GraphLab: A New Framework for Parallel Machine Learning

Yucheng Low, Aapo Kyrola, Carlos Guestrin, Joseph Gonzalez, Danny Bickson, Joe Hellerstein

Presented by Guozhang Wang

DB Lunch, Nov.8, 2010

Overview

- Programming ML Algorithms in Parallel
 - Common Parallelism and MapReduce
 - Global Synchronization Barriers
- GraphLab
 - Data Dependency as a Graph
 - Synchronization as Fold/Reduce
- Implementation and Experiments
- From Multicore to Distributed Environment

Parallel Processing for ML

- Parallel ML is a Necessity
 - I3 Million Wikipedia Pages
 - 3.6 Billion photos on Flickr
 - etc
- Parallel ML is Hard to Program
 - Concurrency v.s. Deadlock
 - Load Balancing
 - Debug
 - etc

MapReduce is the Solution?

• High-level abstraction: Statistical Query Model [Chu et al, 2006]

Weighted Linear Regression: only sufficient statistics

$$\boldsymbol{\Theta} = \boldsymbol{A}^{-1}\boldsymbol{b}, \ \boldsymbol{A} = \boldsymbol{\Sigma} w_i(x_i x_i^T), \ \boldsymbol{b} = \boldsymbol{\Sigma} w_i(x_i y_i)$$

MapReduce is the Solution?

• High-level abstraction: Statistical Query Model [Chu et al, 2006]

Embarrassingly Parallel independent computation

No Communication needed

ML in MapReduce

Multiple Mapper

- Iterative MapReduce needs global synchronization at the single reducer
 - K-means
 - EM for graphical models
 - gradient descent algorithms, etc

Not always Embarrassingly Parallel

- Data Dependency: not MapReducable
 - Gibbs Sampling
 - Belief Propagation
 - SVM
 - etc
- Capture Dependency as a Graph!

Overview

- Programming ML Algorithms in Parallel
 - Common Parallelism and MapReduce
 - Global Synchronization Barriers

GraphLab

- Data Dependency as a Graph
- Synchronization as Fold/Reduce
- Implementation and Experiments
- From Multicore to Distributed Environment

Key Idea of GraphLab

- Sparse Data Dependencies
- Local Computations

GraphLab for ML

- High-level Abstract
 - Express data dependencies
 - Iterative
- Automatic *Multicore* Parallelism
 - Data Synchronization
 - Consistency
 - Scheduling

Main Components of GraphLab

Model

Update Functions and Scopes

Data Graph

• A Graph with data associated with every **vertex** and **edge**.

Update Functions

 Operations applied on a vertex that transform data in the scope of the vertex

- Consistency v.s. Parallelism
 - Belief Propagation: Only uses edge data
 - Gibbs Sampling: Needs to read adjacent vertices

Scheduling

- Scheduler determines the order of Update Function evaluations
- Static Scheduling
 - Round Robin, etc
- Dynamic Scheduling
 - FIFO, Priority Queue, etc

Global Information

- Shared Data Table in Shared Memory
 - Model parameters (updatable)
 - Sufficient statistics (updatable)
 - Constants, etc (fixed)
- Sync Functions for Updatable Shared Data
 - Accumulate performs an aggregation over vertices
 - Apply makes a final modification to the accumulated data

Sync Functions

- Much like Fold/Reduce
 - Execute Aggregate over every vertices in turn
 - Execute Apply once at the end

Can be called

- Periodically when update functions are active (asynchronous) or
- By the update function or user code (synchronous)

Overview

- Programming ML Algorithms in Parallel
 - Common Parallelism and MapReduce
 - Global Synchronization Barriers
- GraphLab
 - Data Dependency as a Graph
 - Synchronization as Fold/Reduce
- Implementation and Experiments
- From Multicore to Distributed Environment

Implementation and Experiments

- Shared Memory Implemention in C++ using Pthreads
- Applications:
 - Belief Propagation
 - Gibbs Sampling
 - CoEM
 - Lasso
 - etc (more on the project page)

Parallel Performance

From Multicore to Distributed Enviroment

- MapReduce and GraphLab work well for Multicores
 - Simple High-level Abstract
 - Local computation + global synchronization
- When Migrate to Clusters
 - Rethink Scope → synchronization
 - Rethink Shared Data → single "reducer"
 - Think Load Balancing
 - Maybe think **abstract model**?

Thanks