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Overview 

 Programming ML Algorithms in Parallel

◦ Common Parallelism and MapReduce

◦ Global Synchronization Barriers

 GraphLab

◦ Data Dependency as a Graph

◦ Synchronization as Fold/Reduce

 Implementation and Experiments

 From Multicore to Distributed 

Environment



Parallel Processing for ML

 Parallel ML is a Necessity

◦ 13 Million Wikipedia Pages

◦ 3.6 Billion photos on Flickr

◦ etc

 Parallel ML is Hard to Program

◦ Concurrency v.s. Deadlock

◦ Load Balancing

◦ Debug

◦ etc



MapReduce is the Solution?

 High-level abstraction: Statistical Query 

Model [Chu et al, 2006]

Weighted Linear Regression: only sufficient statistics

𝚹 = A-1b,  A = 𝚺wi(xixi
T), b = 𝚺wi(xiyi) 



MapReduce is the Solution?

 High-level abstraction: Statistical Query 

Model [Chu et al, 2006]

K-Means: only data assignments

class mean = avg(xi), xi in class

Embarrassingly Parallel independent computation

No Communication needed

http://upload.wikimedia.org/wikipedia/commons/1/10/Iris_Flowers_Clustering_kMeans.svg


ML in MapReduce

Multiple Mapper

Single Reducer

 Iterative MapReduce needs global 
synchronization at the single reducer

◦ K-means

◦ EM for graphical models

◦ gradient descent algorithms, etc



Not always Embarrassingly 

Parallel

 Data Dependency: not MapReducable

◦ Gibbs Sampling

◦ Belief Propagation

◦ SVM

◦ etc

 Capture Dependency as a Graph!
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Key Idea of GraphLab

 Sparse Data Dependencies

 Local Computations
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GraphLab for ML

 High-level Abstract

◦ Express data dependencies

◦ Iterative

 Automatic Multicore Parallelism

◦ Data Synchronization

◦ Consistency

◦ Scheduling



Main Components of GraphLab

Data Graph

Shared Data Table

Scheduling

Update Functions and Scopes

GraphLab
Model



Data Graph

 A Graph with data associated with every 

vertex and edge.

x3: Sample value

C(X3): sample counts

Φ(X6,X9): Binary potential
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Update Functions

 Operations applied on a vertex that 

transform data in the scope of the vertex

Gibbs Update:

- Read samples on adjacent 

vertices

- Read edge potentials

- Compute a new sample for 

the current vertex



Scope Rules

 Consistency v.s. Parallelism

◦ Belief Propagation: Only uses edge data

◦ Gibbs Sampling: Needs to read adjacent 

vertices



Scheduling

 Scheduler determines the order of 

Update Function evaluations

 Static Scheduling

◦ Round Robin, etc

 Dynamic Scheduling

◦ FIFO, Priority Queue, etc



Dynamic Scheduling
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Global Information

 Shared Data Table in Shared Memory

◦ Model parameters (updatable)

◦ Sufficient statistics (updatable)

◦ Constants, etc (fixed)

 Sync Functions for Updatable Shared Data

◦ Accumulate performs an aggregation over 

vertices

◦ Apply makes a final modification to the 

accumulated data



Sync Functions

 Much like Fold/Reduce

◦ Execute Aggregate over every vertices in turn

◦ Execute Apply once at the end

 Can be called 

◦ Periodically when update functions are active 

(asynchronous) or 

◦ By the update function or user code 

(synchronous)



GraphLab

GraphLab
Model

Data Graph

Shared Data Table

Scheduling
Update Functions and 

Scopes
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Implementation and Experiments

 Shared Memory Implemention in C++ 

using Pthreads

 Applications: 

◦ Belief Propagation

◦ Gibbs Sampling

◦ CoEM

◦ Lasso

◦ etc (more on the project page)



Parallel Performance
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From Multicore to Distributed 

Enviroment
 MapReduce and GraphLab work well for 

Multicores

◦ Simple High-level Abstract

◦ Local computation + global synchronization

 When Migrate to Clusters

◦ Rethink Scope  synchronization

◦ Rethink Shared Data  single “reducer”

◦ Think Load Balancing

◦ Maybe think abstract model?



Thanks


