t be a need for more complex eviction algorithms. In
section 4.2 we discuss how placing a limit on the duration for which
stale records are kept addresses some of the practical concerns aris-
ing out of the use of stale information.

4. DISCUSSION
There have been a number of “clean-slate” proposals to make

the availability of specific nameservers less critical for the oper-
ation of Internet’s naming system. These proposals [7-9,12,22,24]

decouple the ownership of names from the task of distributing them
and try to architect a robust mechanism for distributing the names.
However, such an approach could increase the total DNS overhead
many times over, especially in the face of the use of DNS for load
balancing purposes. On a more general note, while most of us agree
that DNS is afflicted by a few problems, we think that a majority
of them can be attributed to misconfigurations, improper imple-
mentations, violations of best current practices, or even a lack of
motivation to address them and not to major architectural flaws.
For example, problems regarding high lookup latency can mostly
be attributed to misconfigurations (i.e. broken and inconsistent del-
egations) [22] and the long timeouts used by resolvers in case of
errors [19]. Consequently, despite a number of proposals arguing
to the contrary, we do not see a pressing need for an architectural
change. Guided by this observation, our proposal represents an
exercise in showing how minor operational modifications can ad-
dress DNS problems; specifically, modifying the caching behav-
ior of DNS resolvers can reduce the impact of flooding attacks on
DNS.

In the rest of this section we discuss the advantages of the pro-
posed modification and a few possible objections to it.

4.1 Pros
DNS Robustness. The proposed modification ensures that re-

solvers can respond to queries for a zone even if the zone’s author-
itative nameservers are unavailable, assuming that the resolver has
queried the zone at some point in past and the previous response is
present in the resolver’s stale cache. The evaluation in the previ-
ous section showed that a stale cache can indeed make DNS more
robust to DoS flooding attacks. Further, while past attempts such
as the anycasting of DNS nameservers provide nameserver opera-
tors with a mechanism, albeit a very expensive one, to protect the
name resolution for their zones, our modification represents an in-
surance policy that can be adopted by the resolver operators and
hence, provides some control to the client.

Simplicity. The biggest argument in favor of the stale cache as a
means of increasing DNS robustness is its simplicity. The proposed
scheme:

• Does not change the basic protocol operation and infrastruc-
ture; only the caching behavior of resolvers is modified.

• Does not impose any load on DNS, since it does not involve any
extra queries being generated.

• Does not impact the latency of query resolution, since the stale
cache is utilized only when the query resolution fails.

Incremental Deployment. Any single resolver can adopt the mod-
ifications proposed in this paper and achieve significant protec-
tion from attacks against the DNS servers it and its clients access.
Hence, the proposal can be incrementally deployed.

Motivation for Deployment. Modifying a resolver is beneficial
for the clients being served by the it since the resolver can resolve
queries for zones that have been accessed by it in the past even
if the nameservers for the zones are not available. Hence, there
is motivation for the resolver operators to switch to the modified
resolver.

4.2 Objections
DNS caching semantics and the possibility of inaccurate infor-

mation being used. The biggest objection against the proposed
modification is that it changes the semantics of DNS caching. With
the current DNS specifications, a zone operator can expect the reco-
-rds served by the zone’s authoritative nameservers to be completely

expunged by resolvers within TTL seconds. With our proposal,
such records would be evicted to the stale cache. The problem with
such an approach is best explained through an example. Let’s con-
sider a zone whose records have been updated. Also, consider a
resolver that has accessed the zone but not since the update and so
the zone’s records in the resolver’s stale cache are obsolete or in-
accurate. Given this, if the resolver needs to resolve a query for
the zone at a time when all the zone’s authoritative nameservers are
unreachable, it would resort to using the inaccurate records present
in its stale cache.

The problematic scenario described above arises only when two
conditions are met:

1. The DNS records for the zone in question have been updated
since the last access by the resolver.

2. The nameservers for the zone are currently inaccessible.

Condition (1) can arise due to several reasons: for instance, the
nameservers for a zone have been moved, the service itself has mi-
grated or there have been address space changes, DNS based load-
balancing across the nameservers or the application servers, etc.
We consider these below.

First, if the nameservers have been moved, the name resolution
may fail while if the service migrates, the name may be resolved
to the wrong address. Both these are undesirable scenarios. How-
ever, restricting the duration for which resolvers can keep records
in their stale cache helps us avoid these. Specifically, to account
for this, a nameserver/service needs to be run on both its old and
new address for a couple of weeks after migration. This allows for
the old records to be flushed from the stale cache of resolvers. Note
that zone operators anyway need to do this today since a large num-
ber of misbehaving resolvers disregard TTL values and use expired
records even when the nameservers for a zone are available [32,34].

Second, if the DNS records have been changed to balance client
load, the name would probably resolve properly but this might in-
terfere with the load across the servers. In a recent study, Poole et.
al. [21] found that name-to-IP mappings tend to be very stable with
less than 2% of DNS names changing IP addresses more than once
a week. Further, most of these names can be attributed CDNs like
Akamai trying to balance client load across their servers.6 This im-
plies that not only is condition (1) rare, in a vast majority of cases
where it does occur, using the stale records would not lead to wrong
resolution. While this is far from perfect, the small possibility of
load imbalance across the servers when they are under attack (in
which case the load balancing isn’t working anyway) seems like a
small price to pay for the robustness offered by a stale cache. Also,
the possibility of a resolver using inaccurate records for a zone is
much less for zones that the resolver frequently accesses.

Further, resolvers may choose to apply the modified caching sch-
-eme to infrastructure records only. Infrastructure records, as de-
fined by [17], refer to records used to navigate across delegations
between zones and include the NS records (and the corresponding
A records) for zones. Past studies show that such records change
even more infrequently [9,17] than other DNS records and hence,
this would further reduce the possibility of resolvers using inaccu-
rate records while still providing a large robustness gain.

Finally, it is also possible to make changes on the client-side
DNS software to make applications aware of the use of stale records.
A resolver could use the RCODE field in the DNS header (a 4-
bit field; values 5-16 for this field have been reserved for future

6The fact that the actual DNS names in our trace have been
anonymized implies that we cannot determine if the changed map-
pings observed by us can also be attributed to CDNs.

use [14]) to inform the querying client that the response is based
on the stale cache. Similarly, the client gethostbyname and the
relevant libresolv functions could be modified to interpret the
new RCODE value and inform applications of the same. With these
changes in place, applications would have the flexibility of being
able to account for the possibility of inaccurate records and decide
whether to use stale records or not based on application seman-
tics and/or user choice. However, most applications that need to
make sure that they are accessing the right resource use application-
specific authentication anyway; for instance, financial web-sites
commonly use personalized site-keys for this purpose [33]. This,
combined with the fact that the possibility of stale records being
inaccurate (especially ones that lead to wrong resolution of names)
is miniscule, implies that we don’t feel that the overhead of modi-
fying the DNS-software at all clients is justified.

Autonomy for zone operators. Another important concern is that
the proposed modification would seem to move autonomy away
from zone operators to resolver operators. Allowing resolvers to
store records after their TTL value has expired suggests that zone
operators do not control the access to their sub-zones; for instance,
they could not kill off their sub-zones when they wish to.

However, this is not the case. The fact that we don’t modify
DNS’s hierarchical resolution process implies that resolvers still
need to go through the nameservers for a zone in order to access
its sub-zones and hence, the autonomy of zone operators is not af-
fected. For instance, let’s assume that the operator for the zone
.com needs to kill off the sub-zone .rogue.com. Typically, this
would involve .com’s zone operator configuring the zone’s author-
itative nameservers to respond to any queries regarding .rogue.edu
with a NXDOMAIN, implying that no such domain exists. Con-
sequently, a resolver trying to resolve a query like the A record
for www.rogue.- -com by traversing down the DNS zone hierar-
chy would receive a NXDOMAIN response from one of the .com
nameservers and would forward this to the client that originated
the query. Further, this response would be cached and eventually
be evicted to the stale cache. Thus, if there are any such future
queries at a time when all the .com nameservers are unavailable,
the resolver would still return a NXDOMAIN response.

Attackers attempting to force the use of inaccurate information.
Apart from the possibility of inaccurate data being used, there is
also the possibility of attackers taking advantage of the stale cache
maintained by resolvers to force the use of inaccurate records. At-
tackers may keep track of updates to the records of a zone and start
flooding the authoritative nameservers for the zone as soon as some
of the records are updated. If the attack overwhelms the zone’s
nameservers, resolvers trying to resolve the zone’s records would
rely on the obsolete data stored in their stale cache. In effect, at-
tackers can now flood the nameservers for a zone in order to delay
the propagation of updates to the zone’s records for the duration of
the attack. While we cannot imagine many cases where such an
attack could be used, one scenario where it does appear to be harm-
ful is to undermine the autonomy of zone-operators. In the exam-
ple above, the owners of the .rouge.com zone may flood the .com
nameservers to force the use of stale NS records for their zone and
hence, prevent their zone from being killed. The bigger problem
here is that there is incentive to flood the nameservers of a zone
to prevent sub-zones from getting killed. This problem captures
an inherent trade-off that the use of stale records exposes: when a
zone’s nameservers are being flooded, all sub-zones, including sub-
zones that were deleted in the recent past, are accessible. While this
is certainly a serious concern, it is important to note that the sub-
zones will stay alive only as long as the zone’s nameservers are
inaccessible. Given that measures to counter flooding attacks on

nameservers, such as filtering by ISPs, are usually applied within a
day or two of the attack, the sub-zones would be able to stay alive
for not too long a duration.

Privacy Concerns. With our proposal, DNS resolvers store DNS
records long beyond their TTL-values. This leads to privacy con-
cerns in case the resolver is broken into. Specifically, if a resolver
were to be compromised, the attacker would gain access to all the
stale cache records and hence, would have a heap of information
about what the resolver’s clients have been querying and in turn,
their web-access patterns. However, the stale cache would not pro-
vide the attacker with information about queries from individual
clients. Also, this is certainly no worse than other DoS mitigation
proposals that require DNS resolvers to query entities other than a
zone’s authoritative nameservers to resolve the zone’s records and
hence, leak out private information as an integral part of their oper-
ation.

Resolution latency in the face of an attack. In our proposal, if a
resolver is unable to reach the authoritative nameservers of a zone,
it resorts to using the zone’s records in the stale cache. Conse-
quently, the resolver must query each of the nameservers for the
zone, wait for the query to timeout (and possibly retry) before it
can use the stale cache. With the current timeout values used by
resolvers, this would entail a high lookup latency in the face of at-
tacks (i.e. when the nameservers for a zone are unavailable). For
example, the default configuration for the BIND8 resolver [31] in-
volves sending queries to each nameserver for 30 seconds with an
exponentially increasing period between consecutive retries. So,
clients accessing a zone with two authoritative nameservers at a
time when both of them are unavailable would need to wait for 60
seconds before receiving a reply. However, most resolvers allow
the retry and timeout values to be configured and hence, the lookup
latency problem can be solved by using aggressive values for these
timers. As a matter of fact, past work has already suggested that
these timer values are major contributors to the high lookup latency
when errors are encountered [19].

DoS’ing the application servers. The proposed modification does
not reduce the vulnerability of nameservers to DoS attacks. Con-
sequently, attackers can still flood them so that they are unable to
serve (and update) the records of the corresponding zones. Rather,
the modification makes the availability of DNS nameservers less
critical and hence, significantly reduces the impact of DoS attacks
on DNS.

Further, the proposal does not address the general DoS problem
and attackers can deny service to clients by attacking the applica-
tion servers instead of the corresponding DNS nameservers. As a
matter of fact, a flooding attack that chokes the network bottleneck
for a zone’s nameservers is also likely to hamper the availability of
the zone’s application servers. In such a scenario, there isn’t much
value to being able to resolve the names for the application servers
since clients would not be able to reach them anyway.7 In effect,
this concern boils down to how common is it for application servers
and their nameservers to share a network bottleneck. We intend to
measure this for nameservers on the Internet as part of our future
work.

Interaction with DNSSec. The proposal does not have any harm-
ful interactions with or implications for DNSSec. In case the re-
solver cannot reach the nameservers of a zone and relies on the cor-
responding records in the stale cache, the records ought to be classi-

7Note that there is still a lot of value to being able to access the sub-
zones when a zone’s nameservers are being flooded. For example,
being able to access the rest of the name system when the root-
servers are being flooded.

fied as “Undetermined” by the resolver.8 Hence, any DNSSec poli-
cies expressed by the resolver operator for undetermined records
naturally apply to the stale records.

5. RELATED WORK
A number of recent efforts [7-9,22,24] have proposed new ar-

chitectures for the next generation Internet naming system that ad-
dress DNS’s performance and robustness problems. Other propos-
als to change the DNS architecture include multicasting the global
DNS database to specialized servers to reduce the response time
for clients [12] and augmenting the DNS structure with additional
pointers that can be used to access sub-zones and hence, increase
DNS robustness against flooding attacks [25]. [20] argues for tak-
ing advantage of site multihoming by spreading the identity of end
hosts and rate-limiting name resolution requests to mitigate DoS
attacks. Balakrishnan et al. [1] propose to replace the hierarchical
DNS (and URL) namespace with flat identifiers. We show that a
minor operational change to resolvers in the existing DNS frame-
work can significantly mitigate the impact of DoS attacks on DNS.

The use of caches and more generally, of stale data to improve
system availability shows up in many aspects of computer science.
Examples include using stale data to improve availability of ser-
vices [13] and even shared memory multiprocessors [23]. [15] pro-
poses and evaluates the use of stale data to reduce the measurement
overhead for placement of services on the Internet. This paper eval-
uates the efficacy of stale data in increasing DNS availability.

Pappas et al. [17] argue for the use of long TTL values for in-
frastructure DNS records as a means of alleviating the impact of
DoS attacks on DNS. We share with their proposal the basic notion
of using records already present in the resolver cache for a longer
period. While our proposal involves changing the caching behavior
of resolvers, using longer TTL values for a zone’s records involves
a minor configuration change at the zone’s nameservers and hence,
does not necessitate any software update. However, using long TTL
values represents a technique that can be used by nameserver op-
erators. Also, long TTL-values make it harder for operators to up-
date their records. In subsequent work [18], the authors augment
their proposal and argue for resolvers proactively renewing the in-
frastructure records present in their cache as a means of mitigating
attack impact. This scheme has an important advantage over the
use of stale records: it does not modify DNS caching semantics.
However, as shown in [18], proactive renewal of DNS records by
resolvers, when used in isolation, increases DNS traffic many times
over. Further, the overhead of such an approach implies that it can-
not be used for non-infrastructure DNS records, a large fraction of
which don’t change very rapidly.

In past work [2], we discuss the use of stale DNS records as a
DoS mitigation mechanism. This paper follows up on that proposal
and quantifies the advantage of a stale cache and the possibility of
using obsolete information through trace-based simulations. Non-
amed [35] is a quasi DNS resolver that provides users the option
of using stale DNS information which maybe be useful for opera-
tion when disconnected from the Internet. We argue for the use of
a zone’s stale records only when all nameservers for the zone are
unavailable. Cohen and Kaplan [6] propose the use of stale DNS
records for improving DNS performance. This involves fetching
data based on the stale records and issuing a DNS query to refresh
the stale record concurrently. CoDNS [19] is a cooperative DNS
lookup service designed to alleviate client-side DNS problems. We
share with their proposal the notion of client-side (i.e. resolver-

8Undetermined records correspond to records resulting from a non-
DNSSec lookup [30].

side) changes to address DNS problems. While CoDNS involves
resolvers co-operating amongst each other to mask resolver-side
issues, we propose that resolvers use local storage to insure them-
selves (and their clients) against DoS attacks on DNS.

There have also been studies to determine the characteristics of
the existing DNS architecture. Jung et. al. [11] use DNS traces to
study client-perceived DNS performance and the effectiveness of
client caching. They found name accesses to be heavy-tailed which
also shows up in our measurements as the diminishing returns of
increasing the stale cache size. [16] studied both the deployment
patterns and the availability of DNS name servers while [4] mea-
sured the performance of the E root-server and observed instances
of DoS attacks wherein the root-server was used as reflector.

6. FUTURE WORK
This paper presents a very simple modification to the caching be-

havior of DNS resolvers. A preliminary evaluation based on DNS-
traces collected at Cornell University shows that stale records can
be quite effective in mitigating the impact of DoS attacks on DNS.
While the proposed modification certainly has some drawbacks, the
cost-benefit ratio, especially given the frequency and the impact of
DoS attacks, appears to favor the use of the stale cache. However,
a few aspects of our proposal require more work. For instance,
privacy concerns implied that we had to anonymize the collected
DNS traces and hence, were not able to study the DNS records that
would have been inaccurate had they been used as stale records
in the face of an attack. Specifically, we would have liked to de-
termine if this was due to load-balancing across nameservers and
if the clients would still have been able to access the desired re-
source. We are in the process of obtaining the relevant part of the
unanonymized trace to answer this and similar questions.

We are currently implementing the proposed modification into
dbjdns [3], a popular DNS resolver. We also intend to explore the
possibility of implementing this as an add-on to the CoDNS reso-
lution service [19] running on PlanetLab [5]. Apart from clearing
up the implementation issues, such an exercise would help us ana-
lyze the advantages of maintaining a stale cache in the face of ac-
tual attacks (which occur frequently enough to make this exercise
worthwhile!).

Acknowledgements
We would like to thank Larry Parmelee at CFS for his help and
patience with the DNS collection process. We are also grateful
to Paul Vixie at ISC for helpful discussions on why this proposal
should “not” be incorporated in DNS resolvers.

7. REFERENCES

[1] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy,
S. Shenker, I. Stoica, and M. Walfish, “ALayered
Naming Architecture for the Internet,” in Proc. of ACM
SIGCOMM, 2004.

[2] H. Ballani and P. Francis, “ASimple Approach to DNS
DoS Mitigation,” in Proc. of workshop on Hot Topics in
Networks, Nov 2006.

[3] D. J. Bernstein, “djbdns: Domain Name System Tools,”
Apr 2008, http://cr.yp.to/djbdns.html.

[4] N. Brownlee, k claffy, and E. Nemeth, “DNS
Measurements at a Root Server,” in Proc. of Globecom,
2001.

[5] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman, “PlanetLab: An

Overlay Testbed for Broad-Coverage Services,”ACM
SIGCOMM Computer Communication Review, vol. 33,
no. 3, July 2003.

[6] E. Cohen and H. Kaplan, “Proactive Caching of DNS
Records: Addressing a Performance Bottleneck,” in Proc.
of Symposium on Applications and the Internet, 2001.

[7] R. Cox, A. Muthitacharoen, and R. T. Morris, “Serving
DNS using a Peer-to-Peer Lookup Service,” in Proc. of
IPTPS, 2002.

[8] T. Deegan, J. Crowcroft, and A. Warfield, “TheMain
Name System: An Exercise in Centralized Computing,”
SIGCOMM Comput. Commun. Rev., vol. 35, no. 5, 2005.

[9] M. Handley and A. Greenhalgh, “TheCase for Pushing
DNS,” in Proc. of Hotnets-IV, 2005.

[10] T. Hardy, “RFC3258 - Distributing Authoritative Name
Servers via Shared Unicast Addresses,”April 2002.

[11] J. Jung, E. Sit, H. Balakrishnan, and R. Morris, “DNS
performance and the effectiveness of caching,”
IEEE/ACM Trans. Netw., vol. 10, no. 5, 2002.

[12] J. Kangasharju and K. W. Ross, “AReplicated
Architecture for the Domain Name System,” in Proc. of
INFOCOM, 2000.

[13] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat,
“Providing high availability using lazy replication,” ACM
Trans. Comput. Syst., vol. 10, no. 4, 1992.

[14] P. Mockapetris, “RFC1035, DOMAIN NAMES -
IMPLEMENTATION AND SPECIFICATION,”Nov
1987.

[15] D. Oppenheimer, B. Chun, D. Patterson, A. C. Snoeren,
and A. Vahdat, “Serviceplacement in a shared wide-area
platform,” in Proc. of the USENIX ’06 Annual Technical
Conference, 2006.

[16] J. Pang, J. Hendricks, A. Akella, R. D. Prisco, B. Maggs,
and S. Seshan, “Availability, usage, and deployment
characteristics of the domain name system,” in Proc. of
Internet Measurement Conference, 2004.

[17] V. Pappas, B. Zhang, E. Osterweil, D. Massey, and
L. Zhang, “Improving DNS Service Availability by Using
Long TTLs,”draft-pappas-dnsop-long-ttl-02, June 2006.

[18] V. Pappas, D. Massey, and L. Zhang, “EnhancingDNS
Resilience against Denial of Service Attacks,” in Proc. of
Conference on Dependable Systems and Networks (DSN),
2007.

[19] K. Park, V. Pai, L. Peterson, and Z. Wang, “CoDNS:
Improving DNS Performance and Reliability via
Cooperative Lookups,” in Proc. of USENIX OSDI, 2004.

[20] D. S. Phatak, “Spread-Identitymechanisms for DOS
resilience and Security,” in Proc. of SecureComm, 2005.

[21] L. Poole and V. S. Pai, “ConfiDNS:leveraging scale and
history to improve DNS security,” in Proc. of the 3rd
USENIX Workshop on Real, Large Distributed Systems
(WORLDS), 2006.

[22] V. Ramasubramanian and E. G. Sirer, “TheDesign and
Implementation of a Next Generation Name Service for
the Internet,” in Proc of ACM SIGCOMM, 2004.

[23] D. Soring, “Usinglightweight checkpoint/recovery to
improve the availability and designability of shared
memory multiprocessors,” Ph.D. dissertation, University
of Wisconsin-Madison, 2002.

[24] M. Theimer and M. B. Jones, “Overlook: Scalable Name
Service on an Overlay Network,” in Proc. of ICDCS,
2002.

[25] H. Yang, H. Luo, Y. Yang, S. Lu, and L. Zhang,
“HOURS:Achieving DoS Resilience in an Open Service
Hierarchy,” in Proc. of Conference on Dependable
Systems and Networks (DSN), 2004.

[26] “MicrosoftDDoS Attack, NetworkWorld,” Jan 2001,
http://www.networkworld.com/news/2001/
0125mshacked.html.

[27] “RootServer DDoS Attack, RIPE Mail Archive,”Nov
2002, https://www.ripe.net/ripe/maillists/archives/eof-list/
2002/msg00009.html.

[28] “AkamaiDDoS Attack, Internet Security News,”Jun
2004, http://www.landfield.com/isn/mail-archive/2004/
Jun/0088.html.

[29] “UltrDNSDDoS Attack, Washington Post,”May 2005,
http://blog.washingtonpost.com/securityfix/2006/05/
blue security surrenders but s.html.

[30] “CISCODNSSEC page,” Aug 2006,
http://www.cisco.com/web/about/ac123/ac147/
archived issues/ipj 7-2/dnssec.html.

[31] “InternetSystems Consortium,” Aug 2006,
http://www.isc.org/.

[32] “SLASHDOT: Providers Ignoring DNS TTL?”Aug
2006, http://ask.slashdot.org/article.pl?sid=05/04/18/
198259&tid=95&tid=128&tid=4.

[33] “SiteKey at Bank of America,” Jul 2007,
http://www.bankofamerica.com/privacy/sitekey/.

[34] “DNS- What do big sites do?” Aug 2008, http:
//forum.powweb.com/archive/index.php/t-54961.html.

[35] “nonamed- Man page,” Aug 2008,
http://www.minix3.org/previous-versions/Intel-2.0.3/
wwwman/man8/nonamed.8.html.

