# ε-Privacy: Data Publishing against Realistic Adversaries

Speaker:

Michaela Götz

Joint work with:

Ashwin Machanavajjhala and Johannes Gehrke





### Setting



#### **Users**

#### Published table T'

| Age  | Zip   | Disease         |
|------|-------|-----------------|
| < 20 | 1300* | Heart Disease   |
| < 20 | 1300* | Viral Infection |
| 2*   | 14850 | Cancer          |
| 24   | 14850 | Heart Disease   |
| 29   | 14850 | Viral Infection |
| 34   | 130** | Cancer          |
| 39   | 130** | Cancer          |
| 45   | 130** | Cancer          |





#### Privacy - Overview

- What is sensitive information?
  - "Bob has ulcer"
  - "Bob has some stomach disease"
- What is privacy?
  - Adversary does not learn much about Bob's sensitive information.
     [perfect privacy, t-closeness, alpha-beta privacy, ...]
  - Adversary *learns the same* about Bob whether or not that Bob's information is part of the release. [differential privacy]
- What does the adversary know about *T*?
- Goal: Data Publishing Mechanism



Pr[Bob has Cancer] = 1/3 Pr[Bob has Heart Disease] = 1/3 Pr[Bob has a Viral Infection] = 1/3

| Cathy | 20 | 14850 | Cancer        |
|-------|----|-------|---------------|
| Anne  | 24 | 14850 | Heart Disease |

#### anti-corruption privacy

weak adversaries

Adversary's strength



Fixed distribution over sensitive values

as in T

uniform

t-closeness l-diversity proximity privacy anti-corruption privacy Pr[Bob has Cancer] = 1/3 Pr[Bob has Heart Disease] = 1/3 Pr[Bob has a Viral Infection] = 1/3

| Bob   | 17 | 13005 |                 |
|-------|----|-------|-----------------|
| Bob   |    |       | •               |
| Jim   | 19 | 13000 | Viral Infection |
| Cathy | 20 | 14850 | Cancer          |
| Anne  | 24 | 14850 | Heart Disease   |
| Joe   | 29 | 14850 | Viral Infection |
| Marie | 34 | 13005 | Cancer          |
| Dana  | 39 | 13005 | Cancer          |
| Bill  | 45 | 13010 | Cancer          |

differential privacy

weak adversaries

Adversary's strength



Pr[Bob has Cancer] = 0 Pr[Bob has Heart Disease] = .7 Pr[Bob has a Viral Infection] = .3

| Bob   | 17 | 13005 |                 |
|-------|----|-------|-----------------|
| Jim   | 19 | 13000 | Viral Infection |
| Cathy | 20 | 14850 | Cancer          |
| Anne  | 24 | 14850 | Heart Disease   |
| Joe   | 29 | 14850 | Viral Infection |
| Marie | 34 | 13005 | Cancer          |
| Dana  | 39 | 13005 | Cancer          |
| Bill  | 45 | 13010 | Cancer          |

t-closeness l-diversity proximity privacy anti-corruption privacy

differential privacy

weak adversaries

Adversary's strength



t-closeness l-diversity proximity privacy anti-corruption privacy

?

differential privacy

weak adversaries

Adversary's strength

#### **Outline**

- ε-Privacy definition
  - Realistic adversaries
  - Privacy guarantee
- A privacy-preserving mechanism
  - Generalization algorithm
  - Utility experiments
- Instantiation of other privacy guarantees



#### ε-Privacy: Adversaries

- Knowledge about the individuals in T
  - Complete information about a few individuals in T.
- Knowledge about the Population:

Where does the prior belief come from? External data.

- Adversary is forming her prior based on external data.
- Given the published table T' she updates her belief
- How much her belief changes depends on her "stubbornness"



### Adversary's statistical knowledge

- Some probability distribution p over sensitive values generates the sensitive values for the population. Knowledge about Population
  - Example: p = (.2, .5, .3), but maybe p = (.2, .45, .35)
- Uncertainty about *p* depends on size of external data
  - Example: pretty sure p = (.2, .5, .3)
- 2 step process:
  - choose distribution *p* over sensitive values
  - for each individual choose sensitive value i w.p.  $p_i$
- Natural choice for categorical attributes: Dirichlet Distribution  $D(\sigma_1, ..., \sigma_s)$ 
  - shape  $\sigma_1, ..., \sigma_s$ , stubbornness  $\sigma = \sum \sigma_i$

| Disease         | Count      |
|-----------------|------------|
| Cancer          | 2 <b>M</b> |
| Viral Infection | 5 <b>M</b> |
| Heart Disease   | 3 <b>M</b> |

### Adversary's statistical knowledge

- Dirichlet Distribution  $D(\sigma_1, ..., \sigma_s)$ 
  - shape  $\sigma_1, ..., \sigma_s$ , stubbornness  $\sigma = \sum \sigma_i$
- Adversary is forming her prior based on external data.
  - <sup>D</sup> Table T ->  $D(\sigma_1, ..., \sigma_s)$ , e.g. D(1000, 3000, 500)
- Given the published table T' she updates her belief
  - Conditioning, e.g. Pr[Bob has Cancer | T', D(1000, 3000, 500)]
- How much her belief changes depends on her "stubbornness"
  - Parameter σ in Dirichlet

Knowledge about Population

| Disease         | Count |
|-----------------|-------|
| Cancer          | 1000  |
| Viral Infection | 3000  |
| Heart Disease   | 500   |

#### Privacy definition

Differential privacy for restricted adversaries:

An adversary in class A learns roughly the same about an individual no matter whether or not that individual's data is contained in the release.

### Privacy definition

#### table T

| Name  | Age | Zip   | Disease         |
|-------|-----|-------|-----------------|
| Bob   | 17  | 13005 | Heart Disease   |
| Jim   | 19  | 13000 | Viral Infection |
| Cathy | 20  | 14850 | Cancer          |
| Anne  | 24  | 14850 | Heart Disease   |
| Joe   | 29  | 14853 | Viral Infection |
| Marie | 34  | 13005 | Cancer          |
| Dana  | 39  | 13005 | Cancer          |
| Bill  | 45  | 13010 | Cancer          |

#### table T without Bob

| Name  | Age | Zip   | Disease         |
|-------|-----|-------|-----------------|
| Jim   | 19  | 13000 | Viral Infection |
| Cathy | 20  | 14850 | Cancer          |
| Anne  | 24  | 14850 | Heart Disease   |
| Joe   | 29  | 14853 | Viral Infection |
| Marie | 34  | 13005 | Cancer          |
| Dana  | 39  | 13005 | Cancer          |
| Bill  | 45  | 13010 | Cancer          |

#### table T'

| Age  | Zip   | Disease                                    |
|------|-------|--------------------------------------------|
| < 20 | 1300* | Heart Disease<br>Viral Infection           |
| 2*   | 14850 | Viral Infection<br>Cancer<br>Heart Disease |
| >20  | 130** | Cancer<br>Cancer<br>Cancer                 |

Adversary's posterior belief that Bob has Cancer is roughly the same in both cases.

| ١ | Age  | Zip   | Disease                                    |
|---|------|-------|--------------------------------------------|
|   | < 20 | 1300* | Viral Infection                            |
|   | 2*   | 14850 | Viral Infection<br>Cancer<br>Heart Disease |
|   | >20  | 130** | Cancer<br>Cancer<br>Cancer                 |

#### Adversarial reasoning - Example

- Prior: D(1000, 3000, 500)
- Posterior belief about:

Pr[Bob has a Heart Disease | T', D]

= 2001/5001

Pr[Bob has a Viral Infection | T', D]

=3000/5001

Pr[Bob has Cancer | T', D]

= 0

### Knowledge about

Population



| Disease         | Count |
|-----------------|-------|
| Cancer          | 1000  |
| Viral Infection | 3000  |
| Heart Disease   | 500   |

#### table T' (with Bob)

| Age  | Zip   | Disease                                           | Count              |
|------|-------|---------------------------------------------------|--------------------|
| < 20 | 1300* | Heart Disease<br>Viral Infection                  | 2001<br>3000       |
| 2*   | 14850 | Viral Infection<br>Breast Cancer                  | 7000<br>1000       |
| >30  | I30** | Viral Infection<br>Breast Cancer<br>Heart Disease | 500<br>2000<br>700 |

#### Adversarial reasoning \*\*

- Prior: D(1000, 3000, 500)
- Posterior belief about:

Pr[Bob has a Heart Disease | T', D]

- = (2000+500)/(5000+4500) Pr[Bob has a Viral Infection | T', D]
- = (3000+3000)/(5000+4500) Pr[Bob has Cancer | T', D]
- = (0+1000)/(5000+4500)

## - **EXAMPLE**Knowledge about Population



| Disease         | Count |
|-----------------|-------|
| Cancer          | 1000  |
| Viral Infection | 3000  |
| Heart Disease   | 500   |

#### table T' (without Bob)

| Age  | Zip    | Disease                                           | Count              |
|------|--------|---------------------------------------------------|--------------------|
| < 20 | 1300*  | Heart Disease<br>Viral Infection                  | 2000<br>3000       |
| 2*   | 14850  | Viral Infection<br>Breast Cancer                  | 7000<br>1000       |
| >30  | I 30** | Viral Infection<br>Breast Cancer<br>Heart Disease | 500<br>2000<br>700 |

### Adversarial reasoning - Example



• Prior: D(1000, 3000, 500)

Posterior belief about:

| Pr[Bob has a Heart Disease]   | table T' | T'- Bob<br>0.26 |
|-------------------------------|----------|-----------------|
| Pr[Bob has a Viral Infection] | 0.60     | 0.63            |
| Pr[Bob has a Cancer]          | 0        | 0.11            |

### Adversarial reasoning - Example

• Prior: D(1000, 3000, 500) D(500, 1500, 250)

Posterior belief about:

Bob 17 13005

Pr[Bob has a Heart Disease]

table T'

0.40

T'- Bob

0.26 0.31

Pr[Bob has a Viral Infection] 0.60

0,63 0.62

Pr[Bob has a Cancer]

Knowledge about Population

0

0.1 0.0

| Disease         | Count            |
|-----------------|------------------|
| Cancer          | J <b>X</b> 0 500 |
| Viral Infection | 3000 1500        |
| Heart Disease   | 250              |

### Adversarial reasoning



#### Observation:

If generalization T' preserves  $\varepsilon$ -privacy against adversary D( $\sigma_1$ , ...,  $\sigma_s$ )

then it also preserves  $\epsilon$ -privacy against adversary  $D(r^*\sigma_1, ..., r^*\sigma_s')$  for  $r^* < 1$ .

Smaller Stubbornness -> easier to achieve  $\varepsilon$ -privacy.

### Adversarial reasoning - Example



• Prior: D(r\*1000, r\*3000, r\*500) take r -> ∞

Posterior belief about:

Bob 17 13005

Posterior Belief table T' T'- Bob

Pr[Bob has a Heart Disease]

0.40

0.22

Pr[Bob has a Viral Infection] 0.60 0.67

Pr[Bob has a Cancer]

 $\mathbf{O}$ 

0.11

#### Adversarial reasoning



#### Observation:

Infinitely stubborn adversaries belief that  $Pr[Bob \text{ has Disease } i] = \sigma_i/\sigma$ 

Infinitely stubborn adversaries do not update their belief about the population given T'.

Higher Stubbornness -> less the adversary learns from T' about population.

### Adversarial classes

|            | Stubbornness | Shape                                                               |   |
|------------|--------------|---------------------------------------------------------------------|---|
| Class I:   | σ            | $\sigma(Heart)$ , $\sigma(Virus)$ , $\sigma(Cancer)$                |   |
| Class II:  | σ            | arbitrary                                                           | - |
| Class III: | $\infty$     | $\sigma(\text{Heart}), \sigma(\text{Virus}), \sigma(\text{Cancer})$ | • |
| Class IV:  | $\infty$     | arbitrary                                                           | Ċ |

t-closeness l-diversity differential privacy

#### Adversarial classes

| 6 |
|---|
| R |
| < |
|   |

|            | Stubbornness | Shape                                                               |
|------------|--------------|---------------------------------------------------------------------|
| Class I:   | <b>≤</b> σ   | $\sigma$ (Heart), $\sigma$ (Virus), $\sigma$ (Cancer)               |
| Class II:  | <b>≤</b> σ   | arbitrary                                                           |
| Class III: | ≤ ∞          | $\sigma(\text{Heart}), \sigma(\text{Virus}), \sigma(\text{Cancer})$ |
| Class IV:  | ≤ ∞          | arbitrary                                                           |



#### **Outline**

- ε-Privacy definition
  - Adversaries with statistical knowledge
  - Privacy guarantee
- An ε-private mechanism
  - Generalization algorithm
  - Utility experiments
- Instantiation of other privacy guarantees

#### An \(\epsilon\)-private generalization algorithm

- Input:
  - Table T
  - Specification of sensitive information!
  - Choice of adversaries!
    - $D(\sigma_1, ..., \sigma_s)$ : shape  $\sigma_1, ..., \sigma_s$ , stubbornness  $\sigma$
    - Complete Knowledge about a few individuals in T
  - Choice of privacy parameter ε!
- Output:
  - Generalization T'
    - ε-private
    - useful

### Choosing the adversarial class

http://lehdmap3.dsd.census.gov/



#### Choosing the adversarial class

- Example: U.S. Census wants to publish ε-private commute patterns.
- 1a) Based on previous releases set upper bound on stubbornness.
  - Example: Set stubbornness = number of individuals in previous versions of commute patterns.
- 1b) Fix shape if possible.
  - Example: Either set shape = distribution in previous releases or do not make assumptions about the shape.
- 2 Upper bound number of individuals the adversary has complete knowledge about.

#### Create a generalized table T'

- a) Check T' preserves  $\varepsilon$ -privacy against an adversary with belief  $D(\sigma_1, ..., \sigma_s)$ :
  - All non-sensitive groups with n tuples out of which

n(s) have sensitive value s:

$$n \ge \Phi(\sigma, D, \varepsilon)$$
  
 $n(s)/n \le \Phi'(\sigma, D, \varepsilon, n)$ 

- Easy to check.
- Can derive condition for the other classes.
- b) Pick the one that maximizes utility.

#### a) Check privacy of ALL generalized tables

T  $T_{10}$   $T_{9}$   $T_{8}$   $T_{7}$   $T_{7}$   $T_{1}$   $T_{2}$   $T_{3}$   $T_{7}$ 

#### a) Check privacy of ALL generalized tables



### a) Check privacy



- Observation: Privacy is monotonic.
- Assumption: Utility function is monotonic.

#### b) Maximize utility



Use Incognito or Mondrian to find a privacy preserving generalization with maximum utility.

Observation: Privacy is monotonic.

Assumption: Utility function is monotonic.

#### **Experiments**

- Compare privacy-utility tradeoff
  - Across classes of adversaries
  - Across privacy definitions (l-diversity, t-closeness)
- Utility
  - Metric: discernibility, Avg. group size

#### **Experiments**

- Compare privacy-utility tradeoff
  - Across classes of adversaries
  - Across privacy definitions (l-diversity, t-closeness)
- Utility
  - Metric: discernibility, Avg. group size
- Data: American Community Survey ~ 3 million tuples

| Attribute    | Domain | Generalization            | Height |
|--------------|--------|---------------------------|--------|
| Age          | 73     | Ranges – 5, 10, 20, 40, * | 6      |
| Marital St.  | 6      | Taxonomy                  | 3      |
| Race         | 9      | *                         | 2      |
| Gender       | 2      | *                         | 2      |
| Salary class | 2      | Sensitive Attr.           | -      |

#### Realistic vs. Unrealistic Adversaries

#### Classes

- Prior: Uniform, as in T, arbitrary \_\_
- Stubbornness: σ ≤ {10, 10<sup>2</sup>, ..., 10<sup>6</sup>, ∞}
- □ Class I:  $A(U, \sigma)$ ,  $A(T, \sigma)$ , for  $\sigma \le \{10, 10^2, ..., 10^6\}$
- □ Class II:  $A(\_, \sigma)$ , for  $\sigma \le \{10, 10^2, ..., 10^6\}$
- □ Class III:  $A(U, \infty)$ ,  $A(T, \infty)$
- Class IV: A(\_\_, ∞)

#### Realistic vs. Unrealistic Adversaries

The effect of the stubbornness on utility



#### Comparison to other Privacy Guarantees



#### Comparison to other Privacy Guarantees



#### Summary

- Realistic Adversaries
  - Have statistical knowledge about the population
  - Form prior based on external data
  - Update their belief
- Publishing Generalizations:
  - Practical Trade-offs between Privacy and Utility
  - □ Instantiate other guarantees  $(\sigma -> ∞)$

#### **Future Work**

- Extend Background Knowledge:
  - Prior over non-sensitive attributes
  - Negation statements
- Study other Sanitization Algorithms:
  - Synthetic data
  - Interactive queries

#### Questions?

- B. de Finetti. "Funzione caratteristica di un fenomeno aleatorio." Mathematice e Naturale, 1931.
- F. Bacchus et al., "From statistics to beliefs." AAAI 1992
- L. Sweeney, "k-Anonymity: A Model for Protecting Privacy", IJUFKS, 2002
- A. Evfimievski et al., "Limiting Privacy Breaches in Privacy Preserving Data Mining", PODS 2003
- G. Miklau et al., "A Formal Analysis of Information Disclosure in Data Exchange", SIGMOD 2004
- K. LeFevre et al., "Incognito: Efficient Full Domain k-Anonymity", SIGMOD 2005
- A. Machanavajjhala et al., "L-Diversity: Privacy beyond K-Anonymity", ICDE 2006
- C. Dwork. "Differential privacy", ICALP 2006.
- N. Li et al., "t-Closeness: Privacy beyond K-Anonymity and L-Diversity", ICDE 2007
- Y. Tao et al., "On anti-corruption privacy preserving publication.", ICDE 2008