
MapReduce and Parallel DBMSs:

Friends or Foes?

Presented by Guozhang Wang

DB Lunch, May 3rd, 2010

Papers to Be Covered in This Talk

 CACM’10

◦ MapReduce and Parallel DBMSs: Friends or

Foes?

 VLDB’09

◦ HadoopDB: An Architectural Hybrid of

MapReduce and DBMS Technologies for

Analytical Workloads

 SIGMOD’08 (Pig), VLDB’08(SCOPE), VLDB’09(Hive)

Outline

 Architectural differences between MR and
PDBMS (CACM’10)

◦ Workload differences

◦ System requirements

◦ Performance benchmark results

 Integrate MR and PDBMS (VLDB’09)

◦ Pig, SCOPE, Hive

◦ HadoopDB

 Conclusions

Workload Differences

 Parallel DBMSs were introduced when

◦ Structured data dominates

◦ Regular aggregations, joins

◦ Terabyte (today petabyte, 1000 nodes)

 MapReduce was introduced when

◦ Unstructured data is common

◦ Complex text mining, clustering, etc

◦ Exabyte (100,000 nodes)

System Requirements:

From order of 1000 to 100,000

 Finer granularity runtime fault tolerance

◦ Mean Time To Failure (MMTF)

◦ Checkpointing

 Heterogeneity support over the cloud

◦ Load Balancing

Architectural Differences

Parallel DBMSs MapReduce

Transactional-level fault

tolerance

Checkpointing

intermediate results

Architectural Differences

Parallel DBMSs MapReduce

Jobs often need to restart

because of failures

Cannot pipeline query

operators

Architectural Differences

Parallel DBMSs MapReduce

Jobs often need to restart

because of failures

Cannot pipeline query

operators

Hash/range/round robin

partitioning

Runtime scheduling

based on blocks

Architectural Differences

Parallel DBMSs MapReduce

Jobs often need to restart

because of failures

Cannot pipeline query

operators

Execution time determined

by slowest node

Cannot globally optimize

execution plans

Architectural Differences

Parallel DBMSs MapReduce

Jobs often need to restart

because of failures

Cannot pipeline query

operators

Execution time determined

by slowest node

Cannot globally optimize

execution plans

Loading to tables before

querying

External distributed file

systems

Architectural Differences

Parallel DBMSs MapReduce

Jobs often need to restart

because of failures

Cannot pipeline query

operators

Execution time determined

by slowest node

Cannot globally optimize

execution plans

Awkward for semi-

structured data

Cannot do indexing,

compression, etc

Architectural Differences

Parallel DBMSs MapReduce

Jobs often need to restart

because of failures

Cannot pipeline query

operators

Execution time determined

by slowest node

Cannot globally optimize

execution plans

Awkward for semi-

structured data

Cannot do indexing,

compression, etc

SQL language
Dataflow programming

models

Architectural Differences

Parallel DBMSs MapReduce

Jobs often need to restart

because of failures

Cannot pipeline query

operators

Execution time determined

by slowest node

Cannot globally optimize

execution plans

Awkward for semi-

structured data

Cannot do indexing,

compression, etc

Not suitable for

unstructured data analysis

Too low-level, not reusable,

not good for joins

Least But Not Last ..

 Parallel DBMS

◦ Expensive, no open-source option

 MapReduce

◦ Hadoop

◦ Attractive for modest budgets and

requirements

Benchmark Study

 Tested Systems:

◦ Hadoop (MapReduce)

◦ Vertica (Column-store DBMS)

◦ DBMS-X (Row-store DBMS)

 100-node cluster at Wisconsin

 Tasks

◦ Original MR Grep Task in OSDI’04 paper

◦ Web Log Aggregation

◦ Table Join with Aggregation

Benchmark Results Summary

2X

Benchmark Results Summary

4X

Benchmark Results Summary

36X

Benchmark Results Summary

 MR: parsing in runtime, no compression

and pipelining, etc

 PDBMS: parsing while loading,

compression, query plan optimization

Outline

 Architectural differences between MR and
PDBMS (CACM’10)

◦ Workload differences

◦ System requirements

◦ Performance benchmark results

 Integrate MR and PDBMS (VLDB’09)

◦ Pig, SCOPE, Hive

◦ HadoopDB

 Conclusions

We Want Features from Both

Sides:

 Data Storage

◦ From MR: semi-structured data loading/parsing

◦ From DBMS: compression, indexing, etc

 Query Execution

◦ From MR: load balancing, fault-tolerance

◦ From DBMS: query plan optimization

 Query Interface

◦ From MR: procedural

◦ From DBMS: declarative

Pig

 Data Storage: MR

◦ Run Pig Latin queries over any external files

given user defined parsing functions

 Query Execution: MR

◦ Compile to MapReduce plan and get executed

on Hadoop

 Query Interface: MR+DBMS

◦ Declarative spirit of SQL + procedural

operators

SCOPE

 Data Storage: DBMS+MR

◦ Load to Cosmos Storage System, which is

append-only, distributed and replicated

 Query Execution: MR

◦ Compile to Dryad data flow plan (DAG), and

executed by the runtime job manager

 Query Interface: DBMS+MR

◦ Resembles SQL with embedded C#

expressions

Hive

 Data Storage: DBMS+MR

◦ Use one HDFS dir to store one “table”,

associated with builtin serialization format

 Hive-Metastore

 Query Execution: MR

◦ Compile to a DAG of map-reduce jobs,

executed over Hadoop

 Query Interface: DBMS

◦ SQL-like declarative HiveQL

So Far..

Pig

SIGMOD’08

SCOPE

VLDB’08

Hive

VLDB’09

Query

Interface

Procedural

Higher than MR

SQL-like

+ C#
HiveQL

Data

Storage

External

Files

Cosmos

Storage

HDFS w/

Metastore

Query

Execution
Hadoop Dryad Hadoop

HadoopDB

Pig

SIGMOD’08

SCOPE

VLDB’08

Hive

VLDB’09

HadoopDB

VLDB’09

Query

Interface

Procedural

Higher than MR

SQL-like

+ C#
HiveQL SQL

Data

Storage

External

Files

Cosmos

Storage

HDFS w/

Metastore

HDFS +

DBMS

Query

Execution
Hadoop Dryad Hadoop

As much DBMS

as possible

Basic Idea

 Multiple, independent single node

databases coordinated by Hadoop

 SQL queries first compiled to MapReduce,

then a sub-sequence of map-reduce

converts back to SQL

Architecture

SQL – MR – SQL (SMS)

SQL – MR – SQL (SMS)

Year

SQL – MR – SQL (SMS)

Year
Not

Year

Evaluation Setup

 Tasks: Same as the CACM’10 paper

 Amazon EC2 “large” instances

 For fault-tolerance: terminate a node at

50% completion

 For fluctuation-tolerance: slow down a

node by running an I/O-intensive job

Performance: join task

Scalability: aggregation task

Conclusions

 Sacrificing performance is necessary for

fault tolerance/heterogeneity in the case

of order 100,000 nodes

 MapReduce and Parallel DBMSs

completes each other for large scale

analytical workloads.

Conclusions

 Sacrificing performance is necessary for

fault tolerance/heterogeneity in the case

of order 100,000 nodes

 MapReduce and Parallel DBMSs

completes each other for large scale

analytical workloads.

Questions?

Other MR+DBMS Work
(part of the slide from Andrew Pavlo)

 Commercial MR Integrations

◦ Vertica

◦ Greenplum

◦ AsterData

◦ Sybase IQ

 Research

◦ MRi (Wisconsin)

◦ Osprey (MIT)

Benchmark Results Summary

 MR: Record parsing in run time

 PDBMS: Record parsed/compressed when

loaded

Benchmark Results Summary

 MR: Write intermediate results to disks

 PDBMS: Pipelining

Benchmark Results Summary

 MR: Cannot handle joins very efficiently

 PDBMS: Optimization for joins

Benchmark Results Summary

Summary:

 Trade performance to have runtime

scheduling and checkpointing

 Trade execution time to reduce load time

at storage layer

Architectural Differences

Parallel DBMSs MapReduce

Transactional-level fault

tolerance

Checkpointing

intermediate results

Hash/range/round robin

partitioning

Runtime scheduling

based on blocks

Loading to tables before

querying

External distributed file

systems

SQL language
Dataflow programming

models

