
GraphLab:

A New Framework for Parallel

Machine Learning

Yucheng Low, Aapo Kyrola, Carlos Guestrin,
Joseph Gonzalez, Danny Bickson, Joe Hellerstein

Presented by Guozhang Wang

DB Lunch, Nov.8, 2010

Overview

 Programming ML Algorithms in Parallel

◦ Common Parallelism and MapReduce

◦ Global Synchronization Barriers

 GraphLab

◦ Data Dependency as a Graph

◦ Synchronization as Fold/Reduce

 Implementation and Experiments

 From Multicore to Distributed

Environment

Parallel Processing for ML

 Parallel ML is a Necessity

◦ 13 Million Wikipedia Pages

◦ 3.6 Billion photos on Flickr

◦ etc

 Parallel ML is Hard to Program

◦ Concurrency v.s. Deadlock

◦ Load Balancing

◦ Debug

◦ etc

MapReduce is the Solution?

 High-level abstraction: Statistical Query

Model [Chu et al, 2006]

Weighted Linear Regression: only sufficient statistics

𝚹 = A-1b, A = 𝚺wi(xixi
T), b = 𝚺wi(xiyi)

MapReduce is the Solution?

 High-level abstraction: Statistical Query

Model [Chu et al, 2006]

K-Means: only data assignments

class mean = avg(xi), xi in class

Embarrassingly Parallel independent computation

No Communication needed

http://upload.wikimedia.org/wikipedia/commons/1/10/Iris_Flowers_Clustering_kMeans.svg

ML in MapReduce

Multiple Mapper

Single Reducer

 Iterative MapReduce needs global
synchronization at the single reducer

◦ K-means

◦ EM for graphical models

◦ gradient descent algorithms, etc

Not always Embarrassingly

Parallel

 Data Dependency: not MapReducable

◦ Gibbs Sampling

◦ Belief Propagation

◦ SVM

◦ etc

 Capture Dependency as a Graph!

Overview

 Programming ML Algorithms in Parallel

◦ Common Parallelism and MapReduce

◦ Global Synchronization Barriers

 GraphLab

◦ Data Dependency as a Graph

◦ Synchronization as Fold/Reduce

 Implementation and Experiments

 From Multicore to Distributed

Environment

Key Idea of GraphLab

 Sparse Data Dependencies

 Local Computations

X4 X5 X6

X9X8

X3X2X1

X7

GraphLab for ML

 High-level Abstract

◦ Express data dependencies

◦ Iterative

 Automatic Multicore Parallelism

◦ Data Synchronization

◦ Consistency

◦ Scheduling

Main Components of GraphLab

Data Graph

Shared Data Table

Scheduling

Update Functions and Scopes

GraphLab
Model

Data Graph

 A Graph with data associated with every

vertex and edge.

x3: Sample value

C(X3): sample counts

Φ(X6,X9): Binary potential

X
1

X
2

X
3

X
5

X
6

X
7

X
8

X
9

X10

X
4

X11

Update Functions

 Operations applied on a vertex that

transform data in the scope of the vertex

Gibbs Update:

- Read samples on adjacent

vertices

- Read edge potentials

- Compute a new sample for

the current vertex

Scope Rules

 Consistency v.s. Parallelism

◦ Belief Propagation: Only uses edge data

◦ Gibbs Sampling: Needs to read adjacent

vertices

Scheduling

 Scheduler determines the order of

Update Function evaluations

 Static Scheduling

◦ Round Robin, etc

 Dynamic Scheduling

◦ FIFO, Priority Queue, etc

Dynamic Scheduling

e f g

kjih

dcbaCPU 1

CPU 2

a

h

a

b

b

i

Global Information

 Shared Data Table in Shared Memory

◦ Model parameters (updatable)

◦ Sufficient statistics (updatable)

◦ Constants, etc (fixed)

 Sync Functions for Updatable Shared Data

◦ Accumulate performs an aggregation over

vertices

◦ Apply makes a final modification to the

accumulated data

Sync Functions

 Much like Fold/Reduce

◦ Execute Aggregate over every vertices in turn

◦ Execute Apply once at the end

 Can be called

◦ Periodically when update functions are active

(asynchronous) or

◦ By the update function or user code

(synchronous)

GraphLab

GraphLab
Model

Data Graph

Shared Data Table

Scheduling
Update Functions and

Scopes

Overview

 Programming ML Algorithms in Parallel

◦ Common Parallelism and MapReduce

◦ Global Synchronization Barriers

 GraphLab

◦ Data Dependency as a Graph

◦ Synchronization as Fold/Reduce

 Implementation and Experiments

 From Multicore to Distributed

Environment

Implementation and Experiments

 Shared Memory Implemention in C++

using Pthreads

 Applications:

◦ Belief Propagation

◦ Gibbs Sampling

◦ CoEM

◦ Lasso

◦ etc (more on the project page)

Parallel Performance

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

S
p

e
e
d

u
p

Number of CPUs

Optimal

B
e
tt

e
r

Round robin schedule

Colored Schedule

From Multicore to Distributed

Enviroment
 MapReduce and GraphLab work well for

Multicores

◦ Simple High-level Abstract

◦ Local computation + global synchronization

 When Migrate to Clusters

◦ Rethink Scope  synchronization

◦ Rethink Shared Data  single “reducer”

◦ Think Load Balancing

◦ Maybe think abstract model?

Thanks

