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Extracting and Managing 

Structured Web Data

 Information Extraction (using CRF, etc): 

◦ Text Segmentation (McCallum, UMASS)

◦ Table Extraction (Cafarella, UW)

◦ Preference Collection (Wortman, UPenn)

 Uncertainty Management:

◦ RDBMS

◦ Prob. RDBMS



Challenges in Presenting Data 

 Segmentation-per-row model

 Storage efficiency v.s. query accuracy

◦ Top-1 v.s. all segmentation for each string

52-A Goregaon West Mumbai 400 062

House_no Area City Pincode Probability

52 GoregaonWest    Mumbai 400 062 0.1

52-A Goregaon West Mumbai 400 062     0.2

52-A GoregaonWest    Mumbai 400 062     0.5

52 Goregaon West Mumbai 400 062     0.2



Confidence = Probability of 

Correctness
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Trade-off Between Accuracy and 

Efficiency I

 Query Accuracy
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Trade-off Between Accuracy and 

Efficiency II

 Storage Efficiency

0

0.1

0.2

0.3

0.4

1 2 3 4-10 11-20 21-30 31-50 51-

200

>200

Number of segmentations required to cover 0.9 

probability

F
re

q
u

e
n

c
y



Goal of This Paper

 Design data models to achieve good 

trade-offs between storage efficiency and 

query accuracy

◦ To achieve query accuracy

 Approximate the extracted segmentation 

distribution as similar as possible

 Similarity metric: KL-Divergence

KL(P||Q) = s P(s) log (P(s)/Q(s))
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Proposed Data Models

 Segmentation-per-row model (Exact)

 One-row model (Column Independence)

 Multi-row model (Mixture of the two)



Segmentation-per-row Model

 Exact but impractical.  We can have too 

many segmentations!

HNO AREA CITY PINCODE PROB

52 Bandra West Bombay 400 062 0.1

52-A Bandra West 

Bombay

400 062 0.2

52-A Bandra West Bombay 400 062 0.5

52 Bandra West 

Bombay

400 062 0.2



One-row Model

 Each column has an independent

multinomial distribution “Qy(t,u)”
◦ E.g. P(52-A, Bandra West, Bombay, 400 062) = 0.7 x 

0.6 x 0.6 x 1.0 = 0.252

 Simple model, but computed confidences 

are approximated (even wrong)

HNO AREA CITY PINCODE

52 (0.3) Bandra West 

(0.6)

Bombay (0.6) 400 062 (1.0)

52-A (0.7) Bandra (0.4) West Bombay 

(0.4)



Populating One-row Model

Min KL(P||Q) = Min KL(P|| y Qy)

= Min y KL(Py||Qy)

 Has a closed form solution Qy(t,u) = 

P(t,u,y)  where P(t,u,y) is marginal dist’n.

 Marginal P(t,u,y) can be computed using 

forward-backward message passing 

algorithm:



Forward-Backward Algorithm

 P(t,u,y) = cu(y)y’t-1(y’)Score(t,u,y,y’)

52

52-A

Bandra

Bandra West

Bombay

West Bombay

400 062

Bandra West Bombay

Marginal 
 



Multi-row Model

 Rows with same ID are mutually exclusive 

with row probability “πk”

 Columns in same row are independent
◦ E.g. P(52-A, Bandra West, Bombay, 400 062) = 0.833 x 

1.0 x 1.0 x 1.0 x 0.6 + 0.5 x 0.0 x 0.0 x 1.0 x 0.4 = 

0.50

HNO AREA CITY PINCODE Prob

52 (0.167)

52-A (0.833)

Bandra

West (1.0)

Bombay (1.0) 400 062 (1.0) 0.6

52 (0.5)

52-A (0.5)

Bandra

(1.0)

West Bombay 

(1.0)

400 062 (1.0) 0.4



Populating Multi-row Model (fix k)

Min KL(P||Q) = Max s KL(Ps|| kπkQ
k
s)

 We cannot obtain the optimal parameter 

values in closed form because of the 

summation within the log

 However,  we can reduce this to a well-

known mixture model parameter 

estimation problem, and solve it using EM 

algorithm.



Enumeration-based EM Approach

 Initially guess the parameter values πk and 

Qk
y(t,u)

 E Step: soft assign each segmentation sd to 

segmentation k

 M Step: update the parameters with ML 

values using the above soft assignment 

Note the E step need to enumerate all 

segmentations sd



Enumeration-less Approach

 Observation: 

◦ We need to enumerate segmentations at E 

step since we use soft assignment.

 Idea:

◦ Use hard assignment instead, so that each sd

belongs to exactly one component.

 We use a decision tree to make the hard 

assignment (use information gain to split node)

 Then we can have a closed form solution to the 

optimization problem

 Merge mechanism to remove the disjointness limit
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Experiment I

 Comparing multi-row with SPR



Experiment II

 Comparing multi-row with one-row



Lessons Learned ?

 Column Independence might not be 
suitable in some cases (8% v.s. 25%)

 Multi-row model has a good illustration of 
the correlations between columns

 (but) How to implement this probabilistic 
model?

◦ One single row in Multi-row model will take 
more space

 Are accuracy and space efficiency equally 
important in this application scenario?



Questions?


