“MapReduce and Parallel DBMSs:
Friends or Foes?

Presented by Guozhang Wang

DB Lunch, May 3, 2010

Papers to Be Covered in This Talk

« CACM’I0

> MapReduce and Parallel DBMSs: Friends or
Foes!?

» VLDB’09

> HadoopDB: An Architectural Hybrid of
MapReduce and DBMS Technologies for
Analytical Workloads

o SIGMOD’08 rig), VLDB’08scopr), VLDB’ 09 Hive)

Qutline

e Architectural differences between MR and
PDBMS (CACM’]0)

> Workload differences
° System requirements
o Performance benchmark results

* Integrate MR and PDBMS (VLDB’09)
> Pig, SCOPE, Hive
> HadoopDB

e Conclusions

Workload Differences

 Parallel DBMSs were introduced when
o Structured data dominates
> Regular aggregations, joins
o Terabyte (today petabyte, 1000 nodes)

* MapReduce was introduced when
> Unstructured data is common

o Complex text mining, clustering, etc
> Exabyte (100,000 nodes)

System Requirements:
From order of 1000 to 100,000

* Finer granularity runtime fault tolerance
> Mean Time To Failure (MMTF)
> Checkpointing

* Heterogeneity support over the cloud

° Load Balancing

Architectural Differences

Parallel DBMSs MapReduce

Transactional-level fault Checkpointing
tolerance intermediate results

Architectural Differences

@ Parallel DBMSs MapReduce

Architectural Differences

"N Parallel DBMSs MapReduce

Hash/range/round robin Runtime scheduling
partitioning based on blocks

Architectural Differences

@ Parallel DBMSs MapReduce

Architectural Differences

"N Parallel DBMSs MapReduce

Loading to tables before External distributed file
querying systems

Architectural Differences

@ Parallel DBMSs MapReduce

Architectural Differences

C Parallel DBMSs MapReduce

Dataflow programming
models

SQL language

Architectural Differences

@ Parallel DBMSs MapReduce

Least But Not Last ..

e Parallel DBMS

> Expensive, no open-source option

* MapReduce
> Hadoop

> Attractive for modest budgets and
requirements

Benchmark Study

 Tested Systems:
> Hadoop (MapReduce)
> Vertica (Column-store DBMYS)
- DBMS-X (Row-store DBMS)

e |00-node cluster at Wisconsin

 Tasks
> Original MR Grep Task in OSDI'04 paper
> Web Log Aggregation
> Table Join with Aggregation

Benchmark Results Summary

2@ | Hadoop | DBMSX | \Vertica

» Grep Task 284 sec 194 sec 108 sec
Web Log 1146 sec 740 sec 268 sec
Join 1158 sec 32 sec 55 sec

Benchmark Results Summary

| Hadoop | DBMSX | \Vertica

4X Grep Task 284 sec 194 sec 108 sec
1146 sec 740 sec 268 sec
1158 sec 32 sec 55 sec

Benchmark Results Summary

| Hadoop | DBMSX | \Vertica

Grep Task 284 sec 194 sec 108 sec

36X Web Log 1146 sec 740 sec 268 sec
Join 1158 sec 32 sec 55 sec

Benchmark Results Summary

| Hadoop | DBMSX | \Vertica

Grep Task 284 sec 194 sec 108 sec
Web Log 1146 sec 740 sec 268 sec
Join 1158 sec 32 sec 55 sec

* MR: parsing in runtime, no compression
and pipelining, etc

 PDBMS: parsing while loading,
compression, query plan optimization

Qutline

e Architectural differences between MR and
PDBMS (CACM’]0)

> Workload differences
° System requirements
o Performance benchmark results

e Integrate MR and PDBMS (VLDB’09)
> Pig, SCOPE, Hive
> HadoopDB

e Conclusions

We Want Features from Both
Sides:

* Data Storage
> From MR: semi-structured data loading/parsing

> From DBMS: compression, indexing, etc

e Query Execution
> From MR:load balancing, fault-tolerance

> From DBMS: query plan optimization

e Query Interface
> From MR: procedural
> From DBMS: declarative

Pig

e Data Storage: MR

> Run Pig Latin queries over any external files
given user defined parsing functions

e Query Execution: MR

> Compile to MapReduce plan and get executed
on Hadoop

* Query Interface: MR+DBMS

> Declarative spirit of SQL + procedural
operators

SCOPE

e Data Storage: DBMS+MR

° Load to Cosmos Storage System, which is
append-only, distributed and replicated

e Query Execution: MR

> Compile to Dryad data flow plan (DAG), and
executed by the runtime job manager

e Query Interface: DBMS+MR

> Resembles SQL with embedded C#
expressions

Hive

e Data Storage: DBMS+MR

> Use one HDFS dir to store one “table”,
associated with builtin serialization format

Hive-Metastore

e Query Execution: MR

> Compile to a DAG of map-reduce jobs,
executed over Hadoop

* Query Interface: DBMS
> SQL-like declarative HiveQL

So Far.

Pig SCOPE

SIGMOD’08 VLDB’08

Query Procedural SQL-like

Interface yigher than MR + C#
Data External Cosmos
Storage Files Storage
Query

Hadoop Dryad

Execution

Hive
VLDB’09

HiveQL

HDFS w/
Metastore

Hadoop

HadoopDB

Pig SCOPE Hive HadoopDB

SIGMOD’08 VLDB’08 VLDB’09 VLDB’09

Query Procedural SQL-like

Interface pigher than MR + C# Al SQL

Data External Cosmos HDFS w/ HDFS +
Storage Files Storage Metastore DBMS

As much DBMS
as possible

Query
Execution

Hadoop Dryad Hadoop

Basic |dea

» Multiple, independent single node
databases coordinated by Hadoop

* SQL queries first compiled to MapReduce,
then a sub-sequence of map-reduce
converts back to SQL

Roduce\Job
InputFormat Implementations
o
ask with
putF

e T.m_,N lllllllll J
C i / |
w : em | Wik :
o w“mm [m m
E=) RN
h “N[“
O ([e ;
<

|

Hive

File Sink Operator

1

S_e—iect Operator
dummy

t

Group By Operator
re-sum by year

Reduce Sink Operator
partition by year

t

Group By Operator
sum revenue

)

Select Operator
Year, revenue

t

Table Scan Operator
sales

Reduce

Map

SQL — MR — SQL (SMS)

SMS

File Sink Operator

i

Select Operator
dummy
L

Group By Operator

re-sum by year

Reduce Sink Operator
partition by year

L

|

|
Table Scan Operator
SQL query

SELECT YEAR(saleDate), SUM(revenue) FROM sales GROUP BY YEAR(saleDate);

Hive

File Sink Operator

1

Select Operator
dummy

t

Group By Operator
re-sum by year

Reduce Sink Operator
partition by year

t

Group By Operator
sum revenue

4

Select Operator
Year, revenue

t

Table Scan Operator
sales

Reduce

SQL — MR — SQL (SMS)

SMS

File Sink Operator

i

Select Operator
dummy

Group By Operator

re-sum by year

Reduce Sink Operator
partition by year

.

|

Table Scan Operator
SQL query

SELECT YEAR(saleDate), SUM(revenue) FROM sales GROUP BY YEAR(saleDate);

Hive

File Sink Operator

1

Select Operator
dummy

t

Group By Operator
re-sum by year

Reduce Sink Operator
partition by year

t

Group By Operator
sum revenue

4

Select Operator
Year, revenue

t

Table Scan Operator
sales

Reduce

SQL — MR — SQL (SMS)

SMS

File Sink Operator

=

i

Select Operator
dumTy

+

Group By Operator

re-sum by year

Reduce Sink Operator
partition by year

4

Table Scan Operator
SQL query

SELECT YEAR(saleDate), SUM(revenue) FROM sales GROUP BY YEAR(saleDate);

Evaluation Setup

 Tasks: Same as the CACM’[0 paper
 Amazon EC2 “large” instances

e For fault-tolerance: terminate a node at
50% completion

e For fluctuation-tolerance: slow down a
node by running an |/O-intensive job

Performance: join task

2000 o M Vertica

[l DB-X

B HadoopDB M Hadoop

1800 A

1600 A

1400 -

1200 -

1000 A

seconds

800 -

600 -

400 -

200 H

10 nodes 50 nodes 100 nodes

Scalability: aggregation task

200% e M \Vertica
M HadoopDB
Q L _
180% M Hadoop
160% -

140% -
120% -
100% -
80% -

percentage slowdown

60% -
40% A
20% -

0% -

Fault-tolerance Fluctuation-tolerance

Conclusions

* Sacrificing performance is necessary for

fault tolerance/heterogeneity in the case
of order 100,000 nodes

e MapReduce and Parallel DBMSs
completes each other for large scale
analytical workloads.

Conclusions

* Sacrificing performance is necessary for

fault tolerance/heterogeneity in the case
of order 100,000 nodes

* MapReduce and Parallel DBMSs
completes each other for large scale
analytical workloads.

Questions?

Other MR+DBMS Work

(part of the slide from Andrew Pavlo)

e« Commercial MR Integrations
> Vertica
> Greenplum
> AsterData
o Sybase 1Q

e Research
> MRi (Wisconsin)
> Osprey (MIT)

Benchmark Results Summary

| Hadoop | DBMSX | \Vertica

‘ Grep Task 284 sec 194 sec 108 sec
Web Log 1146 sec 740 sec 268 sec
Join 1158 sec 32 sec 55 sec

* MR: Record parsing in run time

 PDBMS: Record parsed/compressed when
loaded

Benchmark Results Summary

| Hadoop | DBMSX | \Vertica

Grep Task 284 sec 194 sec 108 sec
1146 sec 740 sec 268 sec
1158 sec 32 sec 55 sec

* MR:Write intermediate results to disks
 PDBMS: Pipelining

Benchmark Results Summary

| Hadoop | DBMSX | \Vertica

Grep Task 284 sec 194 sec 108 sec

Web Log 1146 sec 740 sec 268 sec

‘ Join 1158 sec 32 sec 55 sec

* MR: Cannot handle joins very efficiently
 PDBMS: Optimization for joins

Benchmark Results Summary

| Hadoop | DBMSX | \Vertica

Grep Task 284 sec 194 sec 108 sec
Web Log 1146 sec 740 sec 268 sec
Join 1158 sec 32 sec 55 sec

Summary:

* Trade performance to have runtime
scheduling and checkpointing

e Trade execution time to reduce load time
at storage layer

Architectural Differences

Parallel DBMSs MapReduce

Transactional-level fault Checkpointing
tolerance intermediate results

Hash/range/round robin Runtime scheduling
partitioning based on blocks

Loading to tables before External distributed file
querying systems
Dataflow programming

SQL language odels

