Modular Data Storage with Anvil

Mike Mamarella, Shant Hovsepian, Eddie Kohler

Presented by Guozhang Wang

DB Lunch, December 30t", 2009

Several slides are from the authors

Motivation

e Custom Data Stores

° can greatly outperform conventional systems
by 100x for specific work loads

> are often written monolithically

e What if application has characteristics of
both OLTP and warehousing?

* We need a modular and extensible toolkit
to build new data store layouts

Anvil

 Fine-grained dTables: abstract key/value

> Keys are integers, floats, or strings

° Values are byte arrays

o Iterators support in-order traversal

> Most are read only

dTable

blob lookup(key k)

bool insert(key k, blob v)
bool remove(key k)

iter iterator()

iterator

key key()
blob value()
bool valid()

bool next()

How to build DBMS from dTable

* How to build indexing, hashing, etc using
dTables?

* How to handle writes efficiently?
* How to handle transactions?

#| dTable Layering

e dTables can be built over other dTables
using the same interface

o Storage dTable

> Performance dTable

lookup() iterator()

look
ookup() iterator()

dTable Layering

* Exception dTable

o Combines a “restricted” dTable with an
“unrestricted” dTable

* E.g., want to store the state of residence
of customers
> |dentified by mostly-contiguous IDs
> Most live in the US, but a few don’t

Exceptional dTable

* Restricted handled by array dTables
(contiguous integer keys, fixed size values)

e Unrestricted handled by linear dTables

#2 Writable dTables

* Isolates all writing to dedicated writable
dTables

* Journal dTable

> Append-only store for new/updated data

> Periodic “digestion” to read-only dTables
when it gets large

 Combine write-optimized and read-only
dTables into single logical dTable: Overlay

Overlay dTable

* Built over two or more dTables, usually
one writable and multi read-only.

e [terator merges all underneath dTables’

iterators for reads
e Older “lower” data can
be overridden by newer
“higher” data

Time

A

lookup()

Ay

Journal dTable

¥ [¥YY

Array dffable

Array dTable

O

O

#3 Managed dTable

* Interfaces with transaction library, which
keeps transaction logs
° Always consistent
> User decide durability

 Also decides policy for digesting journal
dTables and combining read-only dTables

Managed dTable

Jnurnal dTabIe Overlay dTable Array dTabIe

dTables in summary

» Storage dTables: linear, fix-sized, array,
memory, journal, etc

e Performance dTables: b-tree, bloom filter,
cache, etc

» Unifying dTables: exception, overlay,
managed

Customer State Residence Example

g |

Modularity

e Linear + B-tree vs.Array + Exception

> Keys: contiguous or spaced 1000 apart

30

25

Lookup Time (s)
_ = N
wn o wn o

o

Contiguous

I Linear + B-tree

15,000.0

2,192.2

3204

46.8

6.8

1.0

Sparse

0 Array + Exception

Exception dTable Low Overhead

e Linear vs.Array vs.Array + Exception

3.0 70
25 60
50
40
30
20
10

0
Create Lookup

B Linear

20

1.5

Time (s)

1.0

05

0

o Array Array + Exception

e Exception dTable is low overhead vs. array
but restores full functionality

Read/Write Separation

Transactions Per Minute (TPM)
e Anvil’s durable and %

. 8,000
non-durable config
L. 7,000
outperformes origina
6,000
durable and non- 5 000
durable config 4,000
3,000
2,000
1,000

0

Durable Non-durable
B Original backend B Anvil backend

MySQL

Questions ?

