
GraphLab:

A New Framework for Parallel

Machine Learning

Yucheng Low, Aapo Kyrola, Carlos Guestrin,
Joseph Gonzalez, Danny Bickson, Joe Hellerstein

Presented by Guozhang Wang

DB Lunch, Nov.8, 2010

Overview

 Programming ML Algorithms in Parallel

◦ Common Parallelism and MapReduce

◦ Global Synchronization Barriers

 GraphLab

◦ Data Dependency as a Graph

◦ Synchronization as Fold/Reduce

 Implementation and Experiments

 From Multicore to Distributed

Environment

Parallel Processing for ML

 Parallel ML is a Necessity

◦ 13 Million Wikipedia Pages

◦ 3.6 Billion photos on Flickr

◦ etc

 Parallel ML is Hard to Program

◦ Concurrency v.s. Deadlock

◦ Load Balancing

◦ Debug

◦ etc

MapReduce is the Solution?

 High-level abstraction: Statistical Query

Model [Chu et al, 2006]

Weighted Linear Regression: only sufficient statistics

𝚹 = A-1b, A = 𝚺wi(xixi
T), b = 𝚺wi(xiyi)

MapReduce is the Solution?

 High-level abstraction: Statistical Query

Model [Chu et al, 2006]

K-Means: only data assignments

class mean = avg(xi), xi in class

Embarrassingly Parallel independent computation

No Communication needed

http://upload.wikimedia.org/wikipedia/commons/1/10/Iris_Flowers_Clustering_kMeans.svg

ML in MapReduce

Multiple Mapper

Single Reducer

 Iterative MapReduce needs global
synchronization at the single reducer

◦ K-means

◦ EM for graphical models

◦ gradient descent algorithms, etc

Not always Embarrassingly

Parallel

 Data Dependency: not MapReducable

◦ Gibbs Sampling

◦ Belief Propagation

◦ SVM

◦ etc

 Capture Dependency as a Graph!

Overview

 Programming ML Algorithms in Parallel

◦ Common Parallelism and MapReduce

◦ Global Synchronization Barriers

 GraphLab

◦ Data Dependency as a Graph

◦ Synchronization as Fold/Reduce

 Implementation and Experiments

 From Multicore to Distributed

Environment

Key Idea of GraphLab

 Sparse Data Dependencies

 Local Computations

X4 X5 X6

X9X8

X3X2X1

X7

GraphLab for ML

 High-level Abstract

◦ Express data dependencies

◦ Iterative

 Automatic Multicore Parallelism

◦ Data Synchronization

◦ Consistency

◦ Scheduling

Main Components of GraphLab

Data Graph

Shared Data Table

Scheduling

Update Functions and Scopes

GraphLab
Model

Data Graph

 A Graph with data associated with every

vertex and edge.

x3: Sample value

C(X3): sample counts

Φ(X6,X9): Binary potential

X
1

X
2

X
3

X
5

X
6

X
7

X
8

X
9

X10

X
4

X11

Update Functions

 Operations applied on a vertex that

transform data in the scope of the vertex

Gibbs Update:

- Read samples on adjacent

vertices

- Read edge potentials

- Compute a new sample for

the current vertex

Scope Rules

 Consistency v.s. Parallelism

◦ Belief Propagation: Only uses edge data

◦ Gibbs Sampling: Needs to read adjacent

vertices

Scheduling

 Scheduler determines the order of

Update Function evaluations

 Static Scheduling

◦ Round Robin, etc

 Dynamic Scheduling

◦ FIFO, Priority Queue, etc

Dynamic Scheduling

e f g

kjih

dcbaCPU 1

CPU 2

a

h

a

b

b

i

Global Information

 Shared Data Table in Shared Memory

◦ Model parameters (updatable)

◦ Sufficient statistics (updatable)

◦ Constants, etc (fixed)

 Sync Functions for Updatable Shared Data

◦ Accumulate performs an aggregation over

vertices

◦ Apply makes a final modification to the

accumulated data

Sync Functions

 Much like Fold/Reduce

◦ Execute Aggregate over every vertices in turn

◦ Execute Apply once at the end

 Can be called

◦ Periodically when update functions are active

(asynchronous) or

◦ By the update function or user code

(synchronous)

GraphLab

GraphLab
Model

Data Graph

Shared Data Table

Scheduling
Update Functions and

Scopes

Overview

 Programming ML Algorithms in Parallel

◦ Common Parallelism and MapReduce

◦ Global Synchronization Barriers

 GraphLab

◦ Data Dependency as a Graph

◦ Synchronization as Fold/Reduce

 Implementation and Experiments

 From Multicore to Distributed

Environment

Implementation and Experiments

 Shared Memory Implemention in C++

using Pthreads

 Applications:

◦ Belief Propagation

◦ Gibbs Sampling

◦ CoEM

◦ Lasso

◦ etc (more on the project page)

Parallel Performance

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

S
p

e
e
d

u
p

Number of CPUs

Optimal

B
e
tt

e
r

Round robin schedule

Colored Schedule

From Multicore to Distributed

Enviroment
 MapReduce and GraphLab work well for

Multicores

◦ Simple High-level Abstract

◦ Local computation + global synchronization

 When Migrate to Clusters

◦ Rethink Scope synchronization

◦ Rethink Shared Data single “reducer”

◦ Think Load Balancing

◦ Maybe think abstract model?

Thanks

