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Change is an inexorable aspect of the world that surrounds us. Night gives

way to day as the Earth rotates around its axis, weather changes, buildings de-

cay. All these changes alter the appearance of our surroundings. In trying to

understand our world it is sometimes useful to factor out changes that are not

important to the subject of our study, for instance when attempting to deter-

mine if two pictures taken decades apart depict the same building it is useful

to ignore the cracks and peeling paint that are due to aging, while other times

a careful examination of change might reveal interesting phenomena, like how

the shading produced by sunlight on objects surrounding us can tell the time of

day.

In the first part of this thesis we examine changes in light that reveal infor-

mation about materials and geometry. We introduce a simple pixel-wise statistic

 that we show is linked to ambient occlusion, a measure of light accessibility.

This simple realization allows us to recover the albedo for the scene, which then

allows us to obtain the lighting of each input image. We start our study by focus-

ing on a simple setup, a static scene and camera where each image is captured

under varying but unknown lighting.

We then extend this foundation in two ways, both of which apply to Internet

photo collections of outdoor landmarks. This presents a much more challenging

source of data as cameras are radiometrically uncalibrated and not registered,



natural lighting is much more complex than what our initial model expects, and

occluders obscure parts of the scene.

First, we show how physically based models of outdoor illumination devel-

oped in the computer graphics community can be used to incorporate many of

the subtleties of outdoor illumination into our algorithm, such as the influence

of geolocation on the sun’s path in the sky, and the changes in color and in-

tensity that occur over the course of a day. This advance allows us to correctly

estimate illumination for outdoor scenes, which we show is useful in estimating

the correct timestamp for images.

Second, we show how the estimated lighting can be digested into a novel

image descriptor, one that captures the distribution of light in a scene in a format

that is independent of geometry. This descriptor allows one to reason about

many phenomena that are linked to lighting, such as weather conditions, and

time of day. It also enables queries to an image database based on how light is

distributed in the scene, irrespective of geometry.

In the second part of this dissertation we look at change from another an-

gle by tackling the problem of image matching. We ask ourselves how can we

match challenging image pairs of architectural structures when changes in the

images are too drastic for traditional methods to work. We devise novel fea-

ture detector and descriptors based on local symmetries, a mid-level cue that

we show can be more robust to drastic changes than the more traditional edge

based methods.
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day and CASTLE-night) while the remaining rows show results
for cross-dataset queries (HUMAYUN $ CASTLE and PEÑA $
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CHAPTER 1

INTRODUCTION

Change is an inexorable aspect of the world that surrounds us. Night gives

way to day as the Earth rotates around its axis, weather changes, buildings de-

cay. All these changes alter the appearance of our surroundings. In trying to

understand our world it is sometimes useful to factor out changes that are not

important to the subject of our study. For instance, when attempting to deter-

mine if two pictures taken decades apart depict the same building it is useful

to ignore the cracks and peeling paint that are due to aging. While other times

a careful examination of change might reveal interesting phenomena, like how

the shading produced due to sunlight on objects surrounding us can tell time of

day.

In this thesis we observe these changes through the large trove of photos

gathered online by people all over the globe. In the past 15 years we have wit-

nessed an explosion in the number of images available online thanks to afford-

able and ubiquitous digital cameras and online photo-sharing portals. What can

we learn about a scene from these photos? The photos are uncalibrated, taken in

different and unknown lighting conditions, with occluders that obscure features

making detection difficult, etc. Yet despite all of this complexity and variation

there is a lot of information to be learned from them. For instance, advances in

structure from motion and image matching techniques have created systems ca-

pable of large scale 3D reconstructions of many large outdoor spaces, recovering

accurate camera position and sparse geometry [84, 26].
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1.1 Road map

This dissertation talks about two views on change. In the first part we focus on

materials and lighting in a scene and what can be learned from them.

In Chapter 3 we introduce a simple method for estimating ambient occlu-

sion, a measure of how much light can access a point on the surface of an object.

Our method takes as input a large set of images with varying, but unknown,

illumination. It then computes a simple per-pixel statistic that is coupled with

a physical model of the illumination at a point, enabling us to estimate ambient

occlusion at each point in the scene. Given ambient occlusion we proceed to

estimate an albedo per scene point which allows us to estimate the illumination

at each of the input images. Our method is simple, highly scalable, and obtains

state-of-the art performance on the MIT Intrinsic Images benchmark.

We refine our illumination model in Chapter 4 to incorporate aspects of il-

lumination that are particular to outdoor scenes. Our new method leverages a

physically based model of outdoor illumination [36] in order to account for the

sun path and the changes in intensity and color that occur over the course of a

day. Whereas in Chapter 3 we use registered images of a static scene, we now

apply the method to unstructured photo collections and show that our method

can be successfully used to estimate the sun position in each image.

In Chapter 5 we introduce a novel image descriptor, one that captures the

distribution of light in a scene. The method leverages large 3D models obtained

from structure from motion and our algorithm for estimating ambient occlusion

from Chapter 3, which together are used to obtain an estimate of the lighting in

the scene for a sparse set of points. These estimates are then processed to pro-
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duce a descriptor of the lighting in the scene in a format that is independent

of the scene’s geometry. This descriptor allows one to reason about many phe-

nomena that are linked to lighting, such as weather conditions and time of day.

It also enables queries to an image database based on how light is distributed in

the scene, irrespective of geometry.

In the second part of this dissertation we look at change from another angle.

In Chapter 7 we tackle the problem of image matching and ask ourselves how

can we match challenging image pairs of architectural structures when changes

in the images are too drastic for traditional methods to work. We devise novel

feature detector and descriptors based on local symmetries, a mid-level cue that

we show can be more robust to drastic changes than the more traditional edge

based methods.

1.2 Bibliographical Notes

The work presented in Chapter 3 is an extended version of [34]. The method in

Chapter 4 was presented as a poster at [35] and published in [35]. Chapter 7 is

an extended version of [15].
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CHAPTER 2

RELATED WORK

The work presented in the first part of this thesis is related to many different

problems studied in computer vision. Starting with estimation and use of Ambi-

ent Occlusion, which has received relatively little attention from the community,

there is also a strong connection to the intrinsic image decomposition literature,

since the methods in Chapters 3 and 4 estimate the light source visibility in or-

der to determine the albedo in the scene. The work in Chapter 4 is related to

other photometric methods that deal with outdoor illumination conditions. Fi-

nally, the work in Chapter 5 introduces a novel type of descriptor and therefore

is related to general light representations and other families of descriptors.

2.1 Photometric Ambient Occlusion

Ambient occlusion has received relatively little attention in computer vision.

Some examples of its use include early work in shape-from-shading [55], where

it was used in models of images under diffuse illumination, as well as more

recent work that considers AO in various applications. In the context of high-

quality face capture, Beeler et al. [13] and Aldrian and Smith [5] model AO by

assuming a uniform, constant, light source, and require an initial estimate of the

geometry.

In the area of multi-view stereo, Wu et al. assume that a scene consists of a

single albedo, and so the scene brightness under uniform area lighting is itself

a good approximation to AO (e.g., darker regions are more occluded) [92].
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For the problem of intrinsic image decomposition from large photo collec-

tions, Laffont et al. require accurate estimates of the albedo for a sparse set of

3D scene points [49]. To account for points that are darker due to AO, they

compute AO explicitly by generating and analyzing a 3D scene reconstruction.

In contrast to these methods, the method we present in Chapter 3 does not

explicitly model geometry, and instead reason about AO purely from observed

pixel values. This yields a very simple approach that could be used as a pre-

process to account for light visibility in other vision algorithms.

Our work is also related to methods that analyze pixel intensity variation

in images under varying illumination. Weiss proposed a method for intrinsic

images from image sequences [89], derived from a model of edge intensities.

In that work, a final step involves integrating a gradient field to compute a re-

flectance image. In our experience, and in agreement with other reports [30],

this integration performs poorly in the presence of soft and persistent shad-

ows (exactly the kind caused by AO), and we find that it can also propagate

noise across the image. In contrast, our method explicitly models one cause of

soft shadows (namely AO), and does not require a final integration step, which

we find makes the algorithm more robust. For outdoor scenes illuminated by

the sun, Sunkavalli et al. recover albedo and normals by directly tracking the

intensity of pixel values over time [86]. While they use heuristics to determine

whether a pixel is in shadow, our method makes no such hard decisions, instead

reasoning about statistics over the entire image sequence. In more recent work,

Barron and Malik optimize for reflectance, shape, and illumination from single

images under strong priors on illumination and color of natural scenes [7]. In

contrast, our method operates at a per-pixel level and does not make assump-
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tions about the texture in the scene.

Photometric stereo techniques [91, 11] are similar to our method in their

setup and the fact that they estimate albedo, but differ in that they recover dif-

ferent information about shape (surface normals), compared to our work. Our

approach is especially related to uncalibrated photometric stereo, in which the

light source directions are unknown. A key challenge in photometric stereo is

dealing with shadows, either by detecting them in some manner [17, 87] (a non-

trivial problem with surfaces of varying albedo or complex self-occlusions), or

treating them as a source of noise [94].

Sunkavalli et al. reason about lighting visibility of surface points, by cluster-

ing them into “visibility subspaces” that see a common set of lights [87]. How-

ever, they use an implicit model of lighting visibility that grows in complexity

as the number of lighting conditions increases. In contrast, our method relies

on a simple per-pixel measure of ambient occlusion that becomes more robust

as more images are added. In addition, our model incorporates ambient illumi-

nation as well as directional lighting.

Finally, our work is also related to methods that recover shape from ambi-

ent occlusion [55, 70], and our algorithm could potentially be used to generate

inputs to such methods.

2.2 Intrinsic Image Decomposition

Intrinsic image techniques have also been used to estimate albedo and illumi-

nation maps from single or multiple images [89, 82]. Laffont et al. also work
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with multiple images from varying viewpoints from one [49] or many [48]

points in time. However, their approach either requires extra input (e.g., a light

probe [49]), or additional smoothness priors [48]. The statistical approaches we

present in Chapters 3 and 4 yields a per-pixel estimate that avoid smoothness

priors and requires only measurements from the images themselves.

2.3 Reasoning About Outdoor Illumination

Estimating illumination from outdoor imagery. Several vision methods have

been proposed to recover illumination from single images [64]. Lalonde

et al. [50] use an analytic sun-sky model as a cue for determining sun direc-

tion, by using the model to predict the appearance of the visible sky in a single

outdoor photograph. The method in Chapter 4 uses a sun-sky model to esti-

mate and predict the appearance of objects using statistics across many images.

Both methods can be used to timestamp images, and we compare to [50] in Sec-

tion 4.4.

Haber et al. [33] pose the problem of estimating reflectance and illumina-

tion of a scene from Internet photos as an explicit inverse rendering problem,

which results in a complex optimization procedure. Their work assumes arbi-

trary (smooth) illumination; in contrast, we leverage strong models of outdoor

illumination to derive a much simpler statistical approach.

Outdoor photometric stereo. Several techniques estimate scene geometry and

appearance from outdoor illumination over time, particularly from webcam

data. Sunkavalli et al. decompose webcam video into components modeling
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albedo, geometry, and shading using a factoring approach [86, 87]. Ackermann

et al. [3] and Abrams et al. [2] estimate scene albedos and normals using pho-

tometric stereo, using the sun as the varying light source. These methods rely

on images captured from a single, static, georegistered camera, with known

timestamps (and hence sun position). In contrast, we work with images taken

from many viewpoints and cameras with largely incorrect timestamps. Finally,

Yu et al. [96] solve photometric stereo problems for images using environment

light measured using light probes. Again, their data is more structured in that

they directly measure illumination.

2.4 Light Descriptors

Representations of illumination play a key role in both computer graphics and

vision. The work in Chapter 5 is particularly inspired by prior work on ex-

tracting light descriptions from imagery. Notably, the Webcam Clip Art work

of Lalonde et al. use calibrated webcam data to derive analytic sun positions

from photo collections [52], which they use to generate full environment maps

via graphics models of the sun and sky [71]. Earlier, Lalonde et al. compute

coarse illumination descriptions by computing simple color histograms for sky,

ground, and vertical surface regions of images [51], and use these to match

rough illumination statistics between images (to enable “Photo Clip Art”). Our

work goes further than Webcam Clip Art in that we address large consumer

photo collections and not carefully calibrated webcam data. We also explore

richer illumination descriptors than in Photo Clip Art, and explicitly separate

albedo from illumination.
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Many other representations of illumination are used in graphics. We ex-

plore descriptors related to irradiance maps, but also augment these descriptors

with additional information that capture more than simple distant illumination.

Spherical harmonic coefficients are also commonly used to represent illumina-

tion, and it has been shown that diffuse illumination lies in a low dimensional

subspace in this representation [72, 12, 39, 42]. These representations also allow

for recovery of illumination from imagery [73, 11] (generalizing from shape-

from-shading and photometric stereo), but these methods often require limiting

assumptions or more careful calibration. In graphics and vision, intrinsic im-

ages represent images as a product of reflectance and illumination layers [31],

but the resulting light description is a pixel-level, rather than scene-level de-

scription of light that can be compared across images. Finally, one can directly

estimate explicit light sources (e.g., for indoor scenes), as in Chen et al. [18] or

Karsch et al. [40], but these methods require sufficient training data with geom-

etry or labeled illuminants. Xing et al. integrate many of these ideas together,

but rely on user input to derive geometry and lighting information [95].

We also present a simple way to extract lighting descriptors from image col-

lections reconstructed using structure from motion. Our method relies on per-

pixel statistics, and is more scalable and easier to implement than inverse ren-

dering methods based on global optimization [33, 24, 78]. Similarly, we do not

rely on complex priors, such as those of Barron and Malik [8], nor additional

information (e.g., Kinect data [9] or user input [41]). While we opt for sim-

plicity, we could also use these methods (and other intrinsic images methods

such as [49]) to separate shading from reflectance in our imagery for generat-

ing descriptors. Our overarching goal is to show the practical utility of simple

descriptors derived from photo collections.
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CHAPTER 3

PHOTOMETRIC AMBIENT OCCLUSION FOR INTRINSIC IMAGE

DECOMPOSITION

Many vision methods estimate the physical properties of a scene from im-

ages taken under varying illumination. Some notable examples include recov-

ering surface normals using photometric stereo [11, 87, 3], recovering diffuse

reflectance and illumination as intrinsic images [89, 53], and computing low-

dimensional models of appearance of objects and scenes [88, 28]. However,

these methods typically disregard the effect of the local visibility of illumination

in determining shading. Further, many of these methods require calibrated se-

tups (e.g., known lighting directions), special priors (e.g., smoothness of surface

reflectance), or limiting assumptions (e.g., no cast shadows).

In this chapter we revisit such estimation problems by posing the following

question: what can we tell about a scene point simply by observing its appear-

ance under many different, unknown illumination conditions? The appearance

of a point over such an image stack depends on many factors, such as the point’s

albedo and the distribution of illuminations. However, a key observation is that

the local visibility of a point—i.e., its accessibility to light from different direc-

tions, often modeled as Ambient Occlusion (AO) in computer graphics—is also

an important property in determining its appearance in images. We show that

we can estimate ambient occlusion directly from image observations, by intro-

ducing a simple pixel-wise, aggregate statistic ( in Figure 3.1), and relating this

statistic to ambient occlusion. To do so, we consider a physical model of a scene

point with a cone of visibility to the hemisphere, lit by a moving point light and

constant ambient light over the image stack. We then combine this model with
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Figure 3.1: Our method takes as input a stack of images captured with
varying, unknown illumination and computes a per-pixel
statistic () over this stack. This statistic is then combined with
a simple physical model of the local geometry at each point and
illumination to obtain an estimate of the local visibility. Local
visibility is then used together with the average image to obtain
an estimate for per-point albedo (reflectance), which itself can
be used to compute illumination for the original input images.

our statistic to infer ambient occlusion for each scene point. This kind of light-

ing visibility is often treated as a nuisance in computer vision methods, and in

many cases is simply ignored. In contrast, we explicitly model such visibility for

each scene point, and use it to aid in estimating other physical parameters, such

as surface albedo. The result is a photometric approach to estimating ambient

occlusion and albedo.

Our method has several key properties: we do not require knowledge of

light positions, explicit scene geometry, or surface normals. The setup for ac-

quisition is simple, requiring a point light source and a camera. However, we
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do assume that light source positions vary uniformly over the full hemisphere,

although in practice we achieve good results even when this assumption does

not hold. Note that we use the term image “stack” to refer to a set of images

of the same scene lit under varying illumination, but captured from the same

viewpoint. No frame-by-frame coherence or ordering is implied.

We demonstrate our method in experiments on several scenes. These in-

clude artificially generated images from a physically based renderer, as well as

real objects captured in a laboratory environment. Our experiments on real ob-

jects include a validation on 3D printed objects with known geometry, including

the TENTACLE dataset in Figure 3.1. In addition, we show that our method—

despite its simplicity and its per-pixel analysis of a scene, without additional

smoothness priors—outperforms current approaches on the MIT intrinsic im-

ages benchmark [30]. This demonstrates the utility of reasoning about AO when

measuring properties of scenes from images.

3.1 Ambient Occlusion

Ambient occlusion (AO) [54] is a measure of light accessibility commonly used

in computer graphics to properly account for ambient illumination. Formally,

for a single scene point x, AO is the integral over the hemisphere

AO(x) =
1

⇡

Z

⌦

V(x, ~!)h~n, ~!id! (3.1)

of the local visibility function V(x, ~!) (i.e. V(x, ~!) = 1 if there are no occluders

between point x and the environment in direction ~!, V(x, ~!) = 0 otherwise)

weighted by the dot product h~n, ~!i between direction ~! and the point normal ~n.

For an example, see upper right of Figure 3.1. At points where most of hemi-

sphere is occluded, e.g., in a deep crevice, V is mostly 0 and so AO is close to
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0, while for points whose visibility of the hemisphere is unoccluded, AO is 1. If

the albedo at x is ⇢, the measured radiance due to constant, ambient illumination

with intensity La can be expressed as:

Ia = ⇢⇡laAO (3.2)

Note that this only considers the first bounce of light (direct illumination), and

as such does not account for interreflections.

Two properties of ambient occlusion that are useful in computer vision are:

(1) it is independent of surface albedo, and so variation and discontinuities are

due only to scene geometry, and (2) it explains in a simple way why regions

with same albedo can have different intensities even when lit with uniform il-

lumination [55].

In computer graphics, the main focus is on computing ambient occlusion in

3D scenes to render images [68, 44, 67]. In contrast, we are interested in estimat-

ing ambient occlusion from a set of images illuminated by a varying, unknown

light source.

3.2 A Model for Ambient Occlusion in Image Stacks

We now describe how to obtain a simple approximation to ambient occlusion

(AO) by observing pixel intensities in multiple images under varying direc-

tional lighting. We first introduce a physically-based image formation model

for our measure of AO, then use this model to derive AO and albedo from im-

age sequences.
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3.2.1 Inputs and Image Formation Model

Our method takes as input a set of images, I
1

, I
2

, . . . , In, captured from a fixed

camera observing a static, Lambertian scene. The scene is lit by an unknown,

directional light source that changes from image to image, together with a uni-

form ambient light source; both have constant intensity over time. We further

assume that the distribution of directional light sources across the image stack

is uniform over the hemisphere. The images are radiometrically calibrated and

so the image intensity I(x) at each pixel x is proportional to the radiance at a

given scene point under a particular illumination. Because the camera is static,

the same pixel x records radiance for the same scene point in each image. In the

following derivation the images are treated as monochromatic without loss of

generality.

A key idea in our work is that for a given pixel x, the measured radiances

over all images are drawn from an underlying distribution that we refer to as its

pixel intensity distribution (PID). This distribution of pixel intensities at a point is

related to the distribution of illuminations over the image stack, as well as to the

albedo of that point and to the surrounding geometry (which can occlude the

light source from the point of view of that point). Figure 3.2 shows an example

of observed PIDs in an image stack for two points. For example, a point in

a deep concavity will very often appear dark, because light rarely reaches it

(only when the light is shining straight down into the hole). Such a point will

have a PID with mostly low intensity values. (For example, consider point A in

Figure 3.2.) The intuition then, is that the samples we record give us information

about a pixel’s PID, which in turn reveals information about surface albedo and

ambient occlusion. As we capture images lit under more and more possible
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Figure 3.2: Histogram of pixel intensities for two points of TENTACLE over
an image stack (only blue color channel). Notice that even
though the two points have very similar albedos their his-
tograms are quite different due to local visibility. Point A is
mostly occluded with respect to the light source, so its inten-
sity values are in general lower.

directions, we begin to capture the actual underlying PID of a pixel.

As a useful summary of a PID, we introduce a statistic for a single pixel x

over time, which we denote :

(x) =
E[I(x)]

2

E[I(x)

2

]

(3.3)

where E[·] is the expectation operator over the set of images. That is,  is the

square of the expected (average) intensity value for that pixel, divided by the

expected squared pixel intensity; this quantity is related to the coefficient of varia-

tion, a normalized measure of variance used in statistics.1 Figure 3.1 (top center)

shows  for an example image stack. In what follows, we show that this simple

ratio of statistics over recorded intensities yields an approximation to ambient

occlusion; to understand this relationship between  and ambient occlusion, we

first describe our image formation model, then relate this to a physical model of

local scene geometry.

For a Lambertian scene, an image formation model commonly used in the
1The coefficient of variation, cv, is defined as �µ , so the statistic  = 1

1+c2

v
.
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intrinsic images literature is:

I(x) = ⇢(x)L(x) (3.4)

where I(x) 2 R+ is the observed radiance at point x in the image, ⇢(x) 2 [0, 1)

is the diffuse albedo, and L(x) 2 R+ is a factor that depends on both light and

geometry.

Over our sequence of images I, ⇢(x) is constant and greater than zero, while

L(x) varies due to changes in illumination. Under these assumptions, we can

substitute Eq. (3.4) into the definition of our  statistic in Eq. (3.3) to obtain:

 =
E[⇢L]

2

E[⇢2L2

]

= ◆◆⇢
2E[L]

2

◆◆⇢
2E[L2

]

(3.5)

(for simplicity, we do not explicitly write the dependence on x, but as before 

is a statistic defined per pixel across the image stack). Thus,  depends only on

the lighting factors L, and not on albedo.

What range of values can  take on? Because  is the quotient of non-negative

numbers, it follows that  � 0. By observing that Var(I) = E[L2

]�E[L]

2 � 0 we can

also show that   1. For points that never receive light E[L] = 0 and  = 0 (one

can arrive at this via a limit analysis). For points whose illumination term never

changes we have that Var[I] = E[L2

] � E[L]

2 = 0, which implies E[L2

] = E[L]

2

and therefore  = 1. This behavior suggests that  might be useful as a measure

of ambient occlusion at a point.

3.2.2 Image Formation Model

So far we have shown that  is independent of albedo and is bounded. But what

exactly does  tell us about a scene point? As a statistic,  relates to the geometry
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and visibility at a point; to show this, we introduce a simplified geometry and

lighting model to connect  to a physical measure of local visibility.

Our model assumes that the visibility at a point can be approximated by a

cone of angle ↵. This idea, along with our illumination model, is illustrated in

Figure 3.3, where a point x on a Lambertian surface, is observed by camera c

while illuminated by two light sources: a directional light with intensity Ld, and

a background ambient illumination with constant intensity La. One can think of

these two components as roughly similar to a “sun” (directional) and a “sky,”

(ambient) light source, respectively. Surface geometry around the point blocks

all light outside the cone with angle ↵ from reaching x. We refer to this angle

↵(x) as the local visibility angle for point x. Further, across our input images, we

assume that the directional light uniformly samples the full hemisphere, so each

measure of the radiance of x captured by the camera corresponds to a different

(unknown) position for the light Ld. Given these assumptions, and sufficient

samples of images under different illumination conditions, (x) only depends

on the local visibility angle ↵(x), and we can derive the relationship between 

and ↵ as follows:

To begin, each image I is the sum of the contributions from both light

sources:

I = Id + Ia (3.6)

The directional component Id varies from image to image and depends on the

angle ✓d(t) between the light source direction ~!d(t) and the surface normal ~n at

a point, and whether the light is blocked by other geometry. This component is
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(a) (b)

Figure 3.3: (a) A point x on a Lambertian surface is observed by camera
c and illuminated by a distant, moving light source with in-
tensity Ld, and a constant ambient term of intensity La. (b) The
local geometry is approximated as a cyllindrical crevice, whose
oppening is parametrized by the angle ↵. If the light source an-
gle ✓d with the surface normal ~n is larger than ↵, light is blocked
and does not reach point x at the bottom of the crevice.

given by:

Id(t) = ⇢LdV↵(~n, ~!d(t))h~n, ~!d(t)i (3.7)

= ⇢LdV↵(✓(t)) cos ✓d(t) (3.8)

where V↵ is the light visibility term: V↵(✓) = 1 if ✓  ↵ (i.e., the light enters

the visibility cone), ands V↵(✓) = 0 otherwise. The ambient component Ia is

constant across the image stack for a given point, and is proportional to the

projected solid angle of the local visibility angle ↵. In particular, from Eqs. (3.1)

and (3.2) we can integrate the ambient illumination over the visible portion of

the hemisphere to derive a closed form relationship between Ia and ↵ at a given

point:

Ia = ⇢

Z
2⇡

'=0

Z ↵

✓=0

La cos(✓) sin(✓)d✓d' = ⇢La⇡ sin

2 ↵ (3.9)

Given this model for Id and Ia, to relate  to our physical parameter ↵, we

compute the expectations in Eq. (3.5) over images under varying light source
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positions:

E[I] = E[Id] + E[Ia] = E[Id] + Ia

E[I2

] = E[(Id + Ia)

2

] = E[I2

d] + 2IaE[Id] + I2

a

where we use the linearity of expectation, E[·], and the assumption that Ia does

not change over the image stack.

Finally, we can compute E[Id] and E[I2

d] in closed form by integrating over

the visible cone of angles at the point, assuming the point light is uniformly

distributed over the hemisphere for the image stack:

E[Id] =
1

2⇡

Z
2⇡

'=0

Z ↵

✓=0

Id sin ✓d✓d' =
1

2

⇢Ld sin

2

(↵) (3.10)

E[I2

d] =
1

2⇡

Z
2⇡

'=0

Z ↵

✓=0

I2

d sin ✓d✓d' = �1

3

⇢2L2

d

⇣
cos

3

(↵) � 1

⌘
(3.11)

Given these equations, we can derive  in terms of ↵ as:

(↵) =
E2

[I]

E[I2

]

=
(E[Id] + Ia)

2

E[I2

d] + 2IaE[Id] + I2

a

=
3

4

(2⇡La + Ld)

2

sin

4

(↵)

3⇡La(⇡La + Ld) sin

4

(↵) � L2

d cos

3

(↵) + L2

d

(3.12)

which can be further simplified by noting that  actually depends on the ratio

of light source intensities La/Ld = r and not their absolute values. After substi-

tuting La = rLd into Eq. (3.12) and simplifying we arrive at:

(↵) =
3

4

(2⇡r + 1)

2

sin

4

(↵)

1 + 3⇡r(⇡r + 1) sin

4

(↵) � cos

3

(↵)

(3.13)

To get a better intuition for , we consider what happens to  under two special

cases, Ld = 0 and La = 0, which correspond to r ! 1 and r = 0 respectively:

|Ld=0

= 1 |La=0

=
3

4

sin

4

(↵)

1 � cos

3

(↵)

In other words, if there is no directional illumination component (i.e., Ld = 0)

then (↵) is always 1, and ↵ cannot be recovered from pixel measurements alone.
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Figure 3.4: (↵) for different ratios of ambient to direct light r. Note that as
r ! 1 (Ld = 0) we have a constant curve ((↵) = 1) so informa-
tion about ↵ cannot be recovered.

This case corresponds to all images in our stack being identical, with the scene

lit only by an ambient term, so there is no variation in intensity for each point.

In this case there is no way of directly disambiguating between shading and

reflectance.

If there is no ambient component (i.e., La = 0) then  increases monotonically

in the valid range for ↵ and is independent of Ld (as long as Ld > 0). In Figure 3.4

we show (↵) for a few different values of r.

One interesting property of the curves in Figure 3.4 is that they have different

 values for ↵ = 90

�, ranging from 0.75 to 1 as r goes from 0 to 1. This means

that if we know that a given point in our scene is not occluded by any other

geometry (i.e., ↵ = 90

�), then we can recover r directly from the value of  for

that point from Eq. (3.13):

r()|↵=90

� =

p
3

p
 � 2 + 3 � 3

6⇡(1 � ) (3.14)

In summary, we have derived a relation between the statistic , and the am-

bient occlusion at a point, using a physical model of a crevice (with a cone of
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Input Images Image Statistics First Estimate Refined Estimate

Figure 3.5: A depiction of the full algorithm for computing the local vis-
ibility angle ↵ and the reflectance ⇢. Arrows show how infor-
mation flows in our pipeline. Starting with an image stack we
compute E[I] and E[I2

], which are used to compute . We then
proceed to obtain a first estimate of the local visibility angle
and reflectance, which are then refined using a non-linear opti-
mization.

visibility characterized by ↵) lit by a varying directional light, and a constant

ambient light over a stack of images. No assumptions of smoothness or geomet-

ric reconstruction are required to derive this parameter. As we show later, this

physical model, though simple and an approximation of real scenarios, works

surprisingly well in characterizing the visibility at points in a scene.

3.3 Algorithm

In this section we use our model to compute a per-pixel local visibility angle

↵(x) and albedo ⇢(x) given a stack of images of the same scene under varying

illumination. While our derivation has assumed grayscale images, our algo-

rithm makes use of additional constraints from the three different color chan-

nels; while we solve for a color albedo and a per-color-channel value for r, ↵ is

constant for a given point, and the r variables are assumed constant over the
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image stack and across pixels. Our full algorithm is described below, and illus-

trated in Figure 3.5.

We first compute  using Eq. (3.3) by assuming r
0

= 0 (i.e., ambient lighting

is negligible) to derive an initial ↵
0

using Eq. (3.13). We then refine ↵(x) (one

value per pixel) and r (one value per color channel, but constant across pixels)

by minimizing the objective function:

↵
1

, r
1

 min

↵,r

X
kobs � (↵0

, r
0

)k2 (3.15)

where the subscript obs stands for “observed”. In other words, we compute ↵

and r so as to best explain the observed statistic . In total we have nc ⇥ np equa-

tions, where nc is the number of color channels and np the number of pixels, and

np + nc variables, one ↵ per pixel and nc variables corresponding to the direct to

ambient illumination ratios r. Eq. (3.15) defines a non-linear least squares prob-

lem, which we minimize using the trust-region-reflective mode of MATLAB’s

lsqnonlin function.

Given our final estimates ↵
1

and r
1

, we compute estimates for the albedo ⇢(x)

at each point from Eqs. (3.10) and (3.9). We express albedo as a function of the

expected pixel value, the ratio r, the local visibility angle ↵, and the intensity Ld

of the direct component:

⇢ =
2E[I]

Ld sin

2

(↵)

(

1 + 2r⇡)
(3.16)

Note that there is an inherent ambiguity between light source intensity Ld and

the scene albedo, so we can only estimate albedo up to a scale factor. Therefore,

we assume that ld = 1 to obtain ⇢
1

, our final estimate of the albedo.
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3.4 Results

We begin by demonstrating results for our algorithm on various datasets (Sec-

tion 3.4.1) and exploring the different outputs the algorithm produces. In Sec-

tion 3.4.2 we use an object with known geometry to measure the error in our es-

timate of ambient occlusion. In Section 3.4.3 we evaluate our estimate of albedo

by comparing our algorithm with others using the MIT Intrinsic Images bench-

mark [32]. Finally, Section 3.5 provides a detailed analysis of various aspects of

our algorithm on a specially manufactured test object with crevices of varying

(and known) depth; this includes an analysis of convergence rate as the number

of images grows, and the impact of error factors such as interreflections.

3.4.1 Image Decomposition

Figure 3.6 shows image decomposition results on several datasets, including

image stacks used in prior work. For each dataset we show ambient occlusion,

reflectance ⇢, and the illumination.

Datasets. The first dataset, TENTACLE, contains 350 images of a 3D printed ob-

ject with known geometry. The light source position in TENTACLE was precisely

controlled by a mechanical gantry allowing us to sample uniformly random po-

sitions over the full hemisphere. The known geometry lets us compare against

ground truth ambient occlusion.

The other datasets are public datasets that violate the assumptions of our

model in various ways. FROG and SCHOLAR, from [87], contain 47–48 images

lit under varying directional lights that do not cover the full hemisphere. FACE
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Figure 3.7: 3D printed test objects TENTACLE and LIGHTWELL, together
with a quarter dollar coin (for scale). Black tape surrounding
LIGHTWELL was added to reduce subsurface scattering that re-
sulted from light shining on the side of the object.

from the Yale Face Database B+ [56], contains 64 images with light positions

over a range of angles. This scene violates our assumptions in that skin is not

strictly Lambertian, and exhibits significant subsurface scattering. Nevertheless

we see from the images for AO and L in Figure 3.6 that our technique can quali-

tatively separate geometry and reflectance quite well. In particular, one can see

from the area around the mouth that our AO image does not contain texture

due to facial hair. Finally, we show results for TURTLE and SQUIRREL, from the

MIT Intrinsic Image Dataset. Here the main challenge is that there are only 10

images of each object lit by a point light source.

Discussion. Figure 3.6 shows that the recovered AO seems to match our ex-

pectation of local visibility for these scenes. The recovered albedos are mostly

free of shading and the ambient occlusion map is mostly free of albedo (e.g., the

frog’s nose and the mouth in FACE). It is also interesting that the pupil in the

FACE dataset is black in the AO image and a light gray in the albedo.
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3.4.2 Ambient Occlusion

We validated our estimate of AO using two objects of known geometry. In ad-

dition to TENTACLE, we 3D printed another object with a more regular shape,

which we refer to as LIGHTWELL (Figure 3.7). This object is a solid block of

material with a series of cylindrical holes of varying but known depth [1]. We

printed this object in four colors: white (original material color), red, green, and

blue to evaluate the impact of different albedos on our estimates. The acqui-

sition setup for LIGHTWELL is the same as for TENTACLE (see Section 3.4.1).

It is worth mentioning that although 3D printing offers good control over the

geometry, material properties cannot be fully specified. The selected material

(sandstone) was the most diffuse of the available materials, but is still not per-

fectly diffuse, and exhibits a fair amount of subsurface scattering (see the red

ray gun of TENTACLE).

Figure 3.8 compares our AO result for TENTACLE to the ground truth (a more

detailed analysis for the LIGHTWELL object is presented in Section 3.5). We can

see qualitatively that our estimate of AO is very similar to ground truth. One

difference is that our estimate appears smoother; we believe that this is caused

in part by subsurface scattering, as the effect is most noticeable in the thin areas

of the gun. Another difference is that our estimate is in general darker, meaning

that our algorithm is predicting that locally the geometry is more occluded than

really is. We attribute this in part to the material roughness from the 3D printing

process. At a meso-scale level the structure can be thought of as being composed

of many small crevices, and a single pixel in our  image is an average of all these

contributions.
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Ground Truth AOEstimated AO

Figure 3.8: Left: the statistic  computed for TENTACLE. Right two images:
Comparison of estimated AO with ground truth (computer-
generated). The background clutter is masked.
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Figure 3.9: Comparison of LMSE error on the MIT intrinsic image
dataset [32] (shorter bars are better, indicating less error).
Compared algorithms are: Grayscale Retinex (GR-RET), Color
Retinex (COL-RET), Weiss (W), Weiss+Retinex (W+RET), ours
with only direct term (-D) and our second estimate containing
direct and ambient terms (-DA).

3.4.3 Albedo

We ran our algorithm on the MIT Intrinsic Images benchmark [32] to measure

the quality of our albedo estimates. This benchmark consists of 16 objects each

with 11 images, and uses the local mean squared error (LMSE) defined in [32]

to evaluate performance. Some methods evaluated by the benchmark (e.g.,

Retinex) operate on a single image, usually by imposing priors on the illumi-
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nation and albedo images or by using heuristics to classify gradients. However,

the best-performing reported prior method operating on multiple images com-

bines Retinex [53] with Weiss’s method [89] which, like our own, requires a stack

of images.

We obtain the shading image for each of the input images by simply divid-

ing the input image by our estimated albedo (see Eq. (3.4)). Figure 3.9 shows

our method’s performance compared to others included in the benchmark. In

Figure 3.10 we show a subset of results against the Weiss+Retinex multi-image

method. We note that our approach outperforms the competing methods. In-

terestingly, our initial estimate (i.e., r = 0) performs better than our refined one.

We believe that this is a result of the setup, which indeed contains no ambient il-

lumination (as assumed by the first estimate of our algorithm, but not by our re-

fined estimate, leading to overfitting), and the fact that most objects have a very

high albedo, resulting in a larger contribution due to interreflections, which are

not modeled by our algorithm. For completeness, in Table 3.1 we also compare

our method to recent single-image algorithms [6, 80, 82], and report results on

the different subsets of the benchmark dataset used in each prior evaluation.

Our method compares favorably to these methods (but also uses more than a

single image).

3.5 Analysis

In this section we present a more in-depth analysis of various aspects of our

algorithm on the specially created LIGHTWELL object (Fig. 3.7). This object has

a very regular shape, with cylindrical holes of various depths that match our
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Table 3.1: Local mean squared error (LMSE) for individual images of our
algorithm for the 1st (only direct light) and 2nd estimates (di-
rect and ambient term), together with results from other work
when available. In the last four columns of the last row we
show our average on the same subset of images as reported
by [6, 80, 82, 32, 10]. On all cases our algorithm outperforms
these prior methods. Note that the numbers marked with † are
the geometric mean as reported in [10], other averages are arith-
metic means.

Ours Ours
(1st estimate) (2nd estimate)

refl shading avg refl shading avg Weiss
+

Retinex
[32]

Barron
and

Malik
[6]

Shen
and
Yeo
[82]

Shen,
Yang,

Li, and
Jia [80]

Barron
and

Malik
[10]

apple 0.006 0.0060 0.006 0.006 0.006 0.006 0.016 0.010

box 0.004 0.0040 0.004 0.005 0.005 0.005 0.010 0.002 0.011

cup1 0.003 0.0020 0.002 0.003 0.002 0.002 0.005 0.004 0.005

cup2 0.003 0.0010 0.002 0.003 0.001 0.002 0.002 X 0.005 0.007 X
deer 0.027 0.0160 0.021 0.037 0.021 0.029 0.043 X 0.032 X

dinosaur 0.015 0.0120 0.014 0.016 0.007 0.012 0.015 0.021

frog1 0.020 0.0180 0.019 0.029 0.026 0.027 0.043 0.053 0.029

frog2 0.056 0.0120 0.034 0.053 0.017 0.035 0.053 X 0.043 0.024 X
panther 0.008 0.0060 0.007 0.024 0.014 0.019 0.005 0.008 0.005

paper1 0.004 0.0040 0.004 0.010 0.008 0.009 0.003 0.001 0.013

paper2 0.007 0.0040 0.006 0.009 0.006 0.008 0.005 X 0.003 0.016 X
pear 0.006 0.0050 0.005 0.006 0.004 0.005 0.006 X 0.010 X

phone 0.011 0.0080 0.010 0.035 0.013 0.024 0.008 0.011

potato 0.011 0.0080 0.009 0.006 0.006 0.006 0.010 X 0.014 X
raccoon 0.011 0.0090 0.010 0.015 0.011 0.013 0.005 X 0.005 0.008 X
squirrel 0.019 0.0240 0.022 0.020 0.025 0.023 0.027 0.037

sun 0.004 0.0050 0.005 0.007 0.005 0.006 0.003 X 0.002 0.007 X
teabag1 0.007 0.0160 0.012 0.012 0.033 0.023 0.014 X 0.027 0.063 X
teabag2 0.003 0.0110 0.007 0.012 0.020 0.016 0.006 0.015 0.031

turtle 0.017 0.0200 0.019 0.020 0.026 0.023 0.015 X 0.017 0.025 X
average 0.012 0.0095 0.011 0.016 0.013 0.015 0.015 0.019 0.015 0.019 0.021

†

our avg on same subset 0.011 0.012 0.010 0.011 0.009

†

1
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physical model, allowing us to evaluate in more detail how different aspects of

our model impact the performance of our algorithm.

3.5.1 Impact of Albedo on Ambient Occlusion Estimates

Because the 3D printed LIGHTWELL object consists of four different albedos,

we can obtain a quantitative error measure of the local visibility angle ↵ for

different albedos. We report this error in Figure 3.11, computed by measuring

the average error for ↵ at the center of the crevice for LIGHTWELL compared to

ground truth, for varying ↵ angles corresponding to the crevice depths for the

printed object. This figure shows four curves, one for each color of LIGHTWELL.

In the plot three trends are evident. First, the error is larger for brighter albedos

(red and white, in this case). We suspect that this is due to the increase in light

interreflections for higher albedos. Since our model does not account for this

effect, a patch at the bottom of a deeper hole looks brighter than our model

would predict.

Second, we note that error increases for the more shallow crevices. We sus-

pect this is due to roughness in the printed object as discussed in Section 3.4.2.

A third trend is that deeper holes have the largest errors. This can be ex-

plained by the fact that  is the quotient of two expectations, and that for re-

gions that receive light less frequently, we expect these averages to stabilize

more slowly, a property we examine next.
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Figure 3.11: (a) Error in the estimated local visibility angle ↵ vs. the true lo-
cal visibility angle for the LIGHTWELL object printed in differ-
ent colors (shown in the left). (b) Average Root Mean Square
Error (RMSE) for our estimate of ambient occlusion vs. num-
ber of images used in the estimate. Each curve represents a
different crevice depth and a corresponding local visibility an-
gle ↵.

3.5.2 Convergence Rate

We now consider the impact of the number of images and the visibility angle in

estimating ambient occlusion. Figure 3.11 shows the root mean squared error

(RMSE) of our ambient occlusion estimate as a function of the number of input

images for different crevice depths (and hence local visibility angles). For each

hole depth, we estimate AO at the center of the hole using rendered images of

the blue LIGHTWELL (generated using a physically based renderer [38]). We

compare our estimate to the ground truth AO in that hole using MSE, and re-

peat this process 100 times (sampling different light source positions at random

each time) to compute an average RMSE. We observe that rate of convergence is

strongly dependent on the depth of the crevice, but our method performs well

even with a relatively small number of images on scenes where ↵ � 40

�.
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3.5.3 Impact of Interreflections

To understand how global illumination affects our method, we conducted a sim-

ple experiment with computer-generated images of LIGHTWELL. The object,

which was rendered with a perfect diffuse material and a reflectance of 0.5, was

captured with an orthographic camera that aims directly towards the crevices,

while illuminated with an ideal directional light source plus an ambient term

(with r = 0.25). We used a physically based renderer [38] to produce 1000 im-

ages sampling the light direction uniformly at random over the hemisphere.

Two sets of images were rendered: one with only the direct (single-bounce)

component of light (that is, with interreflections and other indirect effects dis-

abled in the rendering) and the other with both direct and indirect illumination

components.

The error in the estimate of AO at the center of each crevice is shown in Fig-

ure 3.12. For the ideal case (only direct component of illumination) the ambient

occlusion is in general very close to ground truth, with a max absolute error of

0.0172 (where the max possible error would be 1.0). When indirect illumination

is present the local visibility angle is overestimated for the holes in the center of

the range, reaching an error of 0.0753 for ↵ = 30

�. This happens because at the

middle of the ↵ range the contribution from the indirect light is closest to that of

direct light, which means that the discrepancy between our model and what is

observed is at its maximum. At the extremities of the range two different phe-

nomena decrease the effect of global illumination. For the shallower crevices

most light paths that reach the bottom of the crevice are direct ones, decreas-

ing the relative effect of indirect illumination. For deeper crevices, on the other

hand, most paths that reach the bottom of the crevice do go through multiple
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bounces of light. Nevertheless, at each bounce the light is attenuated by the

cosine factor (due to the angle of incidence and the surface normal) multiplied

by the albedo, so by the time it reaches the bottom of the crevice it is attenuated

so much that the total contribution from all indirect paths is still much smaller

than that of the direct ones.

Albedo also plays a role in the error when global illumination is present. In

this experiment we used ⇢ = 0.5. For larger values of albedo the mode of the

error will shift towards deeper crevices, because the light is attenuated less after

each bounce.

3.5.4 Color in 

When introducing  in Section 3.2 we focused on monochromatic images; we

now discuss a property of the statistic  that arises when dealing with color

images. In this case  is computed independently for each channel resulting in

one r per channel: rR, rG, and rB for the red, green, and blue color channels. In

Eq. (3.5) we showed that the statistic  is independent of the albedo ⇢, yet a red

tint appears on the ray gun of TENTACLE (Fig. 3.8 left). What does this color

reveal about lighting? Because the direct component of light in our setup was

white, color in  is due to an ambient term.

Let’s focus on a single point in the scene. Geometry at a point is the same

across color channels so we can restrict our analysis to a single angle ↵ without

loss of generality. For instance, in Fig. 3.4 let’s focus on ↵ = 90

�. If the ambient

term is blue, with rR = 0, rG = 0, and rB = 0.1, what we will see in  is that

R = G < B, so the color in the  image reflects the color of the ambient term.
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Figure 3.12: Impact of interreflections in our estimates. Top: two render-
ings of LIGHTWELL, only the direct component of light and
then with interreflections included (notice that shadows be-
come brighter due to reflected light). Middle plot shows a
cut through the rendered LIGHTWELL ambient occlusion esti-
mate versus ground truth. Interreflections cause our method
to over estimate ambient occlusion. Bottom bar plot shows
the absolute error in the estimated ambient occlusion at the
center of the crevices.

This allows us to estimate the hue of the ambient term directly from . In the

acquisition setup for Fig. 3.8 there was no ambient light; only a direct source

was present. We believe that the red tint in the  image on the ray gun is due to

interreflections and subsurface scattering. Even thought this source of light is

not constant, it varies much slower that the direct term so it can be thought of

as a “local ambient” term.
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CHAPTER 4

REASONING ABOUT PHOTO COLLECTIONS USING MODELS OF

OUTDOOR ILLUMINATION

Natural illumination plays a critical role in the appearance of outdoor scenes,

and in the variation of scene appearance over time; for example, see Figure 4.1

for images from a photo collection of the Statue of Liberty illustrating appear-

ance changes under different illumination conditions. Many vision tasks, such

as photometric stereo and instrinsic image decomposition, require reasoning

about this illumination and how it interacts with the scene.

Although outdoor illumination is highly variable, it is far from arbitrary; in

fact, it is dominated by a few elements—sun, sky, and weather—which in turn

depend fundamentally on scene location, time, and atmospheric conditions. In-

deed, the computer graphics community has developed increasingly sophisti-

cated models of outdoor illumination that, given parameters such as geoloca-

tion and time, compute a predicted outdoor environment map. Surprisingly,

such illumination models are not yet widely used in computer vision despite

illumination’s importance in the appearance of outdoor scenes.

The work in this chapter explores the connection between community photo

collections of an outdoor scene at a given location on Earth, and the distribution

of lighting conditions for that scene predicted by these illumination models.

The usage of these predictive models to reason about scenes from unstructured

photos is still a major challenge, in part because timestamps are often miss-

ing or erroneous—community photos represent a “soup” of different observa-

tions of the scene under varying but unknown illumination. Our insight is to

match statistics of outdoor illumination with pixel statistics derived from photo
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Figure 4.1: The Statue of Liberty under a variety of natural illumination
conditions

collection. We build on the photometric ambient occlusion work presented in

Chapter 3, which explored the connection between pixel statistics and simple il-

lumination distributions in relation to the local visibility (or ambient occlusion)

of each scene point. This chapter generalizes the model to handle the more real-

istic scenario of varying illumination in outdoor scenes, a challenging setup for

the method presented in Chapter 3.

This chapter includes an analysis of how the geographic position, surface

normal, and local geometry of a point interact with illumination models, and

how multiple measurements of a point’s appearance over time can be used to

estimate albedo and local visibility for points in a scene. Since our photometric

approach relies on varying illumination, we analyze the conditions under which

a lack of sufficient variation can arise, and use this analysis to detect areas of

insufficient variation in illumination in a given scene (e.g., surface points that

are almost always pointed away from the sun). Hence, in addition to estimating

scene albedo, we also estimate areas where such estimates are unreliable.

Our albedo estimation has further practical value in estimating sun positions

in uncalibrated Internet photos with missing or erroneous timestamps (times-
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tamps and sun position being two sides of the same coin). Such estimated sun

positions are useful in the analysis of outdoor illumination in photos, such as

in photometric stereo, shadow detection, or grouping photos by light similarity.

Timestamps are useful in correcting clocks on consumer cameras, and discover-

ing patterns of photography (e.g., which time of day is most popular for taking

photos of a given landmark).

4.1 Modeling Illumination for Outdoor Points

As discussed above, outdoor illumination exhibits great variability, but is

nonetheless highly structured. The illumination reaching a point in an outdoor

scene is influenced by a few key factors. The primary source of illumination

during the day is the sun, whose position in the sky is a function of geographic

location and the time and date of an observation. The location and date con-

strain the sun position to a well-defined path, while the time of day determines

where the sun lies on that path. We denote location using latitude (�) and lon-

gitude (�), and time and date as t. The intensity and color of the sun, as well as

the light from the sky caused by atmospheric scattering, vary as a function of

both sun position and weather.

Weather adds immense complexity to outdoor illumination; the degree of

variation increases greatly with the variety of clouds, fog, haze, and other at-

mospheric effects. State-of-the-art outdoor illumination models largely ignore

weather and assume clear skies; since we are taking advantage of these models,

we leave the incorporation of more varied weather conditions as future work.

Furthermore, clear, sunny skies provide the most informative illumination for

photometric methods such as ours that rely on varying and strongly directional
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Figure 4.2: Influence of geolocation, date and time, orientation, and local
visibility on the illumination at a point. On the left, an object
located near the equator sees a band of sun paths (shaded in
yellow) that is centered directly overhead. In this location, the
point p

1

at the bottom of a crevice can sometimes see the sun,
whereas p

2

cannot. On the right, we see a location farther from
the equator, with a different sun path, where the reverse is true.

illumination. We discuss later how to use weather records to discard cloudy

images.

Having discussed the factors affecting the illumination coming from the sun

and sky, we now consider scene-related properties that affect how much of the

light hits a given point in a scene. The surface orientation at a point affects how

much and which portion of the sky’s illumination reaches it. For instance, if the

normal is facing away from the sun’s path it will never receive direct sunlight

(see Figure 4.2). Further, a point in an open field pointing upwards towards the

sky will see the entire sky dome, while a point facing downward will see less of

the sky dome and more of the ground.

Finally, the illumination arriving at a point can be affected by its local

visibility—the extent to which surrounding geometry occludes its view of the

sky dome. As a simple way to describe the potentially complex local geometry

around a point, we adopt the crevice model from Chapter 3. By modeling local

geometry as a single cylindrical hole, we are able to describe the extent of occlu-
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sion using a single parameter, ↵, representing the angle from the point’s surface

normal to the opening of the crevice (see Figure 3.3).

In summary, our model considers the illumination of an outdoor scene point

on a clear day as a function L(�, �, t,↵,~n) where (�, �) are the geographic lati-

tude and longitude, t is the time and date, ~n is the normal vector, and ↵ is the

local visibility angle given by our crevice model. To make predictions based

on our model, we use the physically-based sun/sky model proposed by Hosek

and Wilkie [36], which produces a sunny environment map given geographic

location and time of day (�, �, t). We can then choose any surface normal and

visibility angle (~n,↵), and integrate the irradiance over the visible portion of the

environment map to acquire a value for L(�, �, t,↵,~n).

4.2 Albedo and Sun Position in Photo Collections

In this section, we describe how to use the model described above to estimate

local visibility (ambient occlusion) and albedo of scene points; we then describe

a method for using the albedo to estimate the illumination and timestamp of

individual photos.

Our method takes as input a set of photos of an outdoor scene from differ-

ent viewpoints and varying, unknown times.1 We first create a sparse 3D re-

construction using SfM and multi-view stereo, and then georegister the recon-

structed scene. We project each reconstructed point into the images in which

it appears to retrieve a set of observed color values for that point. The geo-
1Later, we assume we know the date for each photo, but not the time of day. This is consistent

with our experience of errors in image timestamps.
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registered model gives us the location (�, �) and surface normal (~n) for each

point in the scene.

4.2.1 Estimating Albedo for Sunlit Outdoor Scenes

We assume that all surfaces are Lambertian and that a point’s albedo does not

change over time. Our method works on color images by treating each channel

independently, so for simplicity we refer only to intensity. We use a simplified

image formation model where a single observation of a point x is given by:

Ix = ⇢xL(�x, �x, t,↵x,~nx) (4.1)

where Ix is the observed intensity for scene point x in image I, and ⇢x denotes

its albedo. If we could find accurate values for �x, �x, t, ↵x, and ~nx, we could

recover the albedo ⇢x by dividing the observed intensity by the predicted illu-

mination. The 3D reconstruction provides values for �x, �x, and ~nx, but local

visibility ↵x remains unknown since we are dealing with sparse point clouds.

Furthermore, since the images come from Internet photo collections we gen-

erally have unknown or uncertain time t. For this reason, we cannot directly

predict illumination for a single image in practice.

However, we have many observations of x across different images, which

can provide insight about the distribution of intensity values observed at that

point. Likewise, our lighting model can be used to predict the expected distri-

bution of illumination conditions over the course of a year. Building upon the

method proposed in Chapter 3, we match predicted statistics to observed statis-

tics in order to estimate the local visibility and albedo of each point in the scene.

Given many images that view x distributed over the year, we can estimate the
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expected intensity of x, E[Ix], by averaging the observed samples. If ⇢ is constant

over time, then Eq. (4.1) implies:

E[Ix] = E[⇢xL(�x, �x, t,↵x,~nx)] = ⇢xE[L(�x, �x, t,↵x,~nx)] (4.2)

The expectation above is computed over all light source positions, which in the

case of outdoor illumination, equates to time. Therefore E[Ix] is independent of

time.

Suppose that we know x’s local visibility angle, say ↵x = 90

�. In this case,

we have all the information we need to compute E[L] using the sun/sky model,

and we can compute ⇢x as:

⇢x =
E[Ix]

E[L(�x, �x, t, 90

�,~nx)]
(4.3)

where the expectation of L is computed over a set of times t sampled throughout

a full year.

4.2.2 Estimating Local Visibility Angle

We can now compute albedo for a point if its local visibility angle is known, but

in practice ↵x is unknown and must be estimated as well. In Chapter 3 we pro-

posed a technique to estimate ↵ directly from image observations by computing

a statistic over image observations Ix that is independent of ⇢:

x =
E[Ix]

2

E[I2

x]

=
E[Lx]

2

E[L2

x]
(4.4)

By assuming point-source illumination that moves uniformly over the hemi-

sphere, we derived an analytical relationship between  and ↵, which allowed

us to compute ↵ based on the observed value of .
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Figure 4.3: Pipeline for albedo estimation. Given a geographic location (a),
we tabulate L(�, �, t,↵,~n) over all parameter values (b), where
we show one sphere per combination of ↵ and time of day, with
each point in the sphere representing a different normal direc-
tion ~n. We then compute E[L] and  for each ↵ and ~n (c), produc-
ing the curves for (↵) in (d) and E[L](↵) in (e) for each normal.
For an observed value of , we look up ↵ and then predicted
average illumination E[L] (f), allowing us to estimate albedo.
Green regions in (c) correspond to combinations of ~n and ↵ for
which we cannot reliably recover albedo.

Under our more sophisticated illumination model, a closed-form relation-

ship is harder to find;  now depends on location, ↵, and ~n. However, the model

we introduce in this chapter allows us to predict, for a given scene location, the

expected value of  over all normals and visibility angles. In particular, for a

fixed location (�, �), we can compute the relationship between , ↵ and ~n as:

(↵,~n) =
E[L(�, �, t,↵,~n)]

2

E[L(�, �, t,↵,~n)

2

]

(4.5)

where expectations are computed over light source position/time.
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For a given point x with normal ~nx, we compute its observed  value x us-

ing Eq. (4.4). The visibility angle ↵x is chosen to be the value of ↵ such that the

predicted (↵x,~nx) most closely matches the observed x. Figure 4.3 (c) shows im-

ages of  and expected illumination E[L] for several ↵ angles; (d) and (e) show

examples of  and predicted illumination curves for three different normals (col-

ored points marked in (c)). For a monotonically increasing  curve such as the

blue curve in Figure 4.3(d), we can simply take the observed value x and look

up the corresponding value of ↵ to assign an estimated local visibility.

Sun Visibility and 

Let’s analyze the (↵) curves for normals that do not directly face the sun path,

such as the orange and green curves in Figure 4.3(d). Note that they do not

increase monotonically over all values of ↵ as is the case with the blue curve

(which corresponds to a normal that does face the sun path). In particular, we

see the curves go very quickly from 0 to approx. 1, and then go down again and

begin a slow monotonic increase after a certain ↵. The case (↵) = 0 occurs for

crevices that never receive direct sun light, so E[L] ⇡ 0. While (↵) = 1 occurs

when Var[L] ⇡ 0 and E[L] > 0, i.e., crevices that receive very little direct sun

light2.

Because these curves are not invertible we cannot obtain a single ↵ given .

We deal with this issue by identifying the crevice angle ↵min bellow which a point

at the bottom of the cylindrical crevice either receives no direct sun light or so

little reaches it that Var[L] ⇡ 0 (in practice we set ↵min based on the fraction of the

time that the sun directly illuminates the bottom of the crevice). When finding
2A brief discussion of these two cases is presented in Chapter 3
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Figure 4.4: How ↵min varies with geographic latitude and normal. Each
point on the sphere represents a surface normal direction, and
its color encodes the ↵ angle of a crevice that sees the sun 10%
of the time during daylight. Normals pointing near the sun
path (as determined by latitude) have lower ↵min values and
are more informative because  is meaningful over a greater
range of ↵. The rightmost column shows  curves and ↵min for
the three different surface normals.

↵ given  we discard the portion of the (↵) curve corresponding to ↵ < ↵min,

leaving only the slowly increasing monotonic regions of the curve (which are

invertible), this implicitly assumes that crevices deep enough that their opening

is smaller than ↵min do not occur in the scene. For certain normal directions,

ones facing further away from the sun path, ↵min is large enough that it is no

longer reasonable to assume that deep crevices with ↵ < ↵min do not occur in the

scene. We deal with this by discarding normals for which ↵min > ↵0

, where ↵
0

determines the maximum depth of a crevice in the scene. It is important to note

that this limitation, imposed by lack of variability in illumination, will affect

any photometric method, because the observations lack sufficient information

to disambiguate between albedo and illumination.
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4.2.3 Estimating Time of Day

We now consider the task of determining the time of day a given image was cap-

tured. This is a problem of practical importance for Internet photo collections

as it is very common for images to have the incorrect time stored as metadata

(e.g., caused by camera owners that travel to different timezones but forget to

set the camera time). Recovering this information can help reveal patterns of

human activity around monuments, and since it is linked to the sun position it

can be used to estimate material and geometry of the scene. We do assume that

the associated date is roughly correct. This constrains the problem and is more

forgiving of errors as sun position varies much less with date than with time of

day.

Our strategy is to use the computed albedo ⇢x to estimate the lighting for

a set of visible points in the scene, we then compare such a lighting estimate

for a single image to a set of predicted illumination conditions over a range

of times and choose the timestamp where the lighting matches most closely.

This is to some extent similar to the mechanism used by sundials to determine

time. One fundamental difference is that sundials rely on the position of cast

shadows, while our method relies on the shading caused by attached shadows

to determine the position of the sun in the sky.

Under our simple image formation model we can compute lighting by sim-

ply dividing the observed intensity by the albedo:

Lobs
x =

Ix

⇢x + ✏
(4.6)

where ✏ is a small constant to achieve robustness to noise. We collect the es-

timated illumination for all visible points in an image I into a vector ~Lobs
I , and
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generate a corresponding predicted illumination vector ~Lpred
I (t) for each hypoth-

esized timestamp t using our model.

We found it important to perform a normalization before comparing illumi-

nation vectors to increase contrast and overcome noise in our lighting estimates.

The most effective strategy was to normalize each vector so that the bottom and

top 10 percentiles span the range [0, 1]. We compute the cost c(I, t) for time t as

a robustified L2 distance: we sort the element-wise differences ~Lobs
I � ~L

pred
I (t) and

discard the top and bottom 10%. Our final cost function is:

c(I, t) = kR(

~Lobs
I � ~Lpred

I (t))k
2

(4.7)

where R(·) is the robustification operator above. The need for robustness in this

distance measure is mainly due to phenomena not captured by our model, such

as cast shadows (where Lobs is darker than Lpred) and specular highlights (where

Lobs is brighter than Lpred). Finally, the timestamp for an image is chosen by

finding the time t that minimizes the cost c(I, t).

4.3 Implementation details

We start with a large collection of Internet photos, and use SfM to obtain camera

extrinsics and intrinsics along with a sparse set of 3D points [4], the model then

is manually georegistered. We then use PMVS to compute a larger point set

with surface normals [27] and recompute the visibility list for each camera using

a z-splatting algorithm (to increase the number of observations per point). We

approximate the response of all cameras as a gamma curve with � = 2.2, as done

in prior work [33] (in Chapter 5 we use more sophisticated models for the tone

mapping curve). We also discard pixels that are too bright or too dark.
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Because current sun-sky illumination models are limited to clear skies, we

restrict the input to our albedo estimation phase to images taken on days

with limited cloud cover. For STATUE, we use weather records provided by

NOAA [65] to select days when cloud cover was no greater than 25%. CAS-

TLE had very few cloudy images, so weather-based pruning was unnecessary.

When tabulating the values of L we set the ground albedo in [36] to 0.15.

Until now we have assumed a uniform distribution of timestamps among

our input images. However, any known distribution can be modeled by weight-

ing the predicted illumination values before computing statistics. For TENTA-

CLE, we used only the L values from the times when images were captured.

To better match the distribution found in STATUE and CASTLE, we weight all

predicted illumination values from each date by the number of input images

captured on that date.

4.4 Experiments and Applications

Evaluating our method is a challenging task, as ground truth albedo and times-

tamps are difficult to acquire for photo collections. To evaluate our method in

a more controlled setting we created the TENTACLE dataset with 100 images of

a 3D-printed object taken outdoors over the course of a sunny day. We also

created an analogous synthetic dataset, TENTACLER, by rendering the same ob-

ject using a physically-based renderer under the sun-sky model [36] at times

sampled throughout a day.

We also gathered two photo collection datasets from Flickr, STATUE and

CASTLE. STATUE contains 78K images of the Statue of Liberty in New York,
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USA. CASTLE contains 33K images of a theme park attraction in Florida, USA.

Ground truth timestamps for 347 CASTLE images were manually entered by

reading the time from a clock in the scene. For STATUE we evaluate our times-

tamping method on an additional set of 265 images from the AMOS webcam

dataset [37] with known ground truth timestamps (STATUEA). STATUEA is dis-

tinct from STATUE in that we did not use it for albedo estimation.

4.4.1 Albedo

A comparison of the albedo obtained with the technique proposed in Chap-

ter 3 (⇢-unif) against the technique proposed in this chapter (⇢-sunsky) for the

TENTACLE dataset is shown in Fig. 4.5. ⇢-sunsky recovers a significantly flat-

ter albedo and successfully identifies and discards points which cannot be re-

covered accurately. We measure the Local Mean Squared Error (LSME) [32] of

⇢-sunsky and ⇢-unif and verify that ⇢-sunsky has a lower error of 0.0303 versus

0.0586.3 We also computed LMSE on the result of ⇢-unif with the mask gener-

ated by ⇢-sunsky (which discards normals for which ↵min > ↵0

), showing that

a significant improvement can be made, with the error dropping to 0.0447, by

identifying for which points the albedo cannot be estimated accurately using

photometric methods, as discussed in our analysis in Section 4.2. The method

we introduce in this chapter, ⇢-sunsky, which performs best, combines this anal-

ysis with our more realistic lighting model.
3The TENTACLE “ground truth” is the albedo sent to the 3D printer, but colors are not repro-

duced perfectly in 3D printing. Therefore, we use the LMSE on grayscale images to evaluate the
piecewise constant albedo without penalizing the color mismatch.
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0.0447 0.03030.0586LMSE:

⇢-unif ⇢-unif +our mask ⇢-sunsky

Figure 4.5: Results of ⇢-sunsky compared to ⇢-unif, with and without the
mask generated using ⇢-sunsky (which discards normals for
which ↵min > ↵0

). We also list the Local Mean Squared Error for
each result.

4.4.2 Timestamps

Quantitative results on the timestamping task are shown in Table 4.1. To illus-

trate the impact of the albedo in the timestamping task we run our timestamp-

ing method with the two different albedos ⇢-sunsky and ⇢-unif, shown in the

table as t-sun and t-unif. As baselines we also compare to raw Exif timestamps

(CASTLE only) and “chance” error (Rand), the average expected error given by

guessing a random time between sunrise and sunset. Note that because Rand is

restricted to daylight hours its average error is actually lower than that of Exif

timestamps, which are totally unconstrained and reflect the data that came from

the images.

In the table we see that ⇢-sunsky performs best on all datasets, with errors

increasing as the data becomes less structured, starting with a median error

of 9.8 minutes for the computer generated dataset TENTACLER all the way to

57.3 minutes median error for the Internet photo collection CASTLE. The most
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Dataset (# images) TENTACLER (200) TENTACLE (100) STATUEA (265) CASTLE (347)
Avg Med Avg Med Avg Med Avg Med

Rand 248.6 237.0 218.2 208.6 230.8 216.3 231.6 219.4
EXIF – – – – – – 287.5 211.0
LEN – – – – 249.3 223.0 195.0 150.0
t-unif 27.6 29.3 58.0 61.8 133.3 80.5 114.7 74.4
t-sun 9.9 9.8 53.1 46.9 136.9 49.3 87.0 57.3

Table 4.1: Average and median timestamp error (in minutes) for various
methods on our datasets. Rand represents chance over daylight
hours, while LEN is the method of Lalonde et al. [50]. Sun posi-
tion error in degrees can be calculated approximately by divid-
ing minutes by 4.

significant increase in error occurs when going from TENTACLE to TENTACLER,

when median error jumps from 9.8 to 46.9 minutes, this could indicate that there

are still significant differences between the true natural illumination and that

provided by Hosek and Wilkie [36] given that both datasets are very similar

and ground truth geometry is known in both cases.

The difference between t-sun and t-unif is smaller on Internet datasets,

where noise in the input data affect t-sun more. For example, t-sun relies on

the surface normal estimates from multiview stereo, which we have observed

to contain significant noise. Another source of error on Internet datasets is tone

mapping, which we have modeled using a simple gamma curve. Future im-

provements in radiometric calibration and better normals will improve results

for t-sun. Finally, a common failure case occurs when our algorithm mistakenly

assigns a cloudy image to either sunset or sunrise, when shadows are also very

diffuse.

We significantly outperform the method of Lalonde et al. [50], whose lowest

median error of 150 minuntes is achived on CASTLE against 57.3 minutes for t-

sun. This demonstrates the value of using many images to reason about a scene.
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It is worth noting though that the two methods are orthogonal in the informa-

tion they use to estimate sun position. Our method requires sparse geometry

and large photo collections, which enable it to make precise measurements of

the shading in the scene. Lalonde et al. on the other hand operate on a single

image and use cues such as the color of the sky and the position of shadows cast

by pedestrians. Therefore, one could potentially combine the two methods to

obtain even better results.

Figure 4.6 shows sample results, including an input photo along with the

scoring curve used to determine the timestamp. For an alternative visualization

of our timestamping results see Fig. 4.7, where we show the average of all im-

ages for a given time (after registration using a homography) as estimated using

either raw Exif tags or our method.
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t-sunsky (ours) t-unif Lalonde et al. [48]

Figure 4.6: Examples of timestamping results. The plot on the right shows
timestamp error metrics over the full day for the image on the
left. Colored triangles show the global minimum (estimated
timestamp) for each method, and the red triangle indicates the
ground truth timestamp.
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9AM 2PM

9AM 2PM

Exif Timestamps Reference

9AM 2PM

t-sunsky (ours)

Figure 4.7: Alternative visualization of timestamping results. We select a
set of images taken in July with a given timestamp, reproject
them to a single viewpoint using a homography, and average
them. We show that Exif timestamps (left) do not produce co-
herent lighting when averaged due to the timestamp errors.
Using our timestamps (middle), the average images match the
lighting in the corresponding reference images (right), taken
from the AMOS dataset where timestamps are known. Note
highlighted cast shadow at 2PM and the clear change from
9AM to 2PM.
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CHAPTER 5

LIGHT DESCRIPTORS IN PHOTO COLLECTIONS

In this chapter we move our study of light further, starting with an estimate

of the scene illumination in an image from a photo collection, using the methods

introduced in Chapters 3 and 4, we then proceed to distill this information into

a compact representation, effectively creating a light descriptor. This character-

ization of a scene, which is separate from other properties such as scene geome-

try or reflectance, enables us to reason about changes in lighting that go beyond

the timestamping application we described in Chapter 4. We demonstrate that

this descriptor enables indexing and searching for images by illumination, clas-

sification of images based on weather conditions, and virtual object insertion.

It is also conceivable that this representation could drive other powerful com-

puter graphics applications for Internet photos, such as image relighting, and

plausible object cut-and-paste between images.

A key question is one of representation: what kinds of descriptors can we

compute from the available data, and which representations are best for vari-

ous applications? We evaluate a number of representations, including average

irradiance maps, spherical harmonics, and a representation that captures spa-

tial variation in illumination over a scene. Further, we use our representation of

irradiance to compute more accurate environment maps by leveraging predic-

tive sun-sky models. We show that our new light descriptor representations are

simple to derive from Internet photo collections of scenes.
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5.1 Light Descriptors

This chapter focuses on computing light descriptors for images, where a light

descriptor is a compact representation that summarizes how light is distributed

in the underlying scene as captured in the photo. In particular, given a col-

lection of images of a scene, we seek to compute a light descriptor for each

image in the collection as a vector. Various types of descriptors have been

used to characterize overall image appearance, such as color histograms [75]

and GIST descriptors [66]. However, we seek to capture the essence of illu-

mination, factoring out scene appearance, and modeling important effects such

as directionality and color of light. There are many potential applications for

such descriptors, including lighting-based search for other images with simi-

lar illumination (within the same scene, or across scenes), inferring the location

of a dominant light source (the sun) in outdoor images, weather classification

(sunny vs. cloudy), among other tasks.

We assume that for each image we have estimates of the irradiance and sur-

face normal for each pixel in a subset of image pixels (Section 5.2 describes how

we derive this information). Note that in this chapter we use “points” and “pix-

els” more or less interchangeably, where it is understood that a 3D point in a

scene maps to a 2D pixel in an image via perspective projection. We assume

primarily Lambertian scenes, although our methods are largely robust to sparse

sets of pixels that violate this assumption (e.g., occasional specular highlights).
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5.1.1 Concept

At a high level, a descriptor should be the most compact representation of a

signal that is necessary to perform a certain task. It should be invariant to fea-

tures of the original signal that are not relevant for its intended application. For

instance, local image features like SIFT [59] are designed to capture the appear-

ance around an image point, while remaining invariant to scale, rotation, and

(to a lesser extent) projective distortion and changes in lighting. In our appli-

cation, we are interested in matching the lighting conditions of a scene, so the

invariants are very different. In particular, we would like to design a descriptor

with the following properties:

• Invariance to geometry and material. We want to be able to match illu-

mination between images, even if the scenes or materials pictured in the

images are very different.

• Captures important effects. We want our descriptor to capture effects

such as the direction and color of the illumination.

• Simple to compute. Our descriptor should be simple and robust to com-

pute from an image collection.

• Widely applicable. The descriptor should be general enough to enable a

variety of tasks that depend on illumination.

5.1.2 Representation

How should we represent the illumination evident in an image? Here, it is in-

structive to consider representations for illumination used in computer graph-
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ics, such as environment maps, light fields, and surface light fields [90]. As a

starting point, one way to define a lighting descriptor is as an estimate of the

environment map from an image, i.e., a map of radiance indexed by surface ori-

entation. If we had a chrome sphere (i.e., a light probe) in our photos, then com-

puting such an environment map would be straightforward. In the absence of a

light probe, however, for most scenes, computing a full-resolution environment

map from a photo is an extremely ill-posed problem, because high-frequencies

in the environment are lost when reflected from the diffuse surfaces that char-

acterize much of the outdoor world. Instead, we seek to compute an estimate of

the irradiance environment map (or diffuse environment map) [72].

Note that radiance and irradiance maps are ideal for capturing information

about distant light sources, such as the illumination provided by the sky. In

order to capture local illumination other representations such as light fields are

necessary. These representations though require significantly more information

and are much harder to acquire. Therefore, in this chapter we focus on irradi-

ance maps.

Average Irradiance Map (A-IM)

The irradiance environment map records the irradiance from distant illumina-

tion at a scene point, indexed by surface normal. For an image I, and for each

point p 2 P(I), where P denotes the set of scene points and P(I) the set of scene

points visible in I, given our estimates of irradiance L(p) and surface normal

N(p), and assuming all illumination is distant (and there are no local lighting ef-

fects, such as cast shadows or interreflections), we have a direct measurement of

the irradiance at N(p). Thus, the descriptor can be computed as follows: First,
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discretize the space of surface normals into bins. Then for each normal bin b,

find the subset of points p whose normal N(p) lies in b, and compute the mean

irradiance over that subset of points. This representation has an immediate in-

terpretation as an irradiance environment map, but one with missing data. First,

due to scene geometry some normal directions might simply not be present in

the scene. Second, we can only observe normals that point toward the camera,

so even if all normal directions are represented in the scene we can capture at

most a hemisphere of directions. We call this descriptor the Average Irradiance

Map (A-IM). Examples of this descriptor are shown in Figure 5.1.

Spherical Harmonic Compression (SHM). In addition to being easy to com-

pute, irradiance maps are also very compact. In fact, Ramamoorthi and Han-

rahan showed that for a Lambertian scene, any irradiance map due to distant

lighting can be accurately represented using a small number of coefficients of

a Spherical Harmonic (SH) basis [72]. This serves as a natural means for com-

pressing our descriptor even further.

Fitting SH coefficients to our descriptors is an effective way to compress the

descriptors; but it is also important to consider the effects of missing data on the

fitting process. In particular, we found it important to store a mask that speci-

fies which normal bins originally contained data. This mask is then used during

reconstruction to avoid using parts of the sphere where the SH reconstruction

“hallucinated” data even though there was none in the input. The combination

of SH and mask is refered to as SHM throughout the text. Figure 5.2 illustrates

the effects of SH compression on our descriptors. Note that the full-sphere re-

construction (right middle) becomes inaccurate in the portions of the sphere

where no data was available in the input.
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N ESW N

Original

Spherical Harmonics

Spherical Harmonics + Mask

Figure 5.2: The effects of spherical harmonic compression on our descrip-
tors. On the left, we show a sample image. On the right, we
show the original descriptor as computed from the image (top),
the full unwrapped spherical function reconstructed after fit-
ting using nine spherical harmonic coefficients (middle), and
the same reconstruction masked according to which normals
were missing data in the input (bottom).

The key benefit of SHM over A-IM is space. A-IM stores 3 floats per normal

bin, while SHM stores floats for 9 coefficients ⇥ 3 color channels (27 floats), plus

1 bit per normal bin for the mask.

Average-Variance Irradiance Map (AV-IM)

Averaging the irradiance values (as in A-IM) yields a simple, compact sum-

mary of the scene irradiance. However, this process conflates information from

different points that share the same normal, thus losing potentially valuable in-

formation about lighting variation in the scene. For some applications, such as
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sun visibility classification, variance within a normal bin, (e.g., due to shadow-

ing) can provide a useful cue. To capture this, we can store both the average

and the variance per normal bin. This descriptor captures the extent of the vari-

ation of irradiance across points with the same normal while only using twice

the memory as A-IM. We call this descriptor the Average-Variance Irradiance

Map (AV-IM).

This idea of storing more than just one average per bin can be generalized

further to store a more descriptive representation of the values in each normal

bin, but descriptive power comes at a cost of increased storage space. For exam-

ple, we experimented with storing a histogram of irradiances per normal bin to

capture the full variation across normals, but we found the descriptor did not

perform as well as the descriptors above, and so the extra space requirements

were not justified.

5.2 Computing Light Descriptors from Photo Collections

We now describe how we estimate the light descriptors for images, starting from

a large set of Internet photos I. As done in Chapter 4, we first run structure

from motion [85] for the photos and multi-view stereo (PMVS [26]) to derive

a 3D reconstruction consisting of a point cloud P and 3D camera parameters

for each image. PMVS also estimates a surface normal N(p) for each 3D point

p 2 P, as well as a set of visible points V(I) ⇢ P for each image I. After building a

reconstruction, we manually georegister the scene to the correct world reference

frame (latitude, longitude, orientation, and scale).

To compute our lighting descriptor for image Ii, as described in Section 5.1,
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the key information we need is the irradiance at a sparse set of pixels in Ii. In

what follows, we assume that the image formation process for Ii is approxi-

mated by the equation

Ii(p) = fi(⇢(p)Li(p)) (5.1)

where Ii(p) is the measured radiance at the location of the projected point p in

Ii (note that our notation Ii(p) also incorporates the camera projection), fi is the

camera response function for camera i, ⇢(p) 2 [0, 1) is the diffuse reflectance

(albedo) at scene point p, and L(p) is the diffuse irradiance at point p at the time

the photo was taken.1 The albedo of a point ⇢(p) is assumed constant across the

image collection, but Li(p) varies from image to image. Under this model, to

estimate Li(p), we need to determine both ⇢(p) and fi. To do so, we: (1) use the

entire image collection to estimate an albedo for each point p 2 P, (2) project

the points in V(Ii) into each Ii and look up their color values in that image, (3)

estimate the camera response function fi and invert it to map these color values

to a linear space, and (4) divide these colors by albedo to derive irradiance. This

pipeline is illustrated in Figure 5.3, and described in more detail below.

5.2.1 Estimating Camera Response

We first describe how we estimate the camera response function fi for each im-

age. This step is critical, as the algorithm we use to estimate albedo assumes

a linear camera response. While others have posed radiometric calibration as

a non-linear optimization over a specific image collection [23], we instead opt

to pre-calibrate a large number of cameras via a data-driven approach based
1While this description treats I, ⇢, and L as scalars per-point for simplicity, in practice we

treat them as RGB values that multiply element-wise.
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3D Points

Normals

Albedo Lighting Descriptor

SfM

Photo Collection

Input Image

Pre Process Per Image

Figure 5.3: Our pipeline. Beginning with a large photo collection of a scene,
we use structure from motion (SfM) to reconstruct a 3D point
cloud with surface normals. We also assign a camera response
curve to each photo in the collection, and use all of this data to
compute a surface albedo for each scene point. These albedos
can be factored out of a new photo to produce irradiance val-
ues, which, along with surface normals, are digested into our
lighting descriptor. Here, the lighting descriptor captures the
strong directional component of the illumination.

on [47].

A camera’s response function can in general be very complex [43]:

Chakrabarti et al. recommend the use of a model with 24 parameters [16].

In practice, a common approximation is to assume that fi(x) = x� with � =

2.2 [33, 49]. We found that this approximation performed poorly, and we

achieved better results with a data-driven calibration approach. Computing

an accurate response function for a camera is a challenging problem, and many

methods require controlled image acquisition of a static scene [21]. Internet

photo collections are taken with too many cameras to rely on lab-calibrated re-

sponse curves. Instead, we create a hierarchy of response curves, from a generic,
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“average” camera, to a set of specific camera makes and models using the

method proposed by Kuthirummal et al. [47].

The algorithm of Kuthirummal et al. takes as input a large collection of nat-

ural images captured with the same camera model, and produces a response

curve. The method relies on stationary statistics over many natural images and

how camera response alters these statistics. To produce a good estimate, their

method requires a large number of images, so newer or less popular cameras

might not have enough images for a reliable estimate of the response function.

This is where our hierachical structure of camera response functions comes into

play. In particular, we organize camera response curves into a tree where each

node corresponds to a curve. The leaves of this tree correspond to specific cam-

era models (e.g., a Canon Digital Rebel T1i); higher nodes are computed with

larger sets of images corresponding to all of the camera models rooted at that

subtree. One level above the leaves, we have nodes that each represent a family

of camera models (e.g., all Canon Digital Rebels), above that are all images from

a given manufacturer (e.g., Canon), and at the root the response curve is com-

puted from all images in our photo collection, resulting in a response curve for

an “average” camera. We only create leaf nodes for camera models for which

we have at least 1000 images in our training set. This approach assumes that the

response curve for similar camera models is also in general similar.

We used this approach to build a collection of 205 camera response curves

from 864,055 training images. Figure 5.4 shows the curve for the green channel

for a specific camera. In the plot we show the curve for � = 2.2, one we obtained

from images acquired in a lab setting [16] using the method of [29], labeled gt,

and the set of curves of our hierarchical structure, starting with the response
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computed from all images in the collection, avgcam, down to all images from

the specific maker of the camera, make, to the most specific set of images, the

leaf in our hierarchical structure, make and model.

To evaluate this method, we compared the response function at each level

of the hierarchy with the curve obtained with the method of Grossberg and Na-

yar [29] on the 34 cameras present in the dataset of Chakrabarti et al. [16] (we

discarded two cameras for which the exposure stack did not vary exposure,

only aperture). We measured error as the area under the curve of the absolute

difference between the two response functions. The average error for all im-

ages across all color channels is: 0.1886 (� = 2.2), 0.1445 (avgcam), 0.1409 (make),

0.1426 (make and model). As the errors indicate in general it is sufficient to use

the curve up to the make of the camera, the more specific make and model curve

offers no benefit in our tests.

When linearizing a new photo, we use the most specific curve given the

information available in that photo’s Exif metadata. For images that have no

information about camera make or model, we use the avgcam.

5.2.2 Computing Descriptors

Given a collection of linear images of a scene, a number of global algorithms

can be used to estimate albedo [49, 78]. In this chapter, we use the algorithm de-

scribed in Chapter 3 (we found that noise in the estimated normals from PMVS

was severe enough that the method from Chapter 4 did not perform well).
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Figure 5.4: The camera response curve for a Canon Power Shot A1000 IS
for the green channel. We compare here the curve recovered
from a registered set of images with varying exposure (from
the Middlebury dataset) with the simple � = 2.2 curve and the
curves at different levels of our hierachical camera response
data structure.

Estimating Illumination. Now that we have estimates for the response func-

tion fi for Ii and the reflectance ⇢ at each point, we can recover our estimated

irradiance at a point p:

f �1

i (Ii(p))

⇢(p)

=
⇢(p)Li(p)

⇢(p)

= Li(p) (5.2)

Descriptor Computation. Our descriptor is computed for an image Ii by tak-

ing each point p visible to Ii, binning the irradiance Li(p) according to the point’s

normal azimuth ✓, and elevation � angles, into a 2D grid of size b✓ ⇥ b� covering

the sphere. If, after binning each point p in this way, a cell in this 2D grid has

fewer than t (we used 10) observations, we treat that cell as empty. For each cell

that remains, we compute the irradiance in RGB color space by averaging the

contribution of all points that fall within that cell. This results in a b✓⇥b� dimen-

sional descriptor. In our experiments we set b✓ = 36, b� = 18, resulting in a 648
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dimensional vector). This results in a 7.6KB descriptor for A-IM, and 15.2KB for

AV-IM. However, missing data typically means that the descriptor is well over

50% sparse, so their size on disk is typically much smaller. SHM, being highly

compressed, can be stored in 189 bytes.

Comparing Descriptors. When comparing two descriptors, we must define a

distance function between the descriptor vectors. We found that a simple L
2

dis-

tance worked well across our applications, and this is what we use throughout

the rest of the chapter, although other distance metrics, such as L
1

or Earth-

Movers could also be used. Note that since any given descriptor could have

missing data, we only compare elements in descriptors where both have con-

tent, and normalize the distance by the number of overlapping elements.

Descriptor Coordinate System. One key question is the coordinate system in

which we place our descriptors. One option is that a descriptor is defined with

respect to the camera (camera-frame), e.g., if light is coming from the left with

respect to the camera, the left side of the descriptor “lights up.” Alternatively,

we can orient the descriptor with respect to the world coordinate frame (world-

frame), since we know the absolute camera orientation from SfM. In this case,

the descriptor is fixed in the world so that if light is coming from the south in

a particular image, the same parts of the descriptor light up independent of the

camera orientation. We also experimented with a variant of each orientation

type: an upright-camera-frame, in which we first factor out a camera’s pitch

and roll (but not heading), and an object-frame, in which, for scenes with a

definite “front” (such as a statue), we orient the descriptor with respect to that

object. Note that, up to quantization, each of these frames are related by a 3D
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Method # Photos # 3D Points
RIO 3515 219,183

CASTLE 33219 817,899
HEAVEN 6054 906,647

HUMAYUN 7360 1,308,456
GÜELL 15586 10,670,473

PEÑA 8283 2,197,787
SAGRADA 5880 6,947,304

Table 5.1: Our landmark datasets taken from Internet photo collections.
The number of photos and 3D points extracted are given. The
last column is the average uncompressed double-precision de-
scriptor size.

rotation.

5.3 Applications

In this section, we demonstrate the utility of our light descriptors in four appli-

cations. We show that we can use our light descriptors to derive higher- level

information about illumination, such as the sun position and visibility (Sections

5.3.1-5.3.2). We then show our descriptor’s utility in two graphics applications:

multi-view object insertion and search-by-illumination (Sections 5.3.3-5.3.4). To

demonstrate these applications, we have created seven datasets of landmarks

(RIO, CASTLE, HEAVEN, HUMAYUN, GÜELL, PEÑA, SAGRADA) created from

large Internet photo collections (for more details on the datasets see Table 5.1).

70



5.3.1 Sun Position

Analogous to what was done in Section 4.2.3 we demonstrate that our light

descriptors can be used to determine the sun position. Our approach and as-

sumptions are also very similar to those of Section 4.2.3, we rely on Exif data to

obtain day of year but not time of day, which reduces the search space signifi-

cantly. One fundamental difference to what was done before is that now we use

the physically-based model of sun/sky illumination to predict a canonical light

descriptor for different times of day, whereas before we used the illumination

model to predict the illumination for each point in the 3D reconstruction. The

advantages of this approach are two fold. First, the light descriptors are a much

more compact representation of the illumination than the generated predictions

for all visible points in the reconstruction. Second, the generated canonical de-

scriptors can be shared with other scenes that lie at the same latitude, reducing

the amount of data that needs to be pre-computed and cached.

To generate predicted descriptors, we use the sun-sky model of Hosek and

Wilkie to generate a physically-based clear-sky environment map [36]. For each

normal on a sphere, we integrate over the environment map to create an irra-

diance map, then use these normals and irradiance values to compute a world-

space A-IM light descriptor. We generate predicted descriptors for timestamps

spaced 10 minutes apart every 5 days over a full year, since the sun direction for

a given time varies only slightly from one day to the next. To estimate the sun

position for an image, we compute that image’s world-frame descriptor, then

predict the sun position corresponding to the most closely matching predicted

descriptor. Our best results were achieved when searching using a simple Eu-

clidean distance metric with A-IM.
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Sunny (803) Cloudy (111) All (814)
Mean Median Mean Median Mean Median

A-IM 15.70

�
9.96

�
30.75

�
24.75

�
17.75

�
11.22

�

Random 52.83

�
50.40

�
53.54

�
50.72

�
52.93

�
50.41

�

Table 5.2: Quantitative results for our sun direction (measured in degrees)
on the ground truth CASTLE evaluation set. We compare to the
expected error given by randomly chosen times of day.

We evaluated our method using 814 images with timestamps manually read

from the clock on the front of the CASTLE dataset. For each image, we search

over all the predicted descriptors corresponding to the date found in the Exif

timestamp. Quantitative results are shown in Table 5.2. Predicting sun direction

on cloudy days is significantly more challenging, so we report results separately

for the 111 cloudy images in the ground truth dataset. On sunny images, our

method is able to predict the sun position with a median error of less than 10

degrees, while cloudy images are considerably more difficult. Nonetheless, we

still significantly outperform random guessing on cloudy images which lack

strongly directional illumination.

5.3.2 Sun Visibility

In addition to sun position, another key aspect of outdoor daytime illumination

is weather. In particular, occlusion of the sun by clouds can dramatically change

the appearance of a scene, making knowledge of this lighting characteristic im-

portant in many applications.

Our approach to determining sun visibility is to label a small number of

images and train a classifier on our descriptor to predict whether an image is

sunny or cloudy. We could use the full light descriptor itself as a feature, but
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sunny illumination produces very different descriptors throughout the day due

to color and directionality. For example, a sunny morning descriptor might have

sunlight reaching the left-facing normals and sky-lit right-facing normals, while

the situation is reversed in the afternoon. For this reason, we build a histogram

of the irradiance values, discarding the normal information.

One limitation of A-IM is that it averages together the illumination of all

points with a given normal. In cases where some points with a given normal fall

in a shadow and others are illuminated by the sun, this A-IM will not capture

this variation well. For this reason, we use AV-IM, which includes the variance

within each normal bin. Our final feature vector is two concatenated 10-bin

histograms, one for grayscale average irradiance and one for variance. We use

these features in a classifier trained on a set of about 200 manually labeled im-

ages for each of our seven datasets. Using 10-fold cross-validation, we found

that a k-nearest-neighbor classifier using a �2 distance metric performed best,

outperforming Support Vector Machines with linear and RBF kernels.

We compared the performance of our features to the features proposed in

[52] for webcam images. Their approach divides the saturation and value chan-

nels by their averages over a stack of webcam images as a way to isolate the

illumination, then computes a joint 2D histogram of these saturation and value

ratios. Our descriptor takes a more principled approach, isolating illumination

by factoring out albedo. For comparison, we implemented their ratio histogram

approach on the image values of the 3D points extracted from each image. The

greater variability in photo collections makes our datasets significantly more

challenging, but our features outperform theirs, achieving between 72% and

81% cross-validation accuracy as shown in Table 5.3. We also tried a method
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based on the sun visibility technique proposed in [81] in the context of photo-

metric stereo. They classify sun visibility by thresholding the ratio of second-

order to first-order energy of the spherical harmonic coefficients. Even using

cross-validation to choose a threshold for each dataset, we found this approach

did not perform well.

5.3.3 Object Insertion

We now show that our light descriptor can be used to consistently insert an

object into many photos in a collection, with realistic lighting for each image. We

estimate a timestamp as described in Section 5.3.1, then render a virtual object

to be inserted and a neutral ground plane under a sun/sky environment map

generated using [36]. For each image, we render from the camera’s viewpoint

(known via SfM). We then composite the object into the image using Debevec’s

differential compositing method [20] which realistically transfers shadows onto

the ground in the image. Figure 5.5 shows example results. The four images on

the left illustrate that we can easily place an object in a consistent location across

many photos from the collection.

Our light descriptor, coupled with the sun/sky model, takes the place of the

light probe used by Debevec [20], allowing us to perform object insertion after

the fact without specialized equipment at capture time. Whereas [41] requires

user input to build a 3D model of the scene and lighting in each image, we

use our light descriptor and SfM reconstructions to set the geometry once in 3D

space, and automatically generate an environment to match the lighting in any

sunny photo in the collection.
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Figure 5.5: Inserting an object into multiple images of a scene with con-
sistent lighting. On the left, we show an object inserted in a
consistent 3D location across four images with consistent light-
ing within each image. On the right one more example, notice
that the shading on the synthesized yellow ball matches the
real-world white spherical lamp on the left side of the image.

Although this example uses a sun/sky model, other approaches are possible.

In principle, a full irradiance map (e.g., derived from a spherical harmonic fit of

A-IM) could be used to render Lambertian objects into a scene under arbitrary

distant illumination.

5.3.4 Search

Our light descriptors allow us to search for images by light similarity. The illu-

mination in a scene is a rich visual element, and we enable searches based on

similar illumination within the same scene as well as across scenes (since our

descriptor is designed to be geometry invariant).

We illustrate several such searches in Figure 5.6. For each example search,

we show a query image, and the top matches by light descriptor similarity ei-
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Figure 5.6: Example light similarity search results. Queries were matched
against database images which had at least 320 occupied his-
togram bins in common. Each row contains one query im-
age (leftmost image, marked in red) and the nearest search re-
sults following on the right. The first five rows show results
for queries within a dataset (RIO, HUMAYUN, PEÑA, CASTLE-
day and CASTLE-night) while the remaining rows show results
for cross-dataset queries (HUMAYUN $ CASTLE and PEÑA
$ HEAVEN).
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ther within the same dataset, or across two different datasets. Note how our

method is able to match not only the overall color of the lighting but also its

direction. In the last two rows we also see that the method correctly finds im-

ages with similar lighting across datasets. In the first cross-dataset match the

soft lighting of HUMAYUN is matched in the CASTLE images. In the last row the

sunny lighting from the left in PEÑA is matched in HEAVEN (the PEÑA build-

ing face is darkened since it faces away from the light). In both cases the sky

conditions are matched very closely.

Evaluation with human-judged comparisons. How well does our descriptor

work at matching illumination between images? To quantitatively evaluate the

effectiveness of our descriptor, we manually labeled a set of image triplets to

form a set of human-judged illumination similarity inequalities. Each triplet

consisted of a query image C and two other images, A and B, and the task was

to select whether A or B has more similar illumination to C (an option was also

provided for cases where neither image was clearly more similar). Each triplet

was annotated by three people and any triplet not unanimously marked A or B

was discarded. The remaining triplets give us a set of inequalities according to a

“human” distance D, e.g., D(A,C) < D(B,C). We use these inequalities to judge

how well distances in our descriptor space accord with human judgement.

We collected such inequalities for four experiments, three using image

triplets all from the same dataset—RIO (106 human-judged inequalities),

HEAVEN (46 inequalities), and CASTLE (107 inequalities)—and one where a

query from one dataset (RIO) is tested against two images from a second dataset

(CASTLE) (113 inequalities). In each experiment, we measure the percentage of

triplets for which the descriptor distance agreed with human judgement. We
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found that an L
2

distance and object-frame orientation had an average accuracy

of 72.1%. We compared to the performance of SHM (64.8%) and a simple his-

togram matching baseline (65.6%). Note that since each triplet has two choices,

chance would be 50%. The baseline simply uses a 3D color histogram of the

reprojected 3D point values in each image as a descriptor. This can work rea-

sonably on similar views of similar scenes, but fails on different viewpoints and

across datasets.

5.4 Discussion and Limitations

Our current implementation requires a large number of photos of the scene in

order to recover the albedo at each point. Even though there are many photo col-

lections of famous places, we would like to extend our method to scenes where

that is not the case. To do that we could experiment with new methods for es-

timating an intrinsic image decomposition together with information about the

geometry of the scene [40]. We could also use more advanced sensors (RGBD),

such as depth cameras, to recover geometry.

Our AV-IM descriptor captures some elements of variation in lighting, but

loses some information as well, such as the exact position of shadows. More so-

phisticated descriptors could capture this information as a function of both nor-

mal and geometry. Finally, we only use 3D reconstructed points in computing

our lighting descriptors; images often have other strong cues to illumination,

such as the sky and ground (which are often both unmodeled in SfM recon-

structions). In the future, we plan to combine our method with more holistic

image understanding techniques in computing better descriptors—for instance,
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the sky can reveal information about light coming from behind an object.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In reasoning about light we started this dissertation by introducing a novel

method for intrinsic image decomposition which explicitly models Ambient Oc-

clusion, a measure of local visibility at a point that has largely been ignored

by the computer vision community. The method operates in image space and

makes the weak assumption that over an image stack the lighting varies but its

position in each image is generally unknown. Our approach is to use a simple,

per-pixel statistic, , based on observed intensities over the set of images; from

, we recover per-pixel ambient occlusion and albedo values by relating our

physical model to this measured statistic through our cylindrical crevice model.

Despite its simplicity, we show that this statistical approach works well in prac-

tice for a range of real-world image stacks. Furthermore, in Chapters 4 and 5

we demonstrate that it can be generalized to work on sparse 3D reconstructions

and Internet photo collections thanks to the lack of a smoothness assumption,

which allows the method to process points in isolation, without any connectiv-

ity information.

In Chapter 4 we refined our algorithm by using a physically based model

of outdoor illumination developed by the computer graphics community [36].

This allowed us to model some of the complexities associated with natural il-

lumination. In particular, our refined model incorporates the fact that the sun

does not cover the entire hemisphere as the earth rotates. This means that, to-

gether with surrounding geometry, a point’s normal direction now also influ-

ences how much light it receives, with some normal directions simply not being

illuminated enough by the sun to reliably recover albedo. Furthermore, changes
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in the sun intensity and color are also taken into account. In the results section

we show that by using this more refined model our algorithm can better esti-

mate the albedo of sunlit scenes, and correctly discards points for which the

variation in illumination conditions is not enough to enable accurate estimation

of albedo. We also show the utility of these outdoor illumination models for

timestamping images.

One drawback of the timestamping method presented in Chapter 4 is that

the amount of data generated per image can be quite large. The algorithm

makes one illumination estimate per visible point in the 3D model, which for

some models and images results in an amount of data that rivals that of the

input image. In Chapter 5 we address that issue by devising a novel descrip-

tor, one that summarizes the lighting information into a compact representation

that is invariant to the underlying geometry of the scene. In the results section

we show that this novel descriptors has uses beyond timestamping, including

object insertion, weather estimation, and image search.

6.1 Future Work

The method presented in Chapter 3, although very robust, could benefit from

a more expressive model of the local geometry than the cylindrical model we

presented, perhaps one that incorporates anisotropy would better match more

general visibility scenarios. We also show in the discussion section that the

method’s estimates are less accurate when the effects of multiple bounces of

light become more pronounced, including these effects into the model would

also be an interesting direction to explore. Finally, our method operates on a sin-
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gle statistic from the PID, essentially discarding all other information that comes

from this distribution. Using other statistics or reasoning about the entire distri-

bution could potentially enable the method to make fewer assumptions about

materials (i.e., allowing for more complex material models than Lambertian that

incorporate specularities and subsurface scattering).

The sun-sky model used in Chapter 4 is a big step forward in terms of ac-

curacy when compared with the simple lighting model we used in Chapter 3.

Nevertheless, there are avenues for improvement there as well. One limitation

is that it only models a sunny sky. Incorporating cloud coverage and weather

could potentially improve the methods accuracy.

The descriptors we presented in Chapter 5 are an initial step in making light-

ing descriptors a first-class citizen in graphics and vision. The representation

we derived is compact and simple to compute, and as shown in the applica-

tions section is flexible enough to enable multiple different applications. One

limitation though is that it can only represent distant lighting, a limitation par-

tially addressed by the AV-IM version of our descriptor. More investigation

into different representation could potentially address this limitation. In order

to obtain the estimate of the illumination in a scene we made use of large photo

collections and the method developed in Chapter 3, other methods for intrinsic

image decomposition exist that operate on a single image and recover a rough

estimate of shape [10]. It would be interesting to use our descriptor with these

methods so that more scenes could be used.
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Part II

Symmetry
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CHAPTER 7

IMAGE MATCHING USING LOCAL SYMMETRY

Symmetry, at many different scales, and in many different forms, is a power-

ful feature in the structure of our world, evident in the shape and appearance of

many natural and man-made scenes. Humans have an innate ability to perceive

symmetries in objects and images, and tend to construct objects that exhibit a

range of local and global symmetries. For computer vision applications, analy-

sis of symmetry is attractive for a number of reasons: symmetries are potentially

a stable and robust feature of an object, yet, when considered at all scales and

locations, are also potentially quite descriptive.

For instance, consider the pairs of images shown in Figure 7.1. Even though

each pair is perfectly registered, the pairs exhibit large changes in appearance

due to varying illumination, age, or style of depiction. These factors can lead

to large differences in low-level cues such as intensities or edges. However,

each of the structures depicted can be described in terms of a nested hierarchy

of local symmetries (and repeated elements). These symmetries are—to some

degree—preserved in these pairs.

In this chapter, we seek to exploit such local symmetries for robust image

matching through local features based on such symmetries. While other local

features, such as SIFT [60], are highly invariant to a range of geometric and

photometric transformations, we find that they often perform poorly given the

kinds of dramatic variations shown in Figure 7.1. Our hypothesis is that taking

advantage of local symmetries can help with matching in these kind of difficult

cases. In the case of SIFT, for instance, the local gradient information around a

point may be very different between two depictions, whereas the symmetries
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Figure 7.1: Difficult image pairs. Each pair of images in this figure shows
a registered view of a building. Despite the geometric con-
sistency, these images are difficult for feature matching al-
gorithms because of dramatic changes in appearance, due to
different depictions (drawing vs. photo), different time peri-
ods (modern vs. historical), and different illumination (day
vs. night). While these images are dissimilar at a pixel level,
each image in a pair exhibit similar symmetries, which we seek
to exploit for matching. These images are selected from our
dataset.

may be more resilient (if we can measure them). Hence, we propose both a fea-

ture detector and a feature descriptor built from a simple function that detects

local symmetries, across an image and in scale space. Our symmetry features

are local, and retain some of the advantages of local features, but in some sense

they aim for a more “mid-level” scene description than current local features.

Our features are primarily designed for architectural scenes where symmetries

are common.

Our proposed features leverage a simple measure of local symmetry based

on analyzing image differences across symmetry axes, computed densely in re-

gions across the image; we score each patch in the image, and patches at dif-

ferent scales, based on three types of symmetries (horizontal, vertical, and rota-

tional). We develop a way to detect scales for such detected local symmetries,
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and accordingly define a feature detector that returns a set of maximally locally

symmetric positions and scales. We also develop a feature descriptor based on

these same symmetry measures.

We evaluate our method on a challenging new dataset created from regis-

tered pairs of images with difficult appearance changes (including the images

in Figure 7.1). Some of these pairs are rephotographs of the same scene many

years apart, while others represent differences in illumination or style. These

types of images are of interest in applications such as large-scale 3D reconstruc-

tion from heterogeneous image sources [85], especially settings that incorporate

historical imagery [76]. The fact that the images are registered allows to focus

on testing local features based on appearance changes alone. We evaluate two

versions of our method, one based on raw intensities, and another based on

gradient histograms.

7.1 Related Work

There has been a great deal of work on symmetry detection in computer vision

and graphics (Liu et al. [58] present an excellent survey). However, there has

been relatively little work on using local symmetries as an explicit feature for

image matching. The closest related work to ours is probably the self-similarity

descriptor of Shechtman and Irani [79]. That work proposes to use patterns of

self-similarity of an image patch in a local neighborhood as a robust feature de-

scriptor for matching across images and videos, and demonstrate good results

on difficult matching problems (e.g., matching a rough silhouette of an object

to an image). In our case, we use different forms of symmetry as cues, rather

than repetitions, and use these to define both a feature detector (based on local
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symmetry patterns) and a descriptor. Other work utilizing repeated patterns

includes that of Schindler et al. [77], who detect and match highly repetitive

patterns on building facades, and that of Wu et al. [93], who detect large re-

peating elements of facade images, and use these as robust support regions for

computing features. In contrast, we do not try to build a mid-level representa-

tion of the image that explicitly reasons about symmetric structures, but instead

compute many local features based on a softer notion of a symmetry score.

Loy and Zelinsky also propose a feature detector [61] based on radial sym-

metries, using a fast radial symmetry transform that accumulates votes for sym-

metric regions from gradient information. This was demonstrated to work well

for finding radially symmetric features such as eyes, but was not demonstrated

for matching applications. In an earlier approach, Reisfeld et al. [74] used a

similar voting scheme to detect interest points using radial symmetries via a

generalized symmetry transform.

Our local symmetry detector is also related to other low-level measures used

for symmetry detection in vision. Kovesi observed that local bilateral symme-

try in image intensity relates to the response of filters of different phase [45].

Kovesi later extended this concept of “phase-congruency” for detecting features

such as edges and corners [46]. Di Gesù et al. proposed the discrete symmetry

transform [22], based on axial moments and related to the medial axis trans-

form. Other work is based not on image intensities or gradients, but instead on

an initial set of sparse features (e.g., SIFT) finding relationships between these

features consistent with local bilateral or radial symmetry [62]. We define a

simple symmetry score based on a general measure of image similarity across

reflection axes, and compute this densely over the image and across scale space.
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Our symmetry score is related to the reflective symmetry transform proposed

in the graphics community for 3D shape analysis [69], but we compute these

scores locally (and over scales), rather than globally.

Our detector has some similarities with the recently proposed edge foci in-

terest regions of Zitnick and Ramnath [98]. Their edge foci detector robustly

fires at blob-like regions (as with the difference-of-Gaussians detector); our de-

tector also tends to find these kinds of regions, but also on broader class of

locally symmetries.

Recent work by Shrivastava et al. [83] also addresses matching of difficult

images across different domains (e.g., paintings and photographs), but using

global features (in their case, a global HOG descriptor) and using linear classi-

fication techniques to weight the HOG descriptor. In contrast, we are interested

in local-feature level matching so as to derive feature correspondence, and our

focus is on features (symmetry), rather than learning.

7.2 Local Symmetry

We now describe how we “score” local symmetries in an image using a simple

analysis of image similarity across different types of reflection axes. The goal

is to run this score function densely across an image, and at different scales, to

characterize all of the local symmetries present; later, we use this score to build

features. We start by treating an image as a 2D function f that maps pixel loca-

tions (x, y) to intensities. Our work addresses two common types of symmetry:

bilateral (across a specified line in the image) and 2n-fold rotational symme-

try (symmetry defined by reflection across an image point). If a 2D function
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f : R2 ! R exhibits bilateral symmetry around the origin, then:

f (r, ✓s + ✓) = f (r, ✓s � ✓)

where r and ✓ are polar coordinates of points on the 2D plane, and ✓s is the angle

of the plane of symmetry. Similarly, if a f exhibits 2n-fold rotational symmetry,

then:

f (r, ✓) = f (�r, ✓)

Note that this is the definition of 2-fold symmetry, where rotating the plane

by 360

�/2 = 180

� results in an identical figure (r rotated 180

� about the origin

is equal to �r), and any 2n-fold symmetric function is also a 2-fold symmetric

figure.

Detecting the two kinds of symmetry above can be understood more intu-

itively if we focus on slices of the plane R2 (see Figure 7.2). For each type of

symmetry, certain 1D slices will be symmetric: in the case of bilateral sym-

metry, these slices will be perpendicular to the axis symmetry, and for 2n-

fold rotational symmetry they all pass through a single point. By focusing on

these slices, both kinds of symmetry are similar, and the property that holds is

g
1D(t) = g

1D(�t), where g
1D(t) is a 1D slice of f parametrized by variable t on

the line of symmetry. Given a function g, one could check if it is symmetric by

comparing each value g(t) to g(�t), either in a window (for local symmetry), or

everywhere (for global symmetry).

7.2.1 Scoring Local Symmetries

We now focus on how to use this intuition to compute a local symmetry score.

We will develop this score by looking for symmetries using the raw image in-

90



t t

Figure 7.2: By taking a slice of a 2D image f , we see that the problem of
detecting symmetry can be posed of that of determining if a
set of 1D slices through f are symmetric. Left: an image with
(approximate) bilateral symmetry about the vertical axis. All
horizontal slices (green) are close to even functions (as shown
in the function profile at bottom). Right: (approximate) 2n-fold
rotational symmetry. Most slices through the center of the im-
age are even functions.

tensities themselves, but the extension to other types of per-pixel features is

straightforward; later, we evaluate a score function based on intensities, as well

as one based on gradient histograms computed densely over the image. Ideally,

this score would be efficient to compute and discriminative, yet robust to small

asymmetries in a local region due to noise, occlusion, or illumination changes.

Our local symmetry score is defined for each location p = (x, y) in an image,

and characterizes the degree of symmetry at that location using the intuition

above. To define the score, we require three components:

Symmetry type. As described above, we consider either bilateral or 2n-fold ro-

tational symmetries. This type defines a function gs,p(p0) that maps any other

image point p0 = (x0, y0) into its symmetrically corresponding point with respect
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to the point p and symmetry type s. In other words, if the image exhibits sym-

metry type s at location p, then f (p0) = f (gs,p(p0)).

Distance function. Next, we need a distance function d(·, ·) that measures how

well a given pair of corresponding symmetric pair of points (p0, gs,p(p0)) match

each other in appearance. For a symmetry score based on intensities, d could be

defined as the absolute difference in the intensities between these two points:

d(p0,q0) = | f (p0) � f (q0)|.

Weight mask. Finally, we define a function w�(r) that weights how important

each set of corresponding point pairs around the point of interest p is to deter-

mining the symmetry score at p. If we were only interested in perfect global

symmetries, the weight mask would have infinite support. To detect local sym-

metries, one might use a Gaussian mask, giving more importance to pairs close

to p. For simplicity, we assume that the weight mask is radially symmetric, and

is thus a function just of the distance r from the center point p. The subscript

� denotes a scale for the weight mask, which modulates the size of support re-

gion of w�(·), allowing us to create a scale space for symmetries (as described in

Section 7.3). In the case of a Gaussian mask, � is the standard deviation.

Putting the three components together, we arrive at a function that we call

the local symmetry distance S D:

S D(p) =
X

p0
w(kp0 � pk)d(p0, gs,p(p0)) (7.1)

As described above, the simplest symmetry distance function we consider is

one built on raw image intensities, where d is the absolute difference in intensity,

and w� is a Gaussian function. This simply measures, at a given pixel location p,

how similar the image is to itself when flipped across a symmetry axis (or point)
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through p, accumulating the differences across a Gaussian support region. We

refer to this family of symmetry distances as SYM-I (for “intensity”). In practice,

we will consider two versions: bilateral (denoted SYM-IB for generic angles and

the shorthands SYM-IH and SYM-IV for horizontal and vertical versions) and

2n-fold rotational symmetry (SYM-IR).

One potential problem with S D in Eq. (7.1) is that uniform image regions

are trivially symmetric, and thus have low symmetry distances. Nevertheless,

a characteristic of these regions that differentiates them from less trivially sym-

metric regions is that their symmetry is not well localized, i.e., S D is low in a

wide region. To address this, we find “edges” or “blobs” in the raw S D map,

through convolution of S D with an appropriate filter L based on a Laplacian-of-

Gaussian (LoG) kernel [57]. For the distance based on rotational symmetry we

use the standard LoG kernel, while for bilateral symmetries we use a kernel that

has a LoG profile perpendicular to the axis of symmetry and a Gaussian along

the axis of symmetry. With the correct sign on the kernel L, this convolution

converts the symmetry distance function into a symmetry score function:

S S (xc) = L ⇤ S D(xc)

where ⇤ denotes convolution.

7.2.2 Gradient Histogram-Based Score

The symmetry score above uses raw intensities; we hypothesize that it may be

more robust to look for symmetries based on gradient orientations, as gradient

orientations tend to be more stable to photometric changes [60, 98], and also

may be more discriminative than raw intensities (e.g., oriented edges may ac-
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cidentally coincide less frequently). Specifically, we define at each image pixel

a histogram of local gradient orientations h, then use this vector-valued func-

tion in place of the scalar function f in the local symmetry transforms described

above (using the dot product of two vectors, rather than the absolute difference

in intensities, to compare the appearance of two symmetric points). This vector-

valued function is related to SIFT or HOG features [19], but computed densely

at each pixel of a given scale. We call this variant of our symmetry score SYM-G

(for “gradient”).

To compute the per-pixel gradient orientation histogram function h(p) at

pixel p, we first compute the gradient magnitude and orientation at p using

finite differences, slightly blurring the image to remove high-frequency noise

(we apply a Gaussian with � = 0.5). While we compute the gradient orienta-

tion as usual, we apply the local constrast enhancement of Zitnick [97] to the

gradient magnitudes, which helps normalize edge magnitudes between high-

and low-constrast regions. At each pixel p, we bin the gradient orientations in

a small region around p into an orientation histogram, weighted by gradient

magnitude, and Gaussian weighted by distance to p. We use a small Gaussian

with � = 0.5, and an orientation histogram with eight bins, softly binning each

local edge orientation, and treating orientations as “unsigned” (e.g., orientation

are only defined up to a 180 degree rotation). This results in a local histogram

ˆh(x, y), which we (softly) normalize to form the final vector-valued function:

h(x, y) =
ˆh(x, y)

|| ˆh(x, y)|| + ✏

where ✏ = 0.05 is added to the norm for robustness to noise.

To compare the histograms h at two reflected pixel positions p0 and gs,p(p0),

we compute their dot product after “flipping” one of the histograms by permut-
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ing the bins as necessary to form a histogram of reflected orientations. This dot

product is large if the two histograms are similar, and so represents a similarity,

rather than a distance; hence, this directly gives us a symmetry score function

(rather than a distance). This symmetry score is related technique of Loy and

Eklundh [62] (who match SIFT features within an image), but ours is computed

densely across image (and scale) space. As with SYM-I, we define two versions

of this score, SYM-GB (or the shorthands SYM-GH and SYM-GV), and SYM-GR,

for bilateral and rotational symmetry types, respectively.

7.3 Scale Space

The previous section defines a local symmetry score function on an image f (x, y).

We wish to use this score to detect features; in order to create a good detector,

we need to be able to reliably compute interest points in scale space, as well as

image space. Our approach will be to simply compute the symmetry score, un-

modified, on a Gaussian image pyramid densely sampled in scale space (while

Section 7.2 describes scale space in terms of the scale of the weight mask, we

implement it as a function applied uniformly across such a pyramid).

Possible candidate function for use in feature detection are the SYM-IR or

SYM-GR score functions (the intensity- or gradient-based rotational symmetry

score), as these tend to have well-localized large values in the centers of sym-

metric regions. However, for SYM-IR, we found that using a Gaussian function

as w� gives good localization in x and y, but poor localization in scale. This is

because the Gaussian has too much mass close to the origin, and the support

region of the weight mask changes slowly across scales; thus, the Gaussian re-
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sponds slowly to the inclusion of asymmetric or uniform image regions under

its support, and it becomes hard to precisely localize features in scale space.

Thus, for the purpose of feature detection we choose a different function for w�,

a mask resembling a smooth ring, defined as w�(r) = Ae�
(r�r

0

)

2

2�2 , where r is the

distance to the origin, A is a normalization constant, r
0

is the ring radius, and �

controls the width of the ring (an example ring mask is shown in Figure 7.3).

To better understand the advantages of using this weight mask for scale

space localization, we compare it to the Gaussian mask in Figure 7.3. For a

set of three simple images, we show how the rotationally symmetric version of

the SYM-I score (shown as a fraction of the max possible LoG response) varies at

the center of the image as the scale changes. The middle row shows the results

of for the ring-shaped weight mask, while the bottom row shows the results

for the Gaussian weighting mask. The dashed red line shows the radius of the

“interesting” symmetric portion in the center. We can see from the plots that

the ring weighting gives a much more pronounced peak around the dashed line

than the Gaussian, sharp enough to fire for each individual ring in the third

image consisting of concentric circles.

For SYM-G (the gradient-based score), we found that the Gaussian weights

worked well, possibly because the overlap between symmetric pairs of gradient

histograms generally results in a much sparser signal in the support region of

the weight mask. SYM-G scores at two pyramid levels for the clock image in

Figure 7.5 are shown in Figure 7.4.
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Figure 7.3: Response of the Laplacian filter as a function of scale for the
central pixel of three synthetic images (top row), using SYM-IR.
Two weight masks w� are shown: ring (middle row) and Gaus-
sian (bottom row). The horizontal axis corresponds to kernel
size and the vertical axis to fraction of maximum response of
the LoG filter. The ring mask gives a much more localized re-
sponse.

7.4 Local Symmetry Features

We now describe how we use our symmetry scores to define local features; we

consider both feature detection, by finding local maxima of the score, and fea-

ture description, by building a feature vector from local symmetry scores.

7.4.1 Feature Detector

As mentioned above, the maxima of the SYM-IR (with ring weighting) and SYM-

GR functions are good candidates for feature detection, due to their good lo-

calization. In contrast, the bilateral symmetries (the SYM-H and SYM-V score
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Figure 7.4: Two distinct levels of the scale space pyramid for SYM-G on
the image in Figure 7.5. The top row shows the symmetry
score computed at a fine scale, the bottom row a coarse scale.
Columns correspond to horizontal, vertical, and the product of
the two symmetries.

functions) tend to not be well localized, as their responses tend to look edge-

like—an entire line of pixels along some axis of symmetry will tend to be strong

all at once—rather than having large values at isolated points. However, we

found that another stable detector can be constructed by finding maxima of the

product of SYM-H and SYM-V, as this will be large only at locations that exhibit

both horizontal and vertical symmetries (e.g., the centers of windows or other

such architectural features). In our evaluation, we consider using the SYM-IR

function as a detector, as well as a SYM-GH ⇥ SYM-GV detector built from the

product of SYM-GH and SYM-GV.
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SIFT

SYM-I SYM-G

Figure 7.5: Detected features for SIFT, SYM-I and SYM-G for an example
image. Each circle shows a feature with scale. To ease vizual-
ization the non-maxima overlap threshold was set to a stricter
0.1 for SYM-I. Note how the symmetry-based detectors more
reliably fire on features such as the ring of circles around the
clock’s circumference. Our symmetry features also tend to fire
in larger regions on average than SIFT.
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Figure 7.6: Detected features for SYM-G for images of the Notre Dame
Cathedral. Note how some symmetric features are repeatably
detected across each image, including the central rose window.

Non-maxima suppression. To detect features given a score function computed

on a Gaussian pyramid, we first find maxima in each scale independently

(thresholding small score values), resulting in a set of initial detections at lo-

cations (x, y, s), where x and y represent positions in the full resolution image,

and s is the detected scale of the feature. We represent the support of each fea-

ture as a circle of radius s centered at (x, y) in the original image. We then select

a subset of features that are locally strong across scales. In particular, for each

detected feature F, we keep F if and only if it has the highest symmetry score

of any feature whose support overlaps that of F by more than a threshold ↵

(in our work, we use ↵ = 0.4 for SYM-G and ↵ = 0.2 for SYM-I; SYM-I tends

to be noisier, demanding more stable detections). This results in a final set of

partially overlapping features; we note that symmetric regions often overlap,

due to repeated patterns and hierarchically nested symmetric regions. This ap-

proach to non-maxima suppression is similar to that commonly used in object

detection [25]. Example detections using SYM-I and SYM-G are shown in Fig-
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ure 7.5, and example detections for a set of images of Notre Dame are shown in

Figure 7.6.

7.4.2 Feature Descriptor

We also devise two feature descriptors based on our local symmetry score,

which we refer to as LPG (Log-Polar Grid of Local Symmetries) and HOLS

(Histogram of Oriented Local Symmetries).

LPG. Encodes the distributions of the three SYM-I scores (SYM-IH, SYM-IV,

and SYM-IR) around a feature location and at the detected scale; in essence, this

describes patterns of local symmetry around the detected feature point (see a

visualization of the descriptor in Figure 7.7). We use the Gaussian weighting for

SYM-I here, as we are not concerned with detection. To compute the descrip-

tor for a keypoint (x, y, s), we use a strategy similar to that of the shape context

descriptor [14]: we impose a log-polar grid on the image, centered at (x, y), at

scale s of the Gaussian pyramid, with diameter four times the scale s. For each

symmetry type and each cell we store the maximum value of the corresponding

symmetry score within that cell; the max gives some robustness to small defor-

mations. We concatenate values for the cells for the three different symmetry

types and normalize the resulting vector to have unit norm. For our experi-

ments we use a log polar grid with 20 angular cells and 4 radial ones for each

score, resulting in a 240-dimensional descriptor.

HOLS. Encodes the orientations of bilateral symmetries as localized his-

tograms, very similar to SIFT [60]. For each possible scale s we compute the

bilateral symetry score SYM-B-✓i for a small number of orientations i 2 {1, . . . , n✓}
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Horizontal Vertical Rotational

Figure 7.7: Visualization of the LPG descriptor. Left: input image with
marked feature and descriptor support. Right: the three sym-
metry score maps.

(in the experiments we used n✓ = 8). Next we blur each SYM-B-✓i using a Gaus-

sian kernel with standard deviation �b, which gives the descriptor certain ro-

bustness to deformations. The parameter �b is chosen so that neighboring sam-

ples (discussed next) do not contain the same information. Now that we have a

set of blurred SYM-B-✓i’s the next step is to extract a descriptor at location (x, y).

To do this we sample the SYM-B-✓i’s at a set of discrete locations on a square grid

(for the experiments we used a 4⇥ 4 grid), where each location corresponds to a

different histogram. We further multiply each histogram by a Gaussian weight

using the distance of the sample to the feature coordinate (x, y). The width of

the Gaussian is chosen so that twice its standard deviation covers the sampling

grid’s support; the purpose of this weighting is to give higher importance to the

histograms closer to the center. As a last step there are two normalizations. First,

we concatenate all histograms for a given feature and normalize the descriptor

to have unit norm, then we threshold any value below a threshold ⌧ (⌧ = 0.2 for

the experiments), and finally we renormalize the descriptor to unit length. For

a 4⇥4 spatial grid and 8 orientations we end up with a 8⇥16 = 128 dimensional

descriptor, the same dimensionality as SIFT. We report results using both SYM-I

and SYM-G as our local symmetry measures.
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7.5 Experimental Results

We conducted a set of experiments to test the performance of our detector and

descriptor; we first evaluate the detector, comparing its repeatability against the

common DoG detector, then show how different combinations of detector and

descriptor perform on a feature matching test.

For evaluation we collected a set of pairs of images, composed mostly of

architectural scenes, that we believe challenge modern local feature matching

methods. The image pairs exhibit an array of dramatic appearance changes,

due to illumination, age, and rendering style (paintings, drawings, etc.). For

this set, we wanted to factor out geometry, and focus on appearance; to that

end, we pre-aligned most images using a homography. A few examples of the

image pairs in the dataset are shown in Figure 7.1.

In total there are 48 image pairs, 12 of which come from the benchmark pro-

duced by [98] (the “Notre Dame” and “Painted Ladies” sets). Two pairs come

from the dataset of Mikolajczyk et al. [63], one from “Graffiti” and one from

“Cars.” The first exhibits large change in viewpoint and the second in illumina-

tion.

7.5.1 Evaluating Detections

We evaluate the repeatability of each feature detector given two images I
1

and

I
2

, the detected sets of keypoints K
1

and K
2

, and a homography H
12

that maps

points in I
1

to points in I
2

(most of our homographies are the identity, due to

pre-alignment). A common repeatibility metric is to compute the fraction of
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keys in K
1

that have a similar detection in K
2

, when K
1

is warped by H
12

. How-

ever, using this measure directly gives bias towards detectors that produce large

numbers of keypoints, so instead, we take the top n keypoints from each set ac-

cording to some ordering (size or detection score) and compute the fraction mn

of similar detections given these subsets; this is the repeatability score (higher is

better, 1.0 is best). By varying n we can generate a curve that shows repeatability

for all sets of top n features. By ordering keypoints according to the detector re-

sponse, we measure how invariant the detector is to the changes observed in the

pair of images. By ordering according to scale in decreasing order we measure

the repeatability of larger features; this is an interesting measure, as we observe

for these difficult images that larger features are often more stable.

To determine if two keypoints k
1

2 K
1

and k
2

2 K
2

are “similar enough” de-

tections, we use the H
12

to map k
1

into I
2

(both its location and support region),

then measure the relative overlap of the support regions [63]. If the relative

overlap is larger than a given threshold (we used 0.6) we declare a match. Since

there are small errors in our alignments (on the order of a few pixels) we boost

the support region of smaller keypoints to be at least 10 pixels in diameter, so

as not to penalize small features because of misalignment. We also calibrated

feature sizes by comparing the reported scale for a simple image consisting of a

black disk on a white background, making sure the detectors report compatible

scales. For this experiment, we compare the DoG detector (as implemented in

SIFT) with our SYM-I and SYM-G detectors. Example repeatability curves for

top subsets of features ordered by score and scale are shown in Figure 7.5.1.

Table 7.5.1 shows the average repeatability score on all images of the dataset

for n = 100 and n = 200, for both score and scale. On average, repeatability

scores are more reliable for symmetry features as shown by the repeatability
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Scale Score
100 200 100 200

SIFT 0.124 0.105 0.035 0.053
SYM-I 0.121 0.113 0.098 0.103
SYM-G 0.162 0.181 0.175 0.207

Table 7.1: Average repeatability score for the top n = 100, 200 detections
according to scale and score. In cases where the detector pro-
duced less than n keypoints we report the repeatability score for
the full feature set.

score for the score ordering. This suggests that our symmetry scores, both in-

tensity based (SYM-I) and gradient based (SYM-G) are better preserved under

the types of variation exhibited in the dataset. For SYM-I we observe that the

largest features are not always the most reliable as its average repeatability be-

comes lower than SIFT. SYM-G does better overall, though we have observed

that for image pairs with few symmetries (such as the standard Graffiti pairs),

SIFT outperforms the symmetry detectors.

7.5.2 Evaluating Descriptors

We now evaluate our local symmetry descriptor. For each pair of images we ex-

tract keypoints and descriptors and match descriptors using the standard ratio

test [60] on the top two nearest neighbor distances. By varying the threshold

on the ratio score, and comparing the matched set of keypoints to ground truth

(known in advance from the homography) we can obtain a precision-recall (PR)

curve that summarizes the quality of the match scores.

We measure the impact of the descriptor and the detector separately as fol-

lows. First, we generate two sets of perfectly matched synthetic detections by

first creating a set of keypoints K
1

on a grid in I
1

(in our experiments the spac-
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Figure 7.8: Example results for the detector repeatability experiment for
two pairs of images, for each of three detectors, SIFT, SYM-
I, and SYM-G. The first plot shows the repeatability score as
a function of subsets of features with largest scale, and the
second plot shows the repeatability score according to subsets
of features with highest detector score. In these plots, higher
(closer to 1) represents better repeatability.
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ing between points is 25 pixels and the scale of each keypoint is set to 6.25).

We then map these keypoints to I
2

using H
12

, creating a matched set of keys

K
2

. We discard keypoints whose support regions are not fully within the image.

In addition, we extract SIFT, SYM-I, and SYM-G detections from each image,

and describe all four types of detections (GRID, SIFT, SYM-I, SYM-G) with three

combinations of feature descriptors: SIFT, our symmetry descriptors (LPG-I,

HOLS-I, HOLS-G), and combinations formed by concatenating the SIFT de-

scriptor and one of our symmetry based descriptors (after normalizing each to

have unit norm). This combined descriptor gives a measure of the complemen-

tarity of the sources of information provided by SIFT (a gradient-based descrip-

tor) and one of our local symmetry-based descriptor.

The PR curves for a few image pairs are shown in Figure 7.9, and Table 7.2 re-

ports the mean average precision for each combination of detector and descrip-

tor over all pairs from our dataset. For the simple descriptors (as opposed to

the combinations) HOLS-G is the top performer, followed closely by HOLS-I.

For the combined descriptors combinations of SIFT and an intensity based sym-

metry based descriptor give better results. It is interesting to see in Figure 7.9,

GRID detector, middle row how symmetry based descriptors outperform both

SIFT and combinations of SIFT and symmetry based descriptors. Furthermore,

in many cases the curves for LPG-I and HOLS-I are virtually identical, sug-

gesting that the encoding of the descriptor is not as important as the underlying

symmetry measure.
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SIFT LPG-I HOLS-I HOLS-G

SIFT + LPG-I SIFT + HOLS-I SIFT + HOLS-G

Grid SIFT (DoG) SYM-I SYM-G

Recall
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Figure 7.9: Precision-recall curves for selected image pairs from the
dataset. Each column corresponds to a different detector and
each row to a different pairs of images.

GRID SIFT SYM-I SYM-G
SIFT 0.50 0.20 0.24 0.25
LPG-I 0.41 0.18 0.21 0.26
HOLS-I 0.50 0.25 0.26 0.29
HOLS-G 0.53 0.25 0.27 0.30
SIFT-LPG-I 0.58 0.26 0.30 0.34
SIFT-HOLS-I 0.59 0.26 0.28 0.32
SIFT-HOLS-G 0.53 0.24 0.26 0.28

Table 7.2: Mean average precision for different combinations of detector
and descriptor on our dataset. Rows represent the descriptors
and columns the detectors. First four rows show performance
for individual descriptors while last three rows show the perfor-
mance for concatenated descriptors. Results for detectors SIFT,
SYM-I, and SYM-G are over a subset of the images.
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7.6 Conclusion and Future Work

In this chapter we demonstrated that symmetry is a powerful cue which is well

preserved across very drastic image changes. We start by defining local sym-

metry and introduce two algorithms for computing it, one based on raw image

intensities and another one that encodes information about image gradients as

histograms of oriented gradients. Once we have a measure of local symmetry

we show that it can be used to define a symmetry based scale space by comput-

ing the symmetry distance on an image pyramid. We then extract features by

searching for local maxima in the symmetry based scale space. Finally, we intro-

duced two different encodings of symmetry into descriptors: LPG and HOLS.

In the experimental section we presented a new dataset of image pairs, with

dramatic appearance changes, and showed that our features are more repeat-

able than DoG features used by SIFT. We also show that in this dataset our de-

scriptors perform better than SIFT. The best performance though is achieved

when combining symmetry based descriptors with the gradient based SIFT de-

scriptor, demonstrating that the two descriptors complement each other.

In the future we would like to explore more comprehensive descriptor en-

codings. There are two avenues of future research that could be pursued. First,

by encoding symmetries across scales into one descriptor we could encode fine

details of the image pattern. Second, it would be also interesting to investigate

what is the impact of encoding a broader range of types of symmetry.
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