
Modular Data Storage with Anvil
Mike Mamarella, Shant Hovsepian, Eddie Kohler

Presented by Guozhang Wang

DB Lunch, December 30th, 2009

Several slides are from the authors



Motivation

 Custom Data Stores

◦ can greatly outperform conventional systems 

by 100x for specific work loads

◦ are often written monolithically

 What if application has characteristics of 

both OLTP and warehousing?

 We need a modular and extensible toolkit 

to build new data store layouts



Anvil
 Fine-grained dTables: abstract key/value

◦ Keys are integers, floats, or strings

◦ Values are byte arrays

◦ Iterators support in-order traversal

◦ Most are read only



How to build DBMS from dTable

 How to build indexing, hashing, etc using 

dTables?

 How to handle writes efficiently?

 How to handle transactions?



#1 dTable Layering

 dTables can be built over other dTables

using the same interface

◦ Storage dTable

◦ Performance dTable



dTable Layering

 Exception dTable

◦ Combines a “restricted” dTable with an 

“unrestricted” dTable

 E.g., want to store the state of residence 

of customers

◦ Identified by mostly-contiguous IDs

◦ Most live in the US, but a few don’t



Exceptional dTable

 Restricted handled by array dTables

(contiguous integer keys, fixed size values)

 Unrestricted handled by linear dTables



#2 Writable dTables

 Isolates all writing to dedicated writable 

dTables

 Journal dTable

◦ Append-only store for new/updated data

◦ Periodic “digestion” to read-only dTables

when it gets large

 Combine write-optimized and read-only 

dTables into single logical dTable: Overlay



Overlay dTable

 Built over two or more dTables, usually 

one writable and multi read-only.

 Iterator merges all underneath dTables’ 

iterators for reads

 Older “lower” data can

be overridden by newer

“higher” data



#3 Managed dTable

 Interfaces with transaction library, which 

keeps transaction logs

◦ Always consistent

◦ User decide durability

 Also decides policy for digesting journal 

dTables and combining read-only dTables



dTables in summary

 Storage dTables: linear, fix-sized, array, 

memory, journal, etc

 Performance dTables: b-tree, bloom filter, 

cache, etc

 Unifying dTables: exception, overlay, 

managed



Customer State Residence Example



Modularity

 Linear + B-tree vs. Array + Exception

◦ Keys: contiguous or spaced 1000 apart



Exception dTable Low Overhead

 Linear vs. Array vs. Array + Exception

 Exception dTable is low overhead vs. array 
but restores full functionality



Read/Write Separation

 Anvil’s durable and

non-durable config

outperformes original

durable and non-

durable config



Questions ?


