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Workload Differences

 Parallel DBMSs were introduced when
o Structured data dominates
> Regular aggregations, joins
o Terabyte (today petabyte, 1000 nodes)

* MapReduce was introduced when
> Unstructured data is common

o Complex text mining, clustering, etc
> Exabyte (100,000 nodes)



System Requirements:
From order of 1000 to 100,000

* Finer granularity runtime fault tolerance
> Mean Time To Failure (MMTF)
> Checkpointing

* Heterogeneity support over the cloud

° Load Balancing



Architectural Differences

Parallel DBMSs MapReduce

Transactional-level fault Checkpointing
tolerance intermediate results
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Hash/range/round robin Runtime scheduling
partitioning based on blocks
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Loading to tables before External distributed file
querying systems
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Architectural Differences

C Parallel DBMSs MapReduce

Dataflow programming
models

SQL language
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Least But Not Last ..

e Parallel DBMS

> Expensive, no open-source option

* MapReduce
> Hadoop

> Attractive for modest budgets and
requirements



Benchmark Study

 Tested Systems:
> Hadoop (MapReduce)
> Vertica (Column-store DBMYS)
- DBMS-X (Row-store DBMS)

e |00-node cluster at Wisconsin

 Tasks
> Original MR Grep Task in OSDI'04 paper
> Web Log Aggregation
> Table Join with Aggregation



Benchmark Results Summary
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» Grep Task 284 sec 194 sec 108 sec
Web Log 1146 sec 740 sec 268 sec
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Benchmark Results Summary

| Hadoop | DBMSX | \Vertica

Grep Task 284 sec 194 sec 108 sec
Web Log 1146 sec 740 sec 268 sec
Join 1158 sec 32 sec 55 sec

* MR: parsing in runtime, no compression
and pipelining, etc

 PDBMS: parsing while loading,
compression, query plan optimization
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We Want Features from Both
Sides:

* Data Storage
> From MR: semi-structured data loading/parsing

> From DBMS: compression, indexing, etc

e Query Execution
> From MR:load balancing, fault-tolerance

> From DBMS: query plan optimization

e Query Interface
> From MR: procedural
> From DBMS: declarative



Pig

e Data Storage: MR

> Run Pig Latin queries over any external files
given user defined parsing functions

e Query Execution: MR

> Compile to MapReduce plan and get executed
on Hadoop

* Query Interface: MR+DBMS

> Declarative spirit of SQL + procedural
operators



SCOPE

e Data Storage: DBMS+MR

° Load to Cosmos Storage System, which is
append-only, distributed and replicated

e Query Execution: MR

> Compile to Dryad data flow plan (DAG), and
executed by the runtime job manager

e Query Interface: DBMS+MR

> Resembles SQL with embedded C#
expressions



Hive

e Data Storage: DBMS+MR

> Use one HDFS dir to store one “table”,
associated with builtin serialization format

Hive-Metastore

e Query Execution: MR

> Compile to a DAG of map-reduce jobs,
executed over Hadoop

* Query Interface: DBMS
> SQL-like declarative HiveQL



So Far.
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HadoopDB

Pig SCOPE Hive HadoopDB
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Basic |dea

» Multiple, independent single node
databases coordinated by Hadoop

* SQL queries first compiled to MapReduce,
then a sub-sequence of map-reduce
converts back to SQL



Roduce\Job
InputFormat Implementations
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Table Scan Operator
SQL query

SELECT YEAR(saleDate), SUM(revenue) FROM sales GROUP BY YEAR(saleDate);
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Evaluation Setup

 Tasks: Same as the CACM’[ 0 paper
 Amazon EC2 “large” instances

e For fault-tolerance: terminate a node at
50% completion

e For fluctuation-tolerance: slow down a
node by running an |/O-intensive job



Performance: join task
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Scalability: aggregation task
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Conclusions

* Sacrificing performance is necessary for

fault tolerance/heterogeneity in the case
of order 100,000 nodes

e MapReduce and Parallel DBMSs
completes each other for large scale
analytical workloads.
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completes each other for large scale
analytical workloads.

Questions?



Other MR+DBMS Work

(part of the slide from Andrew Pavlo)

e« Commercial MR Integrations
> Vertica
> Greenplum
> AsterData
o Sybase 1Q

e Research
> MRi (Wisconsin)
> Osprey (MIT)



Benchmark Results Summary

| Hadoop | DBMSX | \Vertica

‘ Grep Task 284 sec 194 sec 108 sec
Web Log 1146 sec 740 sec 268 sec
Join 1158 sec 32 sec 55 sec

* MR: Record parsing in run time

 PDBMS: Record parsed/compressed when
loaded



Benchmark Results Summary
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* MR:Write intermediate results to disks
 PDBMS: Pipelining



Benchmark Results Summary

| Hadoop | DBMSX | \Vertica

Grep Task 284 sec 194 sec 108 sec

Web Log 1146 sec 740 sec 268 sec

‘ Join 1158 sec 32 sec 55 sec

* MR: Cannot handle joins very efficiently
 PDBMS: Optimization for joins



Benchmark Results Summary

| Hadoop | DBMSX | \Vertica

Grep Task 284 sec 194 sec 108 sec
Web Log 1146 sec 740 sec 268 sec
Join 1158 sec 32 sec 55 sec

Summary:

* Trade performance to have runtime
scheduling and checkpointing

e Trade execution time to reduce load time
at storage layer
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