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9 Motivation: Statistical Inference
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Motivation: Statistical Physics

* Energy Model
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Posterior Estimation:

Var(X) = Z pi - (i — p)?

E[f(z)]

Thermal Egm. Estimation:

E[5] =Z§ P(5)
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) Problem | Rewrite: Sampling

* Generate samples {x(7}R from the probability
distribution p(x).

* |f we can solve this problem, we can solve the
integral computation by: s x“)px)

e \We will show later this estimator is unbiased
with very nice variance bound



) Deterministic Methods

* Numerical Integration

— Choose fixed points in the distribution

— Use their probability values 4
> s
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* Unbiased, but the variance is exponential to
dimension



9 Random Methods: Monte Carlo

* Generate samples i.i.d
 Compute samples’ probability

* Approximate integral by samples integration

[ rep@ax ~ Y rerdpex)



B Merits of Monte Carlo

* Law of Large Numbers
— Function f(x) over random variable x
— l.i.d random samples drawn from p(x)

3L fX) S [T0p(0d as N —> oo
e Central Limit Theorem
— L.i.d samples with expectation p and variance o?

Sample distribution — normal(p, 6%/n)

Variance Not Depend on Dimension!



Simple Sampling

 Complex distributions
— Known CDF: inversion methods
— Simpler g(x) : Rejection sampling
— Can compute density: importance sampling
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* Forward Sampling /};—w\
— Repeated sample x:, x;(), e O\ —~
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— When N samples retained,
estimate p(x;|x;) as
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Problem: low acceptance rate



1) Problem Il: Curse of Dimensionality

 The “prob. dense area” shrinks
as dimension d arises

* Harder to sample in this area
to get enough information of
the distribution

* Acceptance rate decreases ] Y
exponentially with d J R




* Avoid random-walk, but sample variables
conditional on previous samples

 Note: violate the i.i.d condition of LLN and CLT



B Markov Chain

Memoryless Random Process
— Transition probability A: p(x,,,) = A*p(x,)

(2(4+2) (041

p(2 r+1|| 1)y 5 (t+ ;.nl Lt

Non-independent Samples, thus no guarantee
of convergence



5 Mission Impossible?

How can we set the transition
probabilities such that the 1) there is a
equilibrium, and 2) equilibrium
distribution is the target distribution,
without knowing what the target is?



I) Markov Chain Properties

e A Markov chain is called:

— Stationary, if there exists P such that P = A*P; note
that multiple stationary distribution can exist.

— Aperiodic, if there is no cycles with transition
probability 1.

— Irreducible, if has positive probability of reaching
any state from any other

— Non-transient, if it can always return to a state
after visiting it

— Reversible w.r.t P, if P(x=i) Alij] = P(x=j) A[ji]



I) Convergence of Markov Chain

e |f the chain is Reversible w.r.t. P, then P is its
stationary distribution.

* And, if the chain is Aperiodic and Irreducible, it
have a single stationary distribution, which it
will converge to “almost surely”.

 And, if the chain is Non-transient, it will
always converge to its stationary distribution
from any starting states.

Goal: Design alg. to satisfy all these properties.



1) Metropolis-Hastings

initialize with O s.t. p(z®1x) >0
t=1
repeat

sample z® from g(z@1 D x)

compute:

L(t) A1) (8 .
a(z'*=Y, 2"y = min (1. p{;_1|]:|:]|q{~ = |:_]=~,J] )
plzt=Uz)g(z't)|z11-1 z)

draw « from U(0,1)

if (1> a(z-D, 70)) ;0 < -1 [* reject proposal */
if (> B and t mod £ = 0) retain sample 7
f=—1+1

until enough samples (t = B + Sk)



—= MCDB: A Monte Carlo Approach to
’ Managing Uncertain Data

e Used for probabilistic Data management,
where uncertainty can be expressed via
distribution function.

CREATE TABLE SBP DATA(PID, GENDER, SBP) AS
FOR EACH p in PATIENTS
WITH SBP AS Normal (
(SELECT s.MEAN, s.STD
FROM SPB PARAM s))
SELECT p.PID, p.GENDER, b.VALUE
FROM SBP b



—= MCDB: A Monte Carlo Approach to
’ Managing Uncertain Data

* Query processing
— Sample instances from the distribution function

— Execute the query on each sampled DB instance,
thereby approximate the query-result distribution

— Use Monte Carlo properties to compute mean,
variance, quantiles, etc.
— Some optimization Tricks

e Tuple bundles
e Split and merge



—= MCDB: A Monte Carlo Approach to
7 Managing Uncertain Data

* Limits
— Risk analysis concerns with quintiles mostly
— Requires lots of samples to bound error
— Actually is the curse of dimensionality

* MCDB-R: Risk Analysis in the Database
— Monte Carlo + Markov Chain (MCMC)
— Use Gibbs sampling



Thanks!



