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Papers to Be Covered in This Talk

 CACM’10

◦ MapReduce and Parallel DBMSs: Friends or 

Foes?

 VLDB’09

◦ HadoopDB: An Architectural Hybrid of 

MapReduce and DBMS Technologies for 

Analytical Workloads

 SIGMOD’08 (Pig), VLDB’08(SCOPE), VLDB’09(Hive)



Outline

 Architectural differences between MR and 
PDBMS (CACM’10)

◦ Workload differences

◦ System requirements

◦ Performance benchmark results

 Integrate MR and PDBMS (VLDB’09)

◦ Pig,  SCOPE,  Hive

◦ HadoopDB

 Conclusions



Workload Differences

 Parallel DBMSs were introduced when

◦ Structured data dominates

◦ Regular aggregations, joins

◦ Terabyte (today petabyte, 1000 nodes)

 MapReduce was introduced when

◦ Unstructured data is common

◦ Complex text mining, clustering, etc

◦ Exabyte (100,000 nodes)



System Requirements:

From order of 1000 to 100,000

 Finer granularity runtime fault tolerance

◦ Mean Time To Failure (MMTF)

◦ Checkpointing

 Heterogeneity support over the cloud

◦ Load Balancing
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Architectural Differences

Parallel DBMSs MapReduce

Jobs often need to restart 

because of failures

Cannot pipeline query 

operators

Execution time determined 

by slowest node

Cannot globally optimize 

execution plans

Awkward for semi-

structured data

Cannot do indexing, 

compression, etc

Not suitable for 

unstructured data analysis

Too low-level,  not reusable,

not good for joins



Least But Not Last ..

 Parallel DBMS

◦ Expensive, no open-source option

 MapReduce

◦ Hadoop

◦ Attractive for modest budgets and 

requirements



Benchmark Study

 Tested Systems:

◦ Hadoop (MapReduce)

◦ Vertica (Column-store DBMS)

◦ DBMS-X (Row-store DBMS)

 100-node cluster at Wisconsin

 Tasks

◦ Original MR Grep Task in OSDI’04 paper

◦ Web Log Aggregation

◦ Table Join with Aggregation
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Benchmark Results Summary

 MR: parsing in runtime, no compression 

and pipelining, etc

 PDBMS: parsing while loading, 

compression, query plan optimization
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◦ System requirements
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We Want Features from Both 

Sides:

 Data Storage

◦ From MR: semi-structured data loading/parsing 

◦ From DBMS: compression, indexing, etc

 Query Execution

◦ From MR: load balancing, fault-tolerance

◦ From DBMS: query plan optimization

 Query Interface

◦ From MR: procedural

◦ From DBMS: declarative



Pig

 Data Storage: MR

◦ Run Pig Latin queries over any external files 

given user defined parsing functions

 Query Execution: MR

◦ Compile to MapReduce plan and get executed 

on Hadoop

 Query Interface: MR+DBMS

◦ Declarative spirit of SQL + procedural 

operators



SCOPE

 Data Storage: DBMS+MR

◦ Load to Cosmos Storage System, which is 

append-only, distributed and replicated

 Query Execution: MR

◦ Compile to Dryad data flow plan (DAG), and 

executed by the runtime job manager

 Query Interface: DBMS+MR

◦ Resembles SQL with embedded C# 

expressions



Hive

 Data Storage: DBMS+MR

◦ Use one HDFS dir to store one “table”, 

associated with builtin serialization format

 Hive-Metastore

 Query Execution: MR

◦ Compile to a DAG of map-reduce jobs, 

executed over Hadoop

 Query Interface: DBMS

◦ SQL-like declarative HiveQL



So Far..
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HadoopDB
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Basic Idea

 Multiple, independent single node 

databases coordinated by Hadoop

 SQL queries first compiled to MapReduce, 

then a sub-sequence of map-reduce 

converts back to SQL



Architecture
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Evaluation Setup

 Tasks: Same as the CACM’10 paper

 Amazon EC2 “large” instances

 For fault-tolerance: terminate a node at 

50% completion

 For fluctuation-tolerance: slow down a 

node by running an I/O-intensive job



Performance: join task



Scalability: aggregation task
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Other MR+DBMS Work 
(part of the slide from Andrew Pavlo)

 Commercial MR Integrations

◦ Vertica

◦ Greenplum

◦ AsterData

◦ Sybase IQ

 Research

◦ MRi (Wisconsin)

◦ Osprey (MIT)



Benchmark Results Summary

 MR: Record parsing in run time

 PDBMS: Record parsed/compressed when 

loaded 



Benchmark Results Summary

 MR: Write intermediate results to disks

 PDBMS: Pipelining



Benchmark Results Summary

 MR: Cannot handle joins very efficiently

 PDBMS: Optimization for joins



Benchmark Results Summary

Summary:

 Trade performance to have runtime 

scheduling and checkpointing

 Trade execution time to reduce load time 

at storage layer
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