
MapReduce and Parallel DBMSs:

Friends or Foes?

Presented by Guozhang Wang

DB Lunch, May 3rd, 2010

Papers to Be Covered in This Talk

 CACM’10

◦ MapReduce and Parallel DBMSs: Friends or

Foes?

 VLDB’09

◦ HadoopDB: An Architectural Hybrid of

MapReduce and DBMS Technologies for

Analytical Workloads

 SIGMOD’08 (Pig), VLDB’08(SCOPE), VLDB’09(Hive)

Outline

 Architectural differences between MR and
PDBMS (CACM’10)

◦ Workload differences

◦ System requirements

◦ Performance benchmark results

 Integrate MR and PDBMS (VLDB’09)

◦ Pig, SCOPE, Hive

◦ HadoopDB

 Conclusions

Workload Differences

 Parallel DBMSs were introduced when

◦ Structured data dominates

◦ Regular aggregations, joins

◦ Terabyte (today petabyte, 1000 nodes)

 MapReduce was introduced when

◦ Unstructured data is common

◦ Complex text mining, clustering, etc

◦ Exabyte (100,000 nodes)

System Requirements:

From order of 1000 to 100,000

 Finer granularity runtime fault tolerance

◦ Mean Time To Failure (MMTF)

◦ Checkpointing

 Heterogeneity support over the cloud

◦ Load Balancing

Architectural Differences

Parallel DBMSs MapReduce

Transactional-level fault

tolerance

Checkpointing

intermediate results

Architectural Differences

Parallel DBMSs MapReduce

Jobs often need to restart

because of failures

Cannot pipeline query

operators

Architectural Differences

Parallel DBMSs MapReduce

Jobs often need to restart

because of failures

Cannot pipeline query

operators

Hash/range/round robin

partitioning

Runtime scheduling

based on blocks

Architectural Differences

Parallel DBMSs MapReduce

Jobs often need to restart

because of failures

Cannot pipeline query

operators

Execution time determined

by slowest node

Cannot globally optimize

execution plans

Architectural Differences

Parallel DBMSs MapReduce

Jobs often need to restart

because of failures

Cannot pipeline query

operators

Execution time determined

by slowest node

Cannot globally optimize

execution plans

Loading to tables before

querying

External distributed file

systems

Architectural Differences

Parallel DBMSs MapReduce

Jobs often need to restart

because of failures

Cannot pipeline query

operators

Execution time determined

by slowest node

Cannot globally optimize

execution plans

Awkward for semi-

structured data

Cannot do indexing,

compression, etc

Architectural Differences

Parallel DBMSs MapReduce

Jobs often need to restart

because of failures

Cannot pipeline query

operators

Execution time determined

by slowest node

Cannot globally optimize

execution plans

Awkward for semi-

structured data

Cannot do indexing,

compression, etc

SQL language
Dataflow programming

models

Architectural Differences

Parallel DBMSs MapReduce

Jobs often need to restart

because of failures

Cannot pipeline query

operators

Execution time determined

by slowest node

Cannot globally optimize

execution plans

Awkward for semi-

structured data

Cannot do indexing,

compression, etc

Not suitable for

unstructured data analysis

Too low-level, not reusable,

not good for joins

Least But Not Last ..

 Parallel DBMS

◦ Expensive, no open-source option

 MapReduce

◦ Hadoop

◦ Attractive for modest budgets and

requirements

Benchmark Study

 Tested Systems:

◦ Hadoop (MapReduce)

◦ Vertica (Column-store DBMS)

◦ DBMS-X (Row-store DBMS)

 100-node cluster at Wisconsin

 Tasks

◦ Original MR Grep Task in OSDI’04 paper

◦ Web Log Aggregation

◦ Table Join with Aggregation

Benchmark Results Summary

2X

Benchmark Results Summary

4X

Benchmark Results Summary

36X

Benchmark Results Summary

 MR: parsing in runtime, no compression

and pipelining, etc

 PDBMS: parsing while loading,

compression, query plan optimization

Outline

 Architectural differences between MR and
PDBMS (CACM’10)

◦ Workload differences

◦ System requirements

◦ Performance benchmark results

 Integrate MR and PDBMS (VLDB’09)

◦ Pig, SCOPE, Hive

◦ HadoopDB

 Conclusions

We Want Features from Both

Sides:

 Data Storage

◦ From MR: semi-structured data loading/parsing

◦ From DBMS: compression, indexing, etc

 Query Execution

◦ From MR: load balancing, fault-tolerance

◦ From DBMS: query plan optimization

 Query Interface

◦ From MR: procedural

◦ From DBMS: declarative

Pig

 Data Storage: MR

◦ Run Pig Latin queries over any external files

given user defined parsing functions

 Query Execution: MR

◦ Compile to MapReduce plan and get executed

on Hadoop

 Query Interface: MR+DBMS

◦ Declarative spirit of SQL + procedural

operators

SCOPE

 Data Storage: DBMS+MR

◦ Load to Cosmos Storage System, which is

append-only, distributed and replicated

 Query Execution: MR

◦ Compile to Dryad data flow plan (DAG), and

executed by the runtime job manager

 Query Interface: DBMS+MR

◦ Resembles SQL with embedded C#

expressions

Hive

 Data Storage: DBMS+MR

◦ Use one HDFS dir to store one “table”,

associated with builtin serialization format

 Hive-Metastore

 Query Execution: MR

◦ Compile to a DAG of map-reduce jobs,

executed over Hadoop

 Query Interface: DBMS

◦ SQL-like declarative HiveQL

So Far..

Pig

SIGMOD’08

SCOPE

VLDB’08

Hive

VLDB’09

Query

Interface

Procedural

Higher than MR

SQL-like

+ C#
HiveQL

Data

Storage

External

Files

Cosmos

Storage

HDFS w/

Metastore

Query

Execution
Hadoop Dryad Hadoop

HadoopDB

Pig

SIGMOD’08

SCOPE

VLDB’08

Hive

VLDB’09

HadoopDB

VLDB’09

Query

Interface

Procedural

Higher than MR

SQL-like

+ C#
HiveQL SQL

Data

Storage

External

Files

Cosmos

Storage

HDFS w/

Metastore

HDFS +

DBMS

Query

Execution
Hadoop Dryad Hadoop

As much DBMS

as possible

Basic Idea

 Multiple, independent single node

databases coordinated by Hadoop

 SQL queries first compiled to MapReduce,

then a sub-sequence of map-reduce

converts back to SQL

Architecture

SQL – MR – SQL (SMS)

SQL – MR – SQL (SMS)

Year

SQL – MR – SQL (SMS)

Year
Not

Year

Evaluation Setup

 Tasks: Same as the CACM’10 paper

 Amazon EC2 “large” instances

 For fault-tolerance: terminate a node at

50% completion

 For fluctuation-tolerance: slow down a

node by running an I/O-intensive job

Performance: join task

Scalability: aggregation task

Conclusions

 Sacrificing performance is necessary for

fault tolerance/heterogeneity in the case

of order 100,000 nodes

 MapReduce and Parallel DBMSs

completes each other for large scale

analytical workloads.

Conclusions

 Sacrificing performance is necessary for

fault tolerance/heterogeneity in the case

of order 100,000 nodes

 MapReduce and Parallel DBMSs

completes each other for large scale

analytical workloads.

Questions?

Other MR+DBMS Work
(part of the slide from Andrew Pavlo)

 Commercial MR Integrations

◦ Vertica

◦ Greenplum

◦ AsterData

◦ Sybase IQ

 Research

◦ MRi (Wisconsin)

◦ Osprey (MIT)

Benchmark Results Summary

 MR: Record parsing in run time

 PDBMS: Record parsed/compressed when

loaded

Benchmark Results Summary

 MR: Write intermediate results to disks

 PDBMS: Pipelining

Benchmark Results Summary

 MR: Cannot handle joins very efficiently

 PDBMS: Optimization for joins

Benchmark Results Summary

Summary:

 Trade performance to have runtime

scheduling and checkpointing

 Trade execution time to reduce load time

at storage layer

Architectural Differences

Parallel DBMSs MapReduce

Transactional-level fault

tolerance

Checkpointing

intermediate results

Hash/range/round robin

partitioning

Runtime scheduling

based on blocks

Loading to tables before

querying

External distributed file

systems

SQL language
Dataflow programming

models

