

Perceptron:

$$g(z) = if z \ge 0 then 1 else 0$$

Logistic Regression:

$$g(z) = \frac{1}{1 + e^{-z}}$$

Perceptron Learning Algorithm

Initialize $w_0,...,w_d$ Until <stopping condition>
Randomly order the data < x^1 , ..., x^N >
For j = 1 to N do

if $\mathbf{w} \cdot \mathbf{x}^j \ge 0$ then h=1 else h=0For i = 0 to d do $w_i = w_i + \alpha \times (y^j - h) \times x^j$

Derived by Rosenblatt based on

McCulloch/Pitts model of neurons, Hebbian

model of learning

(not covered in class)

Logistic Regression Learning Algorithm

Initialize $w_0,...,w_d$ Until <stopping condition>
Randomly order the data < x^1 , ..., x^N >
For j = 1 to N do $h = \frac{1}{1 + e^{-\mathbf{w} \cdot \mathbf{x}^j}}$ For i = 0 to d do $w_i = w_i + \alpha \times (y^j - h) \times h \times (1 - h) \times x^j$

Derived formula for gradient descent – minimizing

$$Loss_D(h_{\mathbf{w}}) = \sum_{j=1}^{N} (y^j - h_{\mathbf{w}}(x^j))^2$$

and then doing updates example by example (Stochastic Gradient Descent)

Gradient Descent Learning Algorithm (Not really used)

Logistic Regression Learning Algorithm (Stochastic Gradient Descent)

Initialize w₀,...,w_d Initialize w₀,...,w_d Until <stopping condition> Until <stopping condition> Randomly order the data $\langle x^1, ..., x^N \rangle$ Randomly order the data $\langle x^1, ..., x^N \rangle$ <temp₀, ... , temp_d> = <w₀, ... , w_d>For i = 0 to d do For j = 1 to N do For j = 1 to N do For i = 0 to d do temp_i = temp_i $w_i = w_i$ $+ \alpha \times (v^{j} - h) \times h \times (1 - h) \times x^{j}$ $+ \alpha \times (v^{j} - h) \times h \times (1 - h) \times x^{j}$ $< w_0, ..., w_d > = < temp_0, ..., temp_d >$