
Column-Stores vs. Row-Stores: 

How Different Are They Really?

Daniel Abadi, Samuel Madden, Nabil Hachem

Presented by Guozhang Wang
November 18th, 2008

Several slides are from Daniel Abadi and Michael Stonebraker



Column Stores for Read-Mostly

Data Warehouses

 Storage-Level

◦ Vertical Partitioning (VLDB 05)

◦ Column-Specific Compression (SIGMOD 06)

 Executer-Level

◦ Fast Join using Positions (VLDB 05)

◦ Compressed Query Execution (SIGMOD 06)

◦ Late Materialization (ICDE 07)



One Question:

 Do you really need to buy a Vertica or 

Sybase IQ?

◦ Can we adapt our row-store to get column-

store performance?

◦ If not, what makes column-store not 

simulatable?

Currently No

Optimizations at query execution level



On the Other Hand…

 Directly comparing row-store with 

column-store is difficult

◦ Some performance differences are 

fundamental differences between column 

stores and row stores

◦ While some others are implementation 

artifacts.



Comparison Methodology

 Compare row-stores with row-stores and 

column-stores with column-stores.

◦ Compare row-stores with “column like” row-

stores.

◦ Compare column-stores with “row like” 

column-stores



The Benchmark – SSBM

 Most (if not all) warehouses use star or 

snowflake schema

 Star Schema Benchmark (SSBM) is a 

simplified derivation from TPC-H

 One fact table (17 columns, 60,000,000 

rows), and four dimension table (6 – 15 

columns, at most 80,000 rows)

 Four types of queries, joining at most 3 

dimensional tables



Row-Store Execution

 Vertical Partitioning

◦ each attribute is a two-column table: (values, 

position)

 Index-All

◦ unclustered B+Tree index for every column of 

every table

 Materialized View

◦ optimal set of materialized views for every 

query



Experiments: Row vs. Row

MV
Materialized View

VP
Vertcal Partitioning

AI
Index-All



 Tuple header overhead for VP

◦ Complete f_table takes up

~4 GB (compressed)

◦ VP tables take up 

0.7-1.1 GB each (compressed)

 Hash join is slow

◦ But is probably the best option for Index-all

Reasons

Part of this slide comes from Daniel Abadi

8 bytes 4 bytes 4 bytes



Conclusion 1

 Index-all approach is a poor way to 

simulate a column-store

◦ it forces system to join columns at the 

beginning, but cannot defer them

 Problems with vertical partitioning are 

NOT fundamental

◦ its disadvantages can be alleviated



Column-Store Execution

 Compression

 Late Materialization

 Block Iteration

 Invisible Join

◦ move predicates on d_table to f_table to 

minimize out-of-order value extractions.

Removing these optimizations gives a “row-

store like” column-store



Experiments: Col vs. Col

T vs. t
Tuple vs. Block

I vs. i
Invis. Join vs. Disabled

C vs. c
Comp. vs. Disabled

L vs. l
Late Mat. vs. Disabled



Performance Analysis

 Block: 5% - 50% depending on 

compression 

 Invisible Join: 50% - 75%, but it is special 

optimization for star schemas

 Compression: almost x2 averagely, while 

x10 on sorted data

 Late materialization: x3 because of 

selective predicates



Conclusion II

 The most significant optimizations are 

compression and late materialization

 After all the optimizations are removed, 

the column store acts just like a row 

store

 Invisible join works so well that 

denormalization is not very useful for 

column store



Answer to the Question:
Can we adapt a row-store to get column-store 

performance?

 It might be possible, BUT:

◦ need better support for vertical partitioning 

at the Storage Level

 store tuple header separately

 virtual record-id

◦ need support for column specific 

optimizations at the Executer Level

 late materialization

 direct operator on compressed data



Questions?



One Size Fits All? – Part 2: 

Benchmarking Results

Michael Stonebraker, et al



One Size for All DBMS Needs?

 In the 1970s

◦ Killer application: transaction processing

◦ Relational gold standard

 Record stored contiguously on disk

 B-Tree indexing

 Row-oriented query optimizer and executor

 More...

 Over the years

◦ New needs appear: XML, Data Warehouses…

◦ New features are added in order to continue 
selling the original structure for these needs.



However…

 OSFA RDBMS is losing

◦ To proprietary file systems in text search 

engines (GFS, Bigtable)

◦ To column store systems in data warehouses 

(Vertica)

◦ To specialized designed engine in stream 

processing (StreamBase)

◦ To customized tools in scientific and 

intelligence data bases (Matlab) 



Benchmark Results

 Telco Call Benchmark

◦ Vertica 47X on 1/100 the hardware cost

 SSBM

◦ Vertica 8X in ½ the space

 Split Adjusted Price & Forward First Arrival

◦ StreamBase 25X if required state implemented 

as an RDBMS table

 Dot Product & Matrix Multiplication

◦ ASAP 100X against RDBMS, and 10X against 

Matlab



ASAP Design

 ChunkyStore: like vertical partition, linear 

algorithm to read each chunk just once

 Compression: like column-specific 

compression, delta encode arrays

 Integration of “Cooking” and Storage: like 

WS and RS, same data model

 Data Uncertainty: convert between R1,2,3

◦ Value-probability pair: accurate

◦ Expectation-variance pair: performance

◦ Upper-lower bound pair



Reason?

 Different applications have different 

characteristics and requirements

◦ Text search: semi/no structure, relaxed 

answers, no transaction…

◦ Data warehouse: few uploads, ad hoc reads, 

star schema tables…

◦ Stream processing: main memory storage, 

single tuple processing…

◦ Scientific computation: Multi-D array storage, 

uncertainty management…



Conclusion

 Conflicting application requirements need 
custom architectures: OSFA is no longer 
true.

 What is next to OSFA DBMS?

◦ No change: one RDBMS with high end 
specialization 

◦ K systems united by common parser

◦ Data federations of incompatible systems

◦ A scratch rewrite? (much more general 
engine which encompass all the requirements)



Obvious Research Agenda

 Find a market where OSFA doesn’t work 

and customers are in pain

 Figure out what does

This slide comes from Michael Stonebraker



Thanks


