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Overview

e Programming ML Algorithms in Parallel
> Common Parallelism and MapReduce

> Global Synchronization Barriers

e Graphlab
> Data Dependency as a Graph

> Synchronization as Fold/Reduce
* Implementation and Experiments

e From Multicore to Distributed
Environment



Parallel Processing for ML

e Parallel ML is a Necessity
> 13 Million Wikipedia Pages

> 3.6 Billion photos on Flickr

° etc
* Parallel ML is Hard to Program

> Concurrency v.s. Deadlock

> Load Balancing
> Debug

° etc



MapReduce is the Solution!?

* High-level abstraction: Statistical Query
Model [chu et al, 2006]
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Weighted Linear Regression: only sufficient statistics

0 =A'b, A =Zw(xx;"), b= Zw;(xy;)



MapReduce is the Solution!?

* High-level abstraction: Statistical Query
Model [chu et al, 2006]
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Embarrassingly Parallel independent computation

No Communication needed


http://upload.wikimedia.org/wikipedia/commons/1/10/Iris_Flowers_Clustering_kMeans.svg

ML in MapReduce
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Single Reducer

* Iterative MapReduce needs global
synchronization at the single reducer

o K-means

> EM for graphical models

> gradient descent algorithms, etc



Not always Embarrassingly
Parallel

» Data Dependency: not MapReducable
> Gibbs Sampling
> Belief Propagation
> SVM

° etc

e Capture Dependency as a Graph!



Overview
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e Graphlab
> Data Dependency as a Graph

> Synchronization as Fold/Reduce
* Implementation and Experiments

e From Multicore to Distributed
Environment



Key ldea of Graphlab

» Sparse Data Dependencies
* Local Computations




Graphlab for ML

* High-level Abstract
> Express data dependencies
> |terative
o Automatic Multicore Parallelism
> Data Synchronization
> Consistency

> Scheduling



Main Components of GraphlLab

Data Graph
Shared Data Table
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Data Graph

* A Graph with data associated with every
vertex and edge. o
uf

X5: Sample value
C(X;): sample counts

L o o o

S— — Y —

1
.
&

| S S W | y—
m m n w .’
- ®(X,,X,): Binary potential




Update Functions

» Operations applied on a vertex that
transform data in the scope of the vertex

Gibbs Update:
- Read samples on adjacent
vertices
N’ - Read edge potentials
- Compute a new sample for
the current vertex




Scope Rules

Full Consistency

gdge Consistenc),

» Consistency v.s. Parallelism
> Belief Propagation: Only uses edge data

> Gibbs Sampling: Needs to read adjacent
vertices




Scheduling

* Scheduler determines the order of
Update Function evaluations

e Static Scheduling
> Round Robin, etc

e Dynamic Scheduling
> FIFO, Priority Queue, etc






Global Information

 Shared Data Table in Shared Memory
> Model parameters (updatable)
o Sufficient statistics (updatable)

> Constants, etc (fixed)

* Sync Functions for Updatable Shared Data

> Accumulate performs an aggregation over
vertices

> Apply makes a final modification to the
accumulated data



Sync Functions

e Much like Fold/Reduce

> Execute Aggregate over every vertices in turn
> Execute Apply once at the end

e Can be called

° Periodically when update functions are active
(asynchronous) or

> By the update function or user code
(synchronous)



Graphlab
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Overview
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e Implementation and Experiments

e From Multicore to Distributed
Environment



Implementation and Experiments

e Shared Memory Implemention in C++
using Pthreads

» Applications:
> Belief Propagation
> Gibbs Sampling
- CoEM
> Lasso

> etc (more on the project page)



Parallel Performance

Better
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From Multicore to Distributed

Enviroment

e MapReduce and GraphLab work well for
Multicores

o Simple High-level Abstract

° Local computation + global synchronization

* When Migrate to Clusters
> Rethink Scope = synchronization
> Rethink Shared Data -2 single “reducer”
> Think Load Balancing
> Maybe think abstract model?



Thanks



