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Column Stores for Read-Mostly

Data Warehouses

 Storage-Level

◦ Vertical Partitioning (VLDB 05)

◦ Column-Specific Compression (SIGMOD 06)

 Executer-Level

◦ Fast Join using Positions (VLDB 05)

◦ Compressed Query Execution (SIGMOD 06)

◦ Late Materialization (ICDE 07)



One Question:

 Do you really need to buy a Vertica or 

Sybase IQ?

◦ Can we adapt our row-store to get column-

store performance?

◦ If not, what makes column-store not 

simulatable?

Currently No

Optimizations at query execution level



On the Other Hand…

 Directly comparing row-store with 

column-store is difficult

◦ Some performance differences are 

fundamental differences between column 

stores and row stores

◦ While some others are implementation 

artifacts.



Comparison Methodology

 Compare row-stores with row-stores and 

column-stores with column-stores.

◦ Compare row-stores with “column like” row-

stores.

◦ Compare column-stores with “row like” 

column-stores



The Benchmark – SSBM

 Most (if not all) warehouses use star or 

snowflake schema

 Star Schema Benchmark (SSBM) is a 

simplified derivation from TPC-H

 One fact table (17 columns, 60,000,000 

rows), and four dimension table (6 – 15 

columns, at most 80,000 rows)

 Four types of queries, joining at most 3 

dimensional tables



Row-Store Execution

 Vertical Partitioning

◦ each attribute is a two-column table: (values, 

position)

 Index-All

◦ unclustered B+Tree index for every column of 

every table

 Materialized View

◦ optimal set of materialized views for every 

query



Experiments: Row vs. Row

MV
Materialized View

VP
Vertcal Partitioning

AI
Index-All



 Tuple header overhead for VP

◦ Complete f_table takes up

~4 GB (compressed)

◦ VP tables take up 

0.7-1.1 GB each (compressed)

 Hash join is slow

◦ But is probably the best option for Index-all

Reasons

Part of this slide comes from Daniel Abadi

8 bytes 4 bytes 4 bytes



Conclusion 1

 Index-all approach is a poor way to 

simulate a column-store

◦ it forces system to join columns at the 

beginning, but cannot defer them

 Problems with vertical partitioning are 

NOT fundamental

◦ its disadvantages can be alleviated



Column-Store Execution

 Compression

 Late Materialization

 Block Iteration

 Invisible Join

◦ move predicates on d_table to f_table to 

minimize out-of-order value extractions.

Removing these optimizations gives a “row-

store like” column-store



Experiments: Col vs. Col

T vs. t
Tuple vs. Block

I vs. i
Invis. Join vs. Disabled

C vs. c
Comp. vs. Disabled

L vs. l
Late Mat. vs. Disabled



Performance Analysis

 Block: 5% - 50% depending on 

compression 

 Invisible Join: 50% - 75%, but it is special 

optimization for star schemas

 Compression: almost x2 averagely, while 

x10 on sorted data

 Late materialization: x3 because of 

selective predicates



Conclusion II

 The most significant optimizations are 

compression and late materialization

 After all the optimizations are removed, 

the column store acts just like a row 

store

 Invisible join works so well that 

denormalization is not very useful for 

column store



Answer to the Question:
Can we adapt a row-store to get column-store 

performance?

 It might be possible, BUT:

◦ need better support for vertical partitioning 

at the Storage Level

 store tuple header separately

 virtual record-id

◦ need support for column specific 

optimizations at the Executer Level

 late materialization

 direct operator on compressed data



Questions?



One Size Fits All? – Part 2: 

Benchmarking Results

Michael Stonebraker, et al



One Size for All DBMS Needs?

 In the 1970s

◦ Killer application: transaction processing

◦ Relational gold standard

 Record stored contiguously on disk

 B-Tree indexing

 Row-oriented query optimizer and executor

 More...

 Over the years

◦ New needs appear: XML, Data Warehouses…

◦ New features are added in order to continue 
selling the original structure for these needs.



However…

 OSFA RDBMS is losing

◦ To proprietary file systems in text search 

engines (GFS, Bigtable)

◦ To column store systems in data warehouses 

(Vertica)

◦ To specialized designed engine in stream 

processing (StreamBase)

◦ To customized tools in scientific and 

intelligence data bases (Matlab) 



Benchmark Results

 Telco Call Benchmark

◦ Vertica 47X on 1/100 the hardware cost

 SSBM

◦ Vertica 8X in ½ the space

 Split Adjusted Price & Forward First Arrival

◦ StreamBase 25X if required state implemented 

as an RDBMS table

 Dot Product & Matrix Multiplication

◦ ASAP 100X against RDBMS, and 10X against 

Matlab



ASAP Design

 ChunkyStore: like vertical partition, linear 

algorithm to read each chunk just once

 Compression: like column-specific 

compression, delta encode arrays

 Integration of “Cooking” and Storage: like 

WS and RS, same data model

 Data Uncertainty: convert between R1,2,3

◦ Value-probability pair: accurate

◦ Expectation-variance pair: performance

◦ Upper-lower bound pair



Reason?

 Different applications have different 

characteristics and requirements

◦ Text search: semi/no structure, relaxed 

answers, no transaction…

◦ Data warehouse: few uploads, ad hoc reads, 

star schema tables…

◦ Stream processing: main memory storage, 

single tuple processing…

◦ Scientific computation: Multi-D array storage, 

uncertainty management…



Conclusion

 Conflicting application requirements need 
custom architectures: OSFA is no longer 
true.

 What is next to OSFA DBMS?

◦ No change: one RDBMS with high end 
specialization 

◦ K systems united by common parser

◦ Data federations of incompatible systems

◦ A scratch rewrite? (much more general 
engine which encompass all the requirements)



Obvious Research Agenda

 Find a market where OSFA doesn’t work 

and customers are in pain

 Figure out what does

This slide comes from Michael Stonebraker



Thanks


