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Papers to Be Covered in This Talk

 CACM’10

◦ MapReduce and Parallel DBMSs: Friends or 

Foes?

 VLDB’09

◦ HadoopDB: An Architectural Hybrid of 

MapReduce and DBMS Technologies for 

Analytical Workloads

 SIGMOD’08 (Pig), VLDB’08(SCOPE), VLDB’09(Hive)



Outline

 Architectural differences between MR and 
PDBMS (CACM’10)

◦ Workload differences

◦ System requirements

◦ Performance benchmark results

 Integrate MR and PDBMS (VLDB’09)

◦ Pig,  SCOPE,  Hive

◦ HadoopDB

 Conclusions



Workload Differences

 Parallel DBMSs were introduced when

◦ Structured data dominates

◦ Regular aggregations, joins

◦ Terabyte (today petabyte, 1000 nodes)

 MapReduce was introduced when

◦ Unstructured data is common

◦ Complex text mining, clustering, etc

◦ Exabyte (100,000 nodes)



System Requirements:

From order of 1000 to 100,000

 Finer granularity runtime fault tolerance

◦ Mean Time To Failure (MMTF)

◦ Checkpointing

 Heterogeneity support over the cloud

◦ Load Balancing



Architectural Differences

Parallel DBMSs MapReduce

Transactional-level fault 

tolerance

Checkpointing

intermediate results
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Architectural Differences

Parallel DBMSs MapReduce

Jobs often need to restart 

because of failures

Cannot pipeline query 

operators

Execution time determined 

by slowest node

Cannot globally optimize 

execution plans

Awkward for semi-

structured data

Cannot do indexing, 

compression, etc

Not suitable for 

unstructured data analysis

Too low-level,  not reusable,

not good for joins



Least But Not Last ..

 Parallel DBMS

◦ Expensive, no open-source option

 MapReduce

◦ Hadoop

◦ Attractive for modest budgets and 

requirements



Benchmark Study

 Tested Systems:

◦ Hadoop (MapReduce)

◦ Vertica (Column-store DBMS)

◦ DBMS-X (Row-store DBMS)

 100-node cluster at Wisconsin

 Tasks

◦ Original MR Grep Task in OSDI’04 paper

◦ Web Log Aggregation

◦ Table Join with Aggregation
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Benchmark Results Summary

 MR: parsing in runtime, no compression 

and pipelining, etc

 PDBMS: parsing while loading, 

compression, query plan optimization



Outline

 Architectural differences between MR and 
PDBMS (CACM’10)

◦ Workload differences

◦ System requirements

◦ Performance benchmark results

 Integrate MR and PDBMS (VLDB’09)

◦ Pig,  SCOPE,  Hive

◦ HadoopDB

 Conclusions



We Want Features from Both 

Sides:

 Data Storage

◦ From MR: semi-structured data loading/parsing 

◦ From DBMS: compression, indexing, etc

 Query Execution

◦ From MR: load balancing, fault-tolerance

◦ From DBMS: query plan optimization

 Query Interface

◦ From MR: procedural

◦ From DBMS: declarative



Pig

 Data Storage: MR

◦ Run Pig Latin queries over any external files 

given user defined parsing functions

 Query Execution: MR

◦ Compile to MapReduce plan and get executed 

on Hadoop

 Query Interface: MR+DBMS

◦ Declarative spirit of SQL + procedural 

operators



SCOPE

 Data Storage: DBMS+MR

◦ Load to Cosmos Storage System, which is 

append-only, distributed and replicated

 Query Execution: MR

◦ Compile to Dryad data flow plan (DAG), and 

executed by the runtime job manager

 Query Interface: DBMS+MR

◦ Resembles SQL with embedded C# 

expressions



Hive

 Data Storage: DBMS+MR

◦ Use one HDFS dir to store one “table”, 

associated with builtin serialization format

 Hive-Metastore

 Query Execution: MR

◦ Compile to a DAG of map-reduce jobs, 

executed over Hadoop

 Query Interface: DBMS

◦ SQL-like declarative HiveQL



So Far..
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HadoopDB

Pig

SIGMOD’08

SCOPE

VLDB’08

Hive

VLDB’09

HadoopDB

VLDB’09

Query 
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As much DBMS 
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Basic Idea

 Multiple, independent single node 

databases coordinated by Hadoop

 SQL queries first compiled to MapReduce, 

then a sub-sequence of map-reduce 

converts back to SQL



Architecture
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Evaluation Setup

 Tasks: Same as the CACM’10 paper

 Amazon EC2 “large” instances

 For fault-tolerance: terminate a node at 

50% completion

 For fluctuation-tolerance: slow down a 

node by running an I/O-intensive job



Performance: join task



Scalability: aggregation task
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Other MR+DBMS Work 
(part of the slide from Andrew Pavlo)

 Commercial MR Integrations

◦ Vertica

◦ Greenplum

◦ AsterData

◦ Sybase IQ

 Research

◦ MRi (Wisconsin)

◦ Osprey (MIT)



Benchmark Results Summary

 MR: Record parsing in run time

 PDBMS: Record parsed/compressed when 

loaded 



Benchmark Results Summary

 MR: Write intermediate results to disks

 PDBMS: Pipelining



Benchmark Results Summary

 MR: Cannot handle joins very efficiently

 PDBMS: Optimization for joins



Benchmark Results Summary

Summary:

 Trade performance to have runtime 

scheduling and checkpointing

 Trade execution time to reduce load time 

at storage layer
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