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Michaela Götz a, Christoph Koch a, Wim Martens b,�

a Cornell University, Ithaca, NY 14853, United States
b Technical University of Dortmund, Germany
a r t i c l e i n f o

Keywords:

XML

XPath

Query processing

Tree pattern queries

Complexity
79/$ - see front matter & 2009 Elsevier B.V. A

016/j.is.2009.03.010

present paper is the full version of Ref. [13

posium on Data Base Programming Languag

responding author.

ail addresses: goetz@cs.cornell.edu (M. Götz),
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a b s t r a c t

Tree pattern matching is a fundamental problem that has a wide range of applications in

Web data management, XML processing, and selective data dissemination. In this paper

we develop efficient algorithms for the tree homeomorphism problem, i.e., the problem

of matching a tree pattern with exclusively transitive (descendant) edges. We first

prove that deciding whether there is a tree homeomorphism is LOGSPACE-complete,

improving on the current LOGCFL upper bound. Furthermore, we develop a practical

algorithm for the tree homeomorphism decision problem that is both space- and time-

efficient. The algorithm is in LOGDCFL and space consumption is strongly bounded,

while the running time is linear in the size of the data tree. This algorithm immediately

generalizes to the problem of matching the tree pattern against all subtrees of the data

tree, preserving the mentioned efficiency properties.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Tree patterns are a simple query language for tree-
structured data. They are at the heart of several widely
used Web languages such as XPath and XQuery [4].
As a consequence, they form part of a number of typing
mechanisms such as XML Schema, and of Web Program-
ming Languages. They have also been used as query
languages in their own right, for example for expressing
subscriptions in publish-subscribe systems [1,5,6,14].

The general tree pattern matching problem considered
in the literature is the problem of finding a mapping
between two node-labeled trees which is, in a sense, a cross
of a subtree homomorphism and a homeomorphism. In this
article we consider a clean and important special case of
ll rights reserved.

], which appeared in

es 2007.

koch@cs.cornell.edu
the tree pattern embedding problem that we call the tree

homeomorphism problem. The question we consider is
whether there is a mapping y from the nodes of the first
tree, the tree pattern or query, to the nodes of the second
tree, the data tree, such that if node y is a child of x in the
first tree, then yðyÞ is a descendant of yðxÞ in the second
tree. We also consider the tree homeomorphism matching

problem: finding all nodes v of the data tree such that
there is such a tree homeomorphism with v the image
of the root node of the pattern tree. This problem of
selecting all nodes whose subtrees match the tree pattern
has frequent application in XML and Web query processing
[1,10].

While this problem is of immediate practical relevance
and a substantial number of papers have studied complex-
ity and efficient algorithms for tree pattern matching,
the precise complexity of both the general tree pattern
matching problem and the tree homeomorphism problem
are open; they are both known to be in LOGCFL and
LOGSPACE-hard [11]. The former can be immediately
concluded from earlier results on the complexity of the
acyclic conjunctive queries [12] and the positive naviga-
tional fragment of XPath [11], both much stronger
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Table 1
Time and space consumption for algorithms solving the tree homeomorphism matching problem.

Time Space Streaming

Yannakakis (1981) [20] OðjQ j � jDj � depthðDÞÞ OðdepthðQ Þ � jDjÞ No

Gottlob et al. (2002) [10] OðjQ j � jDjÞ OðjQ j � jDjÞ No

Olteanu et al. 2004 [17] OðjQ j � jDj � depthðDÞÞ OðjQ j � depthðDÞ þ jDjÞ Yes

Bar-Yossef et al. (2005) [3] OðjQ j � jDjÞ OðjQ j log jDj þ candDÞ Yes

Ramanan (2005) [18] OððjQ j þ depthðDÞÞ � jDjÞ OðjQ j � depth(D)þ candDÞ Yes

Our bottom-up algorithm OðjQ j � jDj � depthðjQ jÞÞ OðdepthðDÞ � branchðDÞÞ No

Our LOGSPACE algorithm polyðjQ j þ jDjÞ OðlogðjQ j þ jDjÞÞ No

Here depthð�Þ and branchð�Þ denote the depth and maximal branching factor of a tree, respectively.
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languages. The latter is a direct consequence of the fact that
reachability in trees is LOGSPACE-complete [8].

Much work has been dedicated to developing efficient
algorithms for finding matches of tree patterns and tree
homeomorphisms. Certain algorithms aim at processing
the data tree as a stream (i.e., in a single scan)
[2,3,5,6,9,14,16–18]. For this case a number of lower bound
results have been obtained using mechanisms from com-
munication complexity [2,3,15]. It is basically known that
streaming algorithms for even simple tree patterns con-
sume space proportional to the size of the data tree in the
worst case. Table 1 lists algorithms for the tree home-
omorphism matching problem together with bounds on
their running time and space consumption. Here D is the
data tree and Q is the tree pattern. We assume a random-
access machine model with unit cost for reading and
writing integers. Some of the algorithms presented support
generalizations of the tree homeomorphism problem but
where a better bound is known for the tree homeomorph-
ism problem, it is shown. Some of the streaming algorithms
[3,18] use a notion of candidate node sets candD which
depends on the algorithm and which can be of size close to
jDj in the worst case. The algorithm of [3] makes the
assumption of so-called non-recursive data trees, in which
no two nodes such that one is a descendant of the other
may have the same label. Finally, streaming algorithms
such as [16] focus on being able to process SAX-events in
constant time, at the cost of an exponential preprocessing
step.

In this article we study the tree homeomorphism
(matching) problem. We establish a tight complexity
characterization and develop an algorithm for the node-
selection problem (shown at the bottom of Table 1) that is
both time- and space-efficient. In detail, the technical
contributions of this article are as follows:
�

ized

in p
We first develop a top-down algorithm for the tree
homeomorphism problem that is in LOGDCFL.1
�
 From this we develop a proof that the problem is
LOGSPACE-complete, improving on the LOGCFL upper
bound from [11].
1 For our purposes, it is enough to know that LOGDCFL is character-

by deterministic LOGSPACE bounded pushdown automata which run

olynomial time [19].
�
 As our main result we develop a bottom-up LOGDCFL
algorithm for computing all solutions of the tree home-
omorphism problem which is both time- and space-
efficient. This is a rather difficult algorithm and the
correctness proof is involved. The algorithm runs in time
OðjDj � jQ j � depthðQ ÞÞ and employs a stack of depth
bounded by OðdepthðDÞbranchðDÞÞ.
The algorithm may be of relevance in practical im-
plementations. Indeed, in most Web or XML applica-
tions, the data tree is much larger than the tree
pattern yet its depth is rather small. It can be observed
that ours is the only algorithm in Table 1—and to the
best of our knowledge, in existence—that can guarantee
a space bound that does not contain the size, but
only depth and branching factor, of the data tree
as a term. At the same time the algorithm admits a
good time bound.
Furthermore, the algorithm is of relevance in theory
as well. It is a first step in classifying the complexity
of positive Core XPath with only child and descendant
axes, which is probably the most widely used XPath
fragment in practice. Its precise complexity, however, is
unknown.

�
 In some applications (e.g., for certain XML data trees),

a few nodes can have a very large number of children.
Our algorithm can be made to run in space
OðdepthðDÞ logðbranchðDÞÞÞ with the same time bound
if we assume the data tree to be in a ranked form
that can be obtained by a LOGSPACE linear-time
preprocessing algorithm. Given that ours is an offline
algorithm it means little loss of generality to assume
that data trees are kept in a database in this prepro-
cessed form.

The article presents these result basically in the order
given here.

2. Definitions

By N we denote the set of strictly positive integers. By S
we always denote a fixed but infinite set of labels. The trees
we consider are rooted, ordered, finite, labeled, unranked
trees, which are directed from the root downwards. That is,
we consider trees with a finite number of nodes and in
which nodes can have arbitrarily many children. A S-tree t
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(or tree t) is a relational structure over a finite number of
unary labeling relations að�Þ, where each a 2 S, and binary
relations Child ð�; �Þ and NextSibling ð�; �Þ. Here, aðuÞ ex-
presses that u is a node with label a, and Child ðu;vÞ
(respectively, NextSibling ðu;vÞ) expresses that v is a child
(respectively, next sibling) of u. We assume that each node
in a tree bears precisely one label, i.e., for each u, there is
precisely one a 2 S such that aðuÞ holds in t.

By e we denote the empty tree. By aðT1 � � � TnÞ we denote
the tree in which the root bears the label a and has n non-
empty subtrees T1 � � � Tn, from left to right. If the a-labeled
root has no children, we write a rather than aðÞ. By root ðtÞ
we denote the root node of t.

By opre and opost we denote the depth-first left-to-right
pre-ordering, respectively, left-to-right post-ordering in
trees. That is, if u is a node with children u1; . . . ;un from
left to right, then we have that uopre u1opre � � �opre un

and u1opost � � �opostunopostu. Furthermore, u1 is the suc-
cessor of u in opre, i.e., there does not exists a v such
that uopre vopre u1. Similarly, u is the successor of un in
the post-ordering. In Section 3, we will assume the opre

ordering on nodes, and in Section 4, we will assume the
opost ordering.

A S-hedge H (or hedge H) is a finite ordered sequence
T1 � � � Tn of trees. When we write a hedge as T1 � � � Tn, we
tacitly assume that every Ti is a non-empty tree. In the
hedge T1 � � � Tn, we assume that uiopre uiþ1 and uiopostuiþ1

holds for each i ¼ 1; . . . ;n� 1, where ui and uiþ1 are the
roots of Ti and Tiþ1, respectively. Notice that we do not
necessarily assume a sibling relation between the roots of
Ti and Tiþ1.

In the sequel, we will slightly abuse terminology and use
the term ‘‘tree’’ to also refer to a hedge consisting of one
tree, and we use the term ‘‘hedge’’ to also refer to the union
of trees and hedges. We assume familiarity with terms such
as child, parent, descendant, ancestor, leaf, root, first child,
last child, first sibling, previous sibling, last sibling, and next

sibling.
For a hedge H, we denote by Nodes ðHÞ the set of nodes of

H. By jHj, we denote the number of nodes of H. Let H ¼

T1 � � � Tn with nX1. The label of node u in the tree or hedge
H is sometimes also denoted by labH

ðuÞ. The depth of a node
u in H, denoted by depthH

ðuÞ, is 1 when u is the root of some
Ti and 1þ depth ðvÞ when u is a child of v. The height of a
node u in hedge H, denoted by heightH

ðuÞ, is 1 when u is a
leaf and maxðheightH

ðu1Þ; . . . ;heightH
ðukÞÞ þ 1 when u has

k40 children u1; . . . ;uk. By subtreeH
ðuÞ, we denote the

subtree of H rooted at node u. By parentHðuÞ, we denote the
parent of u in H, if it exists. In the remainder of the article,
we usually leave H implicit when H is clear from the
context.
2.1. The tree homeomorphism problem

A tree pattern query (with descendant edges) Q is an
(unranked) tree over the alphabet S ] f�g. That is, we
assume that the special label � does not appear in S. In the
following, we use the terms data tree or data hedge to refer
to ordinary S-trees and S-hedges.
Definition 1 (Tree pattern matching). Given a data hedge H,
a node u 2 Nodes ðHÞ, and a tree pattern query Q, we say
that H matches Q at node u, denoted by H�uQ, if there exists
a mapping h : Nodes ðQ Þ ! Nodes ðHÞ such that,
�
 if labQ
ðvÞ ¼ a for some a 2 S, then labH

ðhðvÞÞ ¼ a;

�
 if Child ðv1;v2Þ holds in Q, then hðv1Þ is an ancestor of

hðv2Þ in H; and

�
 u ¼ hðroot ðQ ÞÞ.

If the above mapping h exists, we call h a tree pattern

matching.

Notice that the ordering of children in our tree
pattern queries does not matter, and that the label � is a
wildcard label for the query. This corresponds to the
well known semantics of XPath queries with descendant
axis [7]. In the following, we abbreviate by H � Q that H�uQ

for some u 2 Nodes ðHÞ. Alternatively, we say that H

matches Q.
In this article, we are interested in the following

problems.

Definition 2 (Tree homeomorphism (matching) problem).
Given a data tree T and a tree pattern query Q, the tree

homeomorphism problem consists of deciding whether
T � Q . Furthermore, we are interested in computing all

answers for the tree homeomorphism problem, that is,
computing all nodes u 2 Nodes ðTÞ such that T�uQ . We
refer to the latter problem as tree homeomorphism matching

problem.

We assume that trees are stored on tape as a set of
records; one for each node. Each record contains a pointer
to its first child, last child, parent, previous sibling, and next
sibling.

In the remainder of the article, we assume a fixed data
tree D and a fixed query tree Q for ease of presentation. We
will refer to nodes of D and Q as data nodes and query nodes,
respectively.

3. A top-down algorithm

This section provides a simple top-down algorithm for
the tree homeomorphism matching problem. The core of
this top-down algorithm lies in a simple procedure that
decides, given a data node d and a query node q, whether
subtreeðdÞ � subtreeðqÞ.

3.1. A top-down LOGDCFL algorithm

The procedure MATCH, illustrated in Algorithm 1 tests
whether subtreeðdÞ � subtreeðqÞ. The intuition of this
procedure is the following. Essentially, we immediately
follow the semantics of the tree patterns. We test whether d

matches q. If d matches q, it only remains to (recursively)
test whether all subpatterns rooted at children of q can be
matched somewhere in subtrees rooted at children dc of the
data tree d. If d does not match q, then we need to search
whether subtreeðqÞ matches in some subtree rooted at
some child dc of d.
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Algorithm 1. Top-down algorithm MATCH.
MATCH (DNode d, QNode q)
2:
 if d matches q then
return 8 child
 qc of q 9 child dc of d: Match(dc , qc)
4:
 else x q not matched yet, try d’s children
return 9 child
 dc of d: Match(dc ,q)
6:
 end if
Lemma 1. MATCH is correct. That is, given a data node d

and a query node q, MATCH returns true if and only if

subtreeðdÞ � subtreeðqÞ.

Proof. By induction over the size of the data tree, denoted
by n.

n ¼ 1 : We have that subtreeðdÞ ¼ a for some a 2 S. MATCH

returns true if and only if the query tree consists of

one node and d matches this node. The correctness follows

from the tree pattern matching definition, which says

that if subtreeðdÞ ¼ a, subtreeðqÞ ¼ a or subtreeðqÞ ¼ �,

subtreeðdÞ � subtreeðqÞ.

n41 : We consider two cases:
�
 If d matches q, we return true if, for every child qc of q,
there exists a child dc of d such that Matchðdc ; qcÞ

returns true. If the query tree consists of only one node,
this is obviously correct. If q has children, the correct-
ness follows from the induction hypothesis and the
definition of tree pattern matchings: if subtreeðdÞ ¼
aðT1 � � � TnÞ, subtreeðqÞ ¼ xðQ1 � � �QmÞ, x 2 S ] f�g, a � x,
and, for every k ¼ 1; . . . ;m, there exists an ik 2 f1; . . . ;ng,
such that Tik � Qk, then subtreeðdÞ � subtreeðqÞ. If there
exists a qc such that Matchðdc ;qcÞ is false for every dc,
we would also fail to match the whole query tree into a
subtree of a child of d. Again by the definition of tree
pattern matchings it is then correct to return false.

�
 If d does not match q, we test whether there is a

child dc of d such that subtreeðqÞ can be matched into
subtreeðdcÞ. By the induction hypothesis, the recursive
calls of Matchðdc ; qÞ compute this correctly. If there is
such a matching, it is correct to return true by the
definition of tree pattern matchings: if subtreeðdÞ ¼
aðT1 � � � TnÞ and Ti � subtreeðqÞ, then subtreeðdÞ
elssubtreeðqÞ. Furthermore, if subtreeðdÞ ¼ aðT1 � � � TnÞ, d

does not match q, and there does not exist a Ti such
that Ti � subtreeðqÞ, then, by definition, subtreeðdÞj
subtreeðqÞ. Hence, it is correct to return false. &

Hence, MATCH is a correct algorithm for the tree home-
omorphism problem. By slightly adapting MATCH, we can
even turn it into an algorithm Top-Down-Match for
the tree homeomorphism matching problem too. First, we
need a procedure Exact-Match that, given a data node d

and query node q, decides whether subtreeðdÞ matches
subtreeðqÞ at node d. This is easy: Exact-Match only
differs from MATCH in line 5, where it just returns false.
Given a data node d and the root qroot of the query tree,
Top-Down-Match now simply iterates over all the
data nodes and returns every data node d for which
Exact-Matchðd; qrootÞ returns true. From this construction
and from the correctness of MATCH, it is now immediate that
Top-Down-Match is correct as well.
3.1.1. Time and space complexity

We start with an analysis of the time complexity of
MATCH and then we describe how an upper bound of the
runtime of Exact-Match can be derived from that.

Observation 1. Matchðd; qÞ compares each node in

subtreeðdÞ at most once with each node in subtreeðqÞ. The

running time of Matchðd; qÞ is jsubtreeðdÞj � jsubtreeðqÞj.

Proof. This is an easy induction on jsubtreeðdÞj. If
jsubtreeðdÞj ¼ 1, then MATCH tests whether d matches q

and discovers that there are no children of d to iterate over.
Hence, the running time is in OðjsubtreeðqÞjÞ.

If jsubtreeðdÞj41, then MATCH tests whether d matches q

and it either calls itself recursively for every child dc of d

and every child qc of q; or it calls itself recursively for every

child dc of d and q. In both cases, we can apply the

induction hypothesis. In the first case, the time complexity

becomes Oð
P

qc
ð
P

dc
ðjsubtreeðdcÞj � jsubtreeðqcÞjÞÞÞ, and in

the second case, the time complexity becomes

Oð
P

dc
ðjsubtreeðdcÞj � jsubtreeðqÞjÞÞ. Hence, both cases are

in OðjsubtreeðdÞj � jsubtreeðqÞjÞ. &

It is easy to see that Observation 1 implies that the time
complexity of Exact-Matchðd; qÞ is also in OðjsubtreeðdÞj�
jsubtreeðqÞjÞ. As Top-Down-Match simply calls Exact-
Match for every data node, we immediately have the
following result.

Proposition 1. The running time of TOP-DOWN-MATCH is in

OðjDj2 � jQ jÞ. Moreover, TOP-DOWN-MATCH makes OðjDj2 � jQ jÞ
comparisons between a data node and a query node.

It is immediate from our implementation that the
algorithm can be executed by a deterministic logarithmic
space bounded auxiliary pushdown automaton (see, e.g.,
[19]). Moreover, by Proposition 1, this auxiliary pushdown
automaton runs in polynomial time. It follows from [19]
that the tree homeomorphism matching problem is in
LOGDCFL. As the maximum recursion depth of Algorithm 1
is Oðdepth ðDÞÞ, this renders the algorithm quite space-
efficient, but the running time being quadratic in the size of
the data tree, and the many unnecessary comparisons
between query and data nodes are quite unsatisfactory.
In Section 4, we show how these issues can be resolved by
turning to a bottom-up approach.

3.2. A LOGSPACE procedure

While the top-down algorithm does not seem to be
well-suited for efficiently computing all nodes u for which
D�uQ , it is quite useful for deciding whether D � Q, from a
complexity theory point of view. Indeed, as we will exhibit,
a modified version of MATCH can decide in LOGSPACE
whether D � Q.

For ease of presentation of the algorithm, we assume the
depth-first left-to-right pre-order ordering on nodes in trees
and hedges in the remainder of this section. For a node u,
we denote by uþ 1 the successor node of u in the left-to-
right pre-order opre. We note that this assumption does not
restrict our algorithm as one can compute this successor in
LOGSPACE.
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Algorithm 2. Top-down algorithm L-MATCH. Here, þ1 denotes the successor in the depth-first left-to-right pre-ordering.

L-MATCH (DNode d, QNode q)

2: if d matches q, and both d and q have children then .yðqÞ ¼ d

return L-MATCH (dþ 1, qþ 1)

4: else if d does not match q and d has a child then

return L-MATCH (dþ 1, q)

6: else if d matches q and q is a leaf then .yðqÞ ¼ d

if q is maximal then
8: return true x none of q’s ancestors has a next sibling

else
10: d0  Backtrackðd; qþ 1Þ x node to which parentðqþ 1Þ matched

return L-MATCH (d0 þ 1, qþ 1)

12: end if
else x d is a leaf and (d does not match q or q is not a leaf)

14: if d is maximal then
return false

16: end if
q0  q

18: while q0 has a parent do

d0  Backtrackðd; q0Þ x node to which parentðq0Þ was matched

20: if d0 is an ancestor of dþ 1 then

return L-MATCH (dþ 1, q0)

22: else q0  parentðq0Þ

end if
24: end while

return L-MATCH (dþ 1, q0)

26: end if

2 Notice that the parent pointer is not mandatory for this argument.

One can also determine v’s parent in LOGSPACE by scanning the input tape

and searching for a node with a child pointer to v.
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We argue how to transform Algorithm 1 into a LOGSPACE
algorithm that decides whether D � Q. We will first give an
intuition of the transformation. Then we will discuss some
implementation details that will allows us to analyze the
space consumption. A formal proof of the correctness
follows.

Intuitively, the LOGSPACE algorithm processes the data
and query trees in a top-down manner, just like Algorithm
1, and it processes the children of a node from left to right.
Whenever Algorithm 1 uses the recursion stack to deter-
mine which function call to issue next or which final value
to return, the LOGSPACE algorithm recomputes the informa-
tion necessary to make these decisions.

Therefore, the essential difference between Algorithm 1
and the LOGSPACE algorithm lies in a backtracking
procedure. When, for example, Algorithm 1 matches a leaf
q of the query tree onto some data node d, then it uses the
recursion stack to discover the data node onto which q’s
parent was matched in the data tree and tries to match q’s
next sibling in some subtree of that data node. Instead of
using this recursion stack, the LOGSPACE algorithm enters a
subprocedure Backtrackðd;qÞ that recomputes the data
node onto which q’s parent was matched. In particular,
Backtrackðd; qÞ computes the highest possible node d0 on
the path from D’s root to d, such that the path from D’s root
to d0 matches the path from Q’s root to q’s parent. The crux
of the algorithm is that this is correct, i.e., d0 is equal to the
data node onto which q’s parent was matched; and that
Backtrackðd; qÞ can be performed using only logarithmic
space on a Turing Machine. Backtrackðd; qÞ stores d and q

on tape and goes to the roots of the query and data tree. It
then matches the path to d with the path to q in a greedy
manner. The crux of executing Backtrackðd; qÞ using
logarithmic space lies in the following. If we arrive at a
node u in D (resp., Q), we have to be able to determine the
child of u that lies on the path to d (resp., q). To this end,
we first store d (resp., q) in a temporary variable v. We
continue following the parent relation in this fashion until
we find u, at which point we return the value of v, which is
a child of u.2

In more detail, for given input nodes d and q the
LOGSPACE procedure tests whether d matches q and based
on the result of this test it computes the next function call.
This is a rather extensive case study. In case d matches q

and both nodes have children the next function call has the
leftmost child of d and the leftmost child of q as its input. In
case d does not match q but has children the next function
call has the leftmost child of d and q as its input. In other
cases, computing the next function call can be more
complicated. When, for example, Algorithm 1 matches a
leaf q of the query tree onto some data node d it will try to
match qþ 1 next, which is the lowest right sibling we
encounter on the path from q to the root. If no such sibling
exists, all query nodes are matched and the algorithm
returns true. Otherwise, Algorithm 1 uses the recursion
stack to compute the data node onto which qþ 1’s parent
was matched in the data tree and tries to match qþ 1 in
some proper subtree of that data node. Instead of using this
recursion stack, the LOGSPACE algorithm enters the sub-
procedure Backtrackðd; qþ 1Þ that recomputes the data
node onto which qþ 1’s parent was matched. The next
function call in that case has the leftmost child of
Backtrackðd; qþ 1Þ and qþ 1 as input. There is one more
case: if d is a leaf and either d does not match q or q has
children, then Algorithm 1 tries to match q to d’s right
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Fig. 1. Illustration of the remainder of q in Q.
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sibling if it has one. In general, Algorithm 1 will try to move
a query node onto dþ 1 next if such a node exists,
otherwise it returns false. If dþ 1 exists, it uses the
recursion stack to find the ancestor-or-self of q that
is closest to q and whose parent was matched to an
ancestor of dþ 1. Algorithm 1 tries to match this ancestor
in subtreeðdþ 1Þ. If no such parent exists then Algorithm 1
tries to match the root in the subtreeðdþ 1Þ. Analogously as
before, the LOGSPACE algorithm uses BACKTRACK to test for
an ancestor of q whether its parent was matched to an
ancestor of dþ 1.

We present the LOGSPACE procedure in Algorithm 2. For
ease of presentation, we have written the algorithm as a
recursive procedure, but it can be implemented to only
use logarithmic space. This can be seen by observing that
every recursive call to L-MATCH in Algorithm 2 is a return-
statement, so the algorithm does not change when the
recursion stack is not used at all. The input of the algorithm
is, just as before, the root nodes d and q of the data tree D

and query tree Q, respectively. In particular, we can rewrite
the LOGSPACE procedure into a non-recursive algorithm:
we wrap a while loop (with condition true) around the
function body. In the function body we replace each
function call by an update of d and q (according to the
input of the function call) followed by a break statement.
Thus we start an execution of the while loop for each
function call.

For the sake of understanding the general idea behind
Algorithm 2, let, for a query node q, the remainder of q in

Q be the subhedge of Q consisting of the nodes
fq0 j qppre q0ppre qmaxg, where qmax is the maximal query
node w.r.t. the depth-first left-to-right ordering. We
illustrate the remainder of q in Q in Fig. 1. Given a data
node d and a query node q, the algorithm first tries to
match the remainder of q in Q consistently with what has
already been matched in D (lines 2–12). If this fails, it either
returns false (line 15), or enters the backtracking procedure
(lines 18–25).

We argued above that we can implement BACKTRACK

in LOGSPACE. Algorithm 2 does not require a recursion
stack and only uses logarithmic space. Thus we have the
following proposition.

Proposition 2. Algorithm 2 runs in LOGSPACE.

3.2.1. Correctness of L-MATCH

We want to show that L-MATCH returns true on input D

and Q if and only if D � Q . To simplify the analysis, we
imaginarily extend the algorithm by defining a matching y.
If the algorithm compares the labels of d and q in the
function call L-Matchðd; qÞ and they agree (in lines 2 and
6), we set yðqÞ ¼ d (and may overwrite older assignments).
This mapping y is merely used to simplify the reasoning
about the algorithm.

Soundness. We will prove that whenever L-MATCH returns
true on input D and Q, then D � Q . In fact we prove a
stronger claim: if L-MATCH returns true, then our mapping y
is a tree pattern matching (cfr. Definition 1). Hence y
witnesses that if L-MATCH returns true, then D � Q .

In order to prove the soundness of L-MATCH, we first
show the following Lemma, that also implies that BACKTRACK

is indeed correct. That is, given q and d, the node onto
which q’s parent was matched can be computed by
calculating the highest possible node d0 on the path from
D’s root to d, such that the path from D’s root to d0 matches
the path from Q’s root to q’s parent.

Lemma 2. Let D be a data tree and Q be a query tree. Further,
let L-Matchðd; qÞ be a function call resulting from the initial

procedure call L-Matchðroot ðDÞ; root ðQ ÞÞ. Then at the time

when L-Matchðd; qÞ is called
(1)
 the restriction of y to query nodes smaller than q in the

ordering opre is a tree pattern matching;

(2)
 y matches the path hparentðqÞ � � � root ðQ Þi into the path

hparentðdÞ � � � root ðDÞi as high as possible; and
(3)
 the path hq � � � root ðQ Þi cannot be matched into the path

hparentðdÞ � � � root ðDÞi.
Proof. We prove the Lemma by induction on the position k

of L-Matchðd; qÞ in the sequence of function calls resulting
from the initial procedure call L-Matchðroot ðDÞ; root ðQ ÞÞ.
If k ¼ 1 then we have L-Matchðroot ðDÞ; root ðQ ÞÞ, in which
case there is nothing to show.

So, from now on, we assume that Lemma 2 is true for the

first k function calls and we let L-Matchðd; qÞ be the kth

function call. We prove that it is also true for the kþ 1th

function call (if there is one). We consider four cases

according to Algorithm 2.
�
 If the labels of d and q agree and both nodes have
children (line 2), the next function call is
L-Matchðdþ 1; qþ 1Þ, where dþ 1 and qþ 1 are the
leftmost children of d and q, respectively. We know by
induction that y, restricted to query nodes smaller than
q, is a tree pattern matching. We extend this mapping by
yðqÞ ¼ d. This mapping clearly preserves labels. Hence,
we only need to show that yðqÞ is a descendant
of yðparentðqÞÞ. But this clear, since by induction
hparentðqÞ � � � root ðQ Þi is matched as high as possible
into the path hparentðdÞ � � � root ðDÞi, which proves (1).
Combining this with the fact that hq � � � root ðQ Þi cannot
be matched into hparentðdÞ � � � root ðDÞiwe conclude that
hq � � � root ðQ Þi is matched as high as possible into
hd � � � root ðDÞi, which proves (2). As we must match
qþ 1 onto a descendant of yðqÞ, it then follows that the
path hd � � � root ðDÞi cannot match the path hqþ 1 � � �
root ðQ Þi, which proves (3).
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�
 If the labels of d and q do not agree and d has children
(line 4), the next function call is L-Matchðdþ 1; qÞ,
where dþ 1 is the leftmost child of d. We do not extend
y in that case and all requirements (1)–(3) follow from
the induction hypothesis.

�
 If the labels of d and q agree, q is a leaf, and q is not

maximal (line 6), we extend the mapping y by yðqÞ ¼ d.
As in the first case of this proof we know by induction
that y, restricted to query nodes less than q, is a tree
pattern matching. The extended y is still a tree pattern
matching, because, due to the induction hypothesis,
hparentðqÞ � � � root ðQ Þi is matched into the path
hparentðdÞ � � � root ðDÞi. Hence, (1) is true.
Backtrackðd; qþ 1Þ calculates the highest ancestor d0

of the data node d such that hd0 � � � root ðDÞi matches
hparentðqþ 1Þ � � � root ðQ Þi. Why does d0 exist? First,
note that parentðqþ 1Þ is an ancestor of q due to the
left-to-right pre-order ordering. Second, by induction,
hparentðqÞ � � � root ðQ Þi can be matched into the path
hparentðdÞ � � � root ðDÞi. Putting both facts together, the
sub-path hparentðqþ 1Þ � � � root ðQ Þi can still be matched
into the path hparentðdÞ � � � root ðDÞi. Hence, d0 exists and
d0 þ 1 is its leftmost child.
The next function call is L-Matchðd0 þ 1;qþ 1Þ. By
induction, the mapping y matches the path hparentðqÞ � � �
root ðQ Þi into the path hparentðdÞ � � � root ðDÞi as high as
possible and therefore, y also matches the sub-path
hparentðqþ 1Þ � � � root ðQ Þi as high as possible into
hparentðdÞ � � � root ðDÞi. It also follows that BACKTRACK in
fact calculated the node onto which parentðqþ 1Þ was
matched, e.g. d0 ¼ yðparentðqþ 1ÞÞ. Combining the last
two facts with the descendant requirement that is
fulfilled by y yields (2) and (3): y matches the sub-path
hparentðqþ 1Þ � � � root ðQ Þi as high as possible into the
path hd0 � � � root ðDÞi and therefore hqþ 1 � � � root ðQ Þi
cannot be matched into hd0 � � � root ðDÞi.

�
 If d is a leaf and (d does not match q or q is not a leaf)

and d is not maximal (line 13), we have to try to match q

somewhere else. We do not extend y, so y restricted to
query nodes smaller than q is still a tree pattern
matching, which proves (1). To prove the other items,
we consider two cases.
Case 1: Assume that the next function call is
L-Matchðdþ 1; q0Þ in line 25. Then q0 has no parent
(q0 ¼ root ðQ Þ) and (2) is trivially true. To prove (3), i.e.,
to prove that root ðQ Þ cannot be matched into the path
hparentðdþ 1Þ � � � root ðDÞi, we consider two cases.
� If q ¼ q0 ¼ root ðQ Þ, by induction, root ðQ Þ cannot

be matched into hparentðdÞ � � � root ðDÞi and there-
fore also not into hparentðdþ 1Þ � � � root ðDÞi, which
is a sub-path of hparentðdÞ � � � root ðDÞi, which
proves (3).
� If qaq0 ¼ root ðQ Þ, then root ðQ Þ is an ancestor of q.

By the induction hypothesis on (1) we have that
hparentðyðroot ðQ ÞÞ � � � root ðDÞi is a sub-path of
hd � � � root ðDÞi. Also, hparentðdþ 1Þ � � � root ðDÞi is a
sub-path of hd � � � root ðDÞi. As L-MATCH did not return
a function call in line 21, yðroot ðQ ÞÞ is not an
ancestor of parentðdþ 1Þ. Hence, hparentðyðroot
ðQ ÞÞÞ � � � root ðDÞi includes hparentðdþ 1Þ � � � root ðDÞi.
By induction, hparentðyðroot ðQ ÞÞÞ � � � root ðDÞi does
not match root ðQ Þ and this property carries over to
hparentðdþ 1Þ � � � root ðDÞi, which proves (3).
Case 2: Otherwise, the next function call is
L-Matchðdþ 1; q0Þ in line 21. Backtrackðd; q0Þ has
calculated the highest ancestor d0 of the data node d

such that hd0 � � � root ðDÞi matches hparentðq0Þ � � � root
ðQ Þi. Why does d0 exist? First, note that q0 lies on the
path hq � � � root ðQ Þi and has a parent (line 20). Further,
note that, by induction, the path hparentðdÞ � � � root ðDÞi
matches the path hparentðqÞ � � � root ðQ Þi and therefore
it also matches the sub-path hparentðq0Þ � � � root ðQ Þi. It
follows that d0 exists and that d0 þ 1 is its leftmost child.
We know that q0 is the lowest node on hq � � � root ðQ Þi
such that BACKTRACKðd; q0 Þ ¼ d0 is an ancestor of dþ 1, by the
condition in the while loop. Next, we will prove (2). By
induction, the mapping y matches the query path
hparentðqÞ � � � root ðQ Þi and therefore also the sub-path
hparentðq0Þ � � � root ðQ Þi as high as possible into the data
path hparentðdÞ � � � root ðDÞi. It follows that the mapping
y also matches the path hparentðq0Þ � � � root ðQ Þi as high
as possible into the sub-path hd0 � � � root ðDÞi. As d0 is
an ancestor of dþ 1 (line 21) we now have that the
mapping y matches the path hparentðq0Þ � � � root ðQ Þi as
high as possible into the path hparentðdþ 1Þ � � � root ðDÞi,
which proves (2).
In order to prove (3), i.e., to prove that the path
hparentðdþ 1Þ � � � root ðDÞi cannot match the path hq0 � � �
root ðQ Þi, we consider two cases:
� If q ¼ q0, by the induction hypothesis, the path
hparentðdÞ � � � root ðDÞi cannot match the path hq � � �
root ðQ Þi. We have that hparentðdþ 1Þ � � � root ðDÞi is a
sub-path of hparentðdÞ � � � root ðDÞi because d is a leaf.
The claim follows.
� If qaq0, recall that q0 is the lowest ancestor of q such

that yðparentðq0ÞÞ is an ancestor of dþ 1 (observe
the while loop and recall that, by induction, d0 ¼

yðparentðq0ÞÞ). It follows, that q0 is matched some-
where on the path from parentðdÞ to (but not
including) parentðdþ 1Þ. By the induction hypoth-
esis, we cannot match the path hq0 � � � root ðQ Þi any
higher. Hence, the path hparentðdþ 1Þ � � � root ðDÞi
does not match the path hq0 � � � root ðQ Þi.
�
 Otherwise there does not follow a function call. &
Proposition 3. Algorithm 2 is sound. That is, given a data D

and query tree Q, if Algorithm 2 returns true, then D � Q .

Proof. If L-Matchðd; qÞ returns true in line 8, then q is
maximal (line 7) and the label of d matches the one of q

(line 6). By Lemma 2 the mapping y is a tree pattern
matching of Qnfqg on D, such that q’s parent is matched
onto some ancestor of d. We extend the mapping by
yðqÞ ¼ d, and conclude that D � Q . &

Completeness. In this section we want to prove that
whenever L-MATCH returns false on input D and Q, then
DjQ . For two nodes x and y in a tree, we denote by hx � � � yi
the path from x to y that excludes y itself. In order to prove
the completeness, we first show the following Lemma.
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M. Götz et al. / Information Systems 34 (2009) 602–623 609
Recall that the previous sibling of a node is its sibling to
the left.

Lemma 3. Let D be a data tree and let Q be a query tree. Let

L-Matchðd;qÞ be a function call resulting from the initial

procedure call L-Matchðroot ðDÞ; root ðQ ÞÞ. Then, it holds for

all previous siblings d̂ of nodes on the path hd � � � yðparentðqÞÞi
or, in case q has no parent, on the path hd � � � root ðDÞi that

subtreeðd̂ÞjsubtreeðqÞ.

Proof. Note that, by Lemma 2, we can refer to the
restriction of y to query nodes smaller than q as a tree
pattern matching. The proof is by induction on the position
k of L-Matchðd;qÞ in the sequence of function calls
resulting from the initial procedure call L-Match

ðroot ðDÞ, root ðQ ÞÞ. If k ¼ 1 then we have L-Match

ðroot ðDÞ; root ðQ ÞÞ in which case there is nothing to show
because there are no left siblings on the path hroot ðDÞi.

So, from now on, we assume that kX1 and the Lemma is

true for the first k function calls. Let L-Matchðd; qÞ be the

kth function call. We prove that it is also true for the kþ 1th

function call (if there is one). We consider four cases

according to Algorithm 2.
�
 If the labels of d and q agree and both nodes have
children (line 2), yðqÞ is defined to be d. The next
function call is L-Matchðdþ 1; qþ 1Þ, where dþ 1 and
qþ 1 are the leftmost children of d and q, respectively.
The path hdþ 1 � � � yðparentðqþ 1ÞÞi is the path
hdþ 1 � � � di. Since dþ 1 has no left sibling there is
nothing to show.

�
 If the labels of d and q do not agree and d has children

(line 4), the next function call is L-Matchðdþ 1; qÞ,
where dþ 1 is the leftmost child of d. Since dþ 1 has no
left siblings, the claim follows from the induction
hypothesis.

�
 If the labels of d and q agree, q is a leaf (line 6), and

q is not maximal, yðqÞ is defined to be d.
Backtrackðd;qþ 1Þ calculates the highest ancestor d0

of d such that hd0 � � � root ðDÞi matches hparentðqþ 1Þ � � �
root ðQ Þi. By Lemma 2 we have that yðparent
ðqþ 1ÞÞ ¼ d0. The next function call is L-Match

ðd0 þ 1; qþ 1Þ. The path hd0 þ 1 � � � yðparentðqþ 1ÞÞi is
the path hd0 þ 1 � � � d0i, where d0 is d0 þ 1’s parent. As
d0 þ 1 has no left sibling, there is nothing to show.

�
 If d is a leaf and (the labels of d and q do not agree or q

has children) (line 13) and d is not maximal, then
subtreeðdÞ does not match subtreeðqÞ. We first show the
following invariant which we will need later:

Invariant 2. For every call of L-Match until the kth call,
whenever the body of the while loop in line 18 is executed

without returning a function call in line 21, it follows for

the current q0 that subtreeðyðparentðq0ÞÞÞ does not match

subtreeðparentðq0ÞÞ.

Proof. We prove the claim by induction over the
number of executions of the while body, denoted by ‘.
‘ ¼ 1: Here q0 ¼ q, q has a parent (line 18), and we know

that (i) subtreeðqÞ cannot be matched into
subtreeðdÞ (line 13), (ii) q cannot be matched
into the path hparentðdÞ � � �yðparentðqÞÞi by Lem-
ma 2, (iii) there are no right siblings on the path
hd � � � yðparentðqÞÞi, since otherwise we would
have returned a function call in line 21, and (iv)
subtreeðqÞ cannot be matched into subtreeðd̂Þ for
every left sibling d̂ of the path hd � � �yðparentðqÞÞi,
by the induction hypothesis of Lemma 3. From
(i–iv) we can conclude that no proper subtree of
yðparentðqÞÞ matches subtreeðqÞ, which implies
that subtreeðyðparentðqÞÞÞ does not match subtree
ðparentðqÞÞ.

‘41: Let the claim be true for the first ‘ while loop
executions. We prove that it is also true for the
‘ þ 1th execution. Let q0 be the query node of the
‘ þ 1th while loop execution. Here, q0aq and q0

has a parent (line 18). There must have been a
function call L-Matchðq0; yðq0ÞÞ and there must
have been a while loop execution with the child
of q0 on the path from q to q0 as current node. We
know that (i) subtreeðq0Þ cannot be matched
into subtreeðyðq0ÞÞ by the induction hypothesis,
(ii) q0 cannot be matched into the path
hparentðyðq0ÞÞ � � � yðparentðq0ÞÞi by Lemma 2, (iii)
there are no right siblings on the path
hyðq0Þ � � � yðparentðq0ÞÞi, since otherwise we would
have returned a function call in line 21, and (iv)
subtreeðq0Þ cannot be matched into subtreeðd̂Þ,
for every left sibling d̂of the path hyðq0Þ � � �
yðparentðq0ÞÞi by the induction hypothesis of
Lemma 3. From (i–iv), we can conclude that no
proper subtree of yðparentðq0ÞÞ matches subtree
ðq0Þ, which implies that the subtreeðyðparentðq0ÞÞÞ
does not match the subtreeðparentðq0ÞÞ. &
We return to the proof of the main induction. We denote
the left sibling of dþ 1 by prevSibðdþ 1Þ. We consider
two cases.
Case 1: Assume that next function call is L-Matchðdþ

1; q0Þ in line 25. Here, q0 is the query root. We need
to show that there is no left sibling d̂ on the path
hdþ 1 � � � root ðDÞi, such that subtreeðd̂Þ � subtreeðq0Þ.
We consider two cases:

3 If q ¼ q0 ¼ root ðQ Þ, by the induction hypothesis,
subtreeðqÞ cannot be matched into subtreeðd̂Þ for
any left sibling d̂ of the path hd � � � root ðDÞi. Since
parentðdþ 1Þ is an ancestor of d, it is enough to show
that the subtree rooted at prevSibðdþ 1Þ, which is a
subtree that includes d, does not match subtreeðqÞ.
We know that (i) subtreeðqÞ cannot be matched into
subtreeðdÞ, (ii) q cannot be matched into the path
hparentðdÞ � � � root ðDÞi by Lemma 2, (iii) there are no
right siblings on the path hd � � �prevSibðdþ 1Þidue
to the left-to-right pre-order successor, and (iv)
subtreeðqÞ cannot be matched into the subtreeðd̂Þ
for every left sibling d̂ of the path from d to root ðDÞ
by the induction hypothesis. From (i–iv) it follows
that we cannot match subtreeðqÞ into the subtree
rooted at prevSibðdþ 1Þ.

3 If qaq0 ¼ root ðQ Þ, then by Lemma 2 there must have
been a function call L-Matchðq0;yðq0ÞÞ. By the
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induction hypothesis, subtreeðq0Þ cannot be matched
into subtreeðd̂Þ for any of the left siblings d̂ of the
path hyðq0Þ � � � root ðDÞi. Furthermore, there must have
been a while loop execution with q0’s child on
the path from q to q0 as current query node. Since
parentðdþ 1Þ is an ancestor of yðq0Þ (otherwise
we would have returned a function call in line 21),
it is enough to show that the subtree rooted at
prevSibðdþ 1Þ does not match the subtreeðq0Þ.
We know that (i) subtreeðq0Þ cannot be matched
into subtreeðyðq0ÞÞ by Invariant 2, (ii) q0 cannot be
matched into the path from parentðyðq0ÞÞ to root ðDÞ
by Lemma 2, (iii) there are no right siblings on the
path hyðq0Þ � � �prevSibðdþ 1Þi, because parentðdþ 1Þ
is an ancestor of yðq0Þ, which is an ancestor of d, and
(iv) subtreeðq0Þ cannot be matched into subtreeðd̂Þ for
every left sibling d̂ of the path from yðq0Þ to root ðDÞ
by the induction hypothesis. From (i–iv) it follows
that we cannot match subtreeðq0Þ into the subtree
rooted at prevSibðdþ 1Þ.
Case 2: Otherwise, the next function call is
L-Matchðdþ 1; q0Þ in line 21. Backtrackðd; q0Þ

has calculated the highest ancestor d0 of the data
node d such that hd0 � � � root ðDÞi matches hparentðq0Þ � � �
root ðQ Þi. By Lemma 2, d0 equals yðparentðq0ÞÞ.
We know that q0 is the lowest node on hq � � � root ðQ Þi
such that yðparentðq0ÞÞ is an ancestor of dþ 1, because of
the condition in the while loop. It follows that q0 is
matched somewhere on the path hd � � �parentðdþ 1Þi
(for the case q0aq). No matter whether q0 ¼ q or not,
there was a function call L-Matchðq0; d0Þ for some d0 on
the path hd � � �parentðdþ 1Þi. By the induction hypoth-
esis and Lemma 2 there is no left sibling d̂ on the path
hd0 � � �yðparentðq0ÞÞi such that subtreeðd̂Þ matches
subtreeðq0Þ.
Since d0 is in the subtree rooted at prevSibðdþ 1Þ, we
now only need to show that subtreeðprevSibðdþ 1ÞÞ
does not match subtreeðq0Þ. We consider two cases:
3 If q ¼ q0, then we know that (i) subtreeðqÞ cannot be

matched into subtreeðdÞ, (ii) q cannot be matched
into the path hparentðdÞ � � �yðparentðqÞÞi by Lemma 2,
(iii) there are no right siblings on the path hd � � �
prevSibðdþ 1Þi due to the definition of the left-to-
right pre-order successor, and (iv) subtreeðqÞ cannot
be matched into subtreeðd̂Þ for every left sibling d̂ of
the path hd � � � yðparentðqÞÞi by the induction hypoth-
esis. From (i–iv) it follows that the subtree rooted at
prevSibðdþ 1Þ does not match subtreeðq0Þ.

3 If qaq0, there must have been a while loop execution
with q0’s child on the path from q to q0 as current
query node and there must have been a function call
L-Matchðyðq0Þ; q0Þ. We know that (i) subtreeðq0Þ
cannot be matched into subtreeðyðq0ÞÞby Invariant 2,
(ii) q0 cannot be matched into the path hparent
ðyðq0ÞÞ � � �yðparentðqÞÞi by Lemma 2, (iii) there are no
right siblings on the path hyðq0Þ � � �prevSibðdþ 1Þi,
because there are no right siblings on the
path hd � � �prevSibðdþ 1Þi, and the path hyðq0Þ � � �
prevSibðdþ 1Þi is a sub-path of that path (otherwise
we would have returned a function call earlier, when
the child of q0 was the current query node), and (iv)
subtreeðq0Þ cannot be matched into subtreeðd̂Þ for
every previous sibling d̂ of the path hyðq0Þ � � �
yðparentðqÞÞi by the induction hypothesis. From
(i–iv) it follows that we cannot matchsubtreeðq0Þ into
the subtree rooted at prevSibðdþ 1Þ.
�
 Otherwise there does not follow a function call. &

Proposition 4. Algorithm 2 is complete. That is, given a data

D and query tree Q, if Algorithm 2 returns false, then DjQ .

Proof. We prove the proposition by induction on the
number of nodes in the data tree D. If jDj ¼ 1 then
L-Matchðroot ðDÞ; root ðQ ÞÞ returns true if root ðQ Þ is a
leaf with an appropriate label in line 8 and false otherwise
in line 15, which proves the completeness for that case.

Now suppose that jDj41. Assume L-Match returns false

in line 15. Let d and q be the nodes such that, in the

execution of L-Matchðd; qÞ, false was returned. Due to line

13, d is a leaf and either q has children or the labels of q and

d do not agree. Due to line 14 , d is the maximal node w.r.t.

opre, which means that there are no right siblings on the

path from d to the root.

Consider a slight modification of the data tree: we attach

an extra rightmost child to the root. Its value in the left-to-

right pre-order is now dþ 1, the highest value of nodes in

the data tree. Call this tree D0. Observe from the algorithm,

that replacing D by D0 does not make any difference in the

function calls before L-Matchðd; qÞ, because the algorithm

traverses the data tree according to the left-to-right pre-

order. However, in the function call L-Matchðd; qÞ the

algorithm would not return false anymore, instead it would

call L-Matchðdþ 1;q0Þ for some query node q0. By Lemma

3 we know that for every child d0 of the data root in D,

subtreeðd0Þ cannot match subtreeðq0Þ. We consider two

cases.
�
 Assume that q0 has a parent. It is clear that if there was a
matching from Q into D, we would be able to match the
subtreeðq0Þ into some subtree of the data root. But we
are not able to do this, so DjQ .

�
 Assume that q0 is the query root. By Lemma 2 we know

that we cannot match the query root into the path
hparentðdþ 1Þ � � � root ðDÞi. Hence, the labels of the query
root and the data root do not agree and if there was a
matching from Q into D, we would be able to match
subtreeðq0Þ into some subtree of the data root. But we
are not able to do this, so DjQ . &

Termination: Before we can conclude that L-MATCH

is correct, we need to prove that the function call
L-Matchðroot ðDÞ; root ðQ ÞÞ terminates on every input D

and Q. First, note that the while loop in line 18 terminates,
because in every execution q0 is overwritten with parentðq0Þ
and our input trees are of finite depth.

We now only need to argue that whenever we call
L-Matchðd; qÞ for some d 2 D and q 2 Q , we have not called
L-Matchðd; qÞ before. We prove this in the following
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Fig. 2. Illustrations of the induction hypotheses in the proof of Lemma 4.

(a) Induction hypothesis (I2) and (b) induction hypothesis (I3), respec-

tively.
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lemma (it is an immediate consequence of Lemma 4 letting
q0 ¼ q and d0 ¼ d).

Lemma 4. Let L-Matchðd;qÞ be a function call resulting

from the initial procedure call L-Matchðroot ðDÞ; root ðQ ÞÞ.
Then at the time when L-Matchðd; qÞ is called

8q0Xq; 8d0Xd; we have not yet called

L-Matchðd0; q0Þ before.

Proof. We prove the lemma by induction on the position k

of L-Matchðd; qÞ in the sequence of function calls resulting
from the initial procedure call.

More specifically, our induction hypothesis will be: at the

time when L-Matchðd; qÞ is called
(I1):
 8q0Xq; 8d0Xd, we have not yet called L-Match

ðd0; q0Þ before;

(I2):
 for all right siblings q̂ of nodes on the path

hq � � � root ðQ Þi, for all nodes q0 2 subtreeðq̂Þ, and for
all data nodes d0 2 subtreeðyðparentðq̂ÞÞÞ, we have not
yet called L-Matchðd0; q0Þ.
(I3):
 for all nodes q̂oq, for all nodes q0 2 subtreeðq̂Þ, for all
right siblings d̂ on the path hyðq̂Þ � � � root ðDÞi, and for
all data nodes d0 2 subtreeðd̂Þ, we have not yet called
L-Matchðd0; q0Þ.
We illustrate the hypotheses (I2) and (I3) in Fig. 2.

If k ¼ 1 then we have L-Matchðroot ðDÞ; root ðQ ÞÞ in

which case there is nothing to show.

So, from now on we assume that the Lemma holds for the

first k function calls. Let L-Matchðd; qÞ be the kth function
call. We prove that the Lemma also holds for the kþ 1th

function call (if there is one).

Let us start with a simple observation concerning (I3).

The induction hypothesis for (I3) implies that, for all query

nodes q̂oq, for all query nodes q0 2 subtreeðq̂Þ, for all right

siblings d̂ on the path hyðq̂Þ � � � root ðDÞi, and for all data

nodes d0 2 subtreeðd̂Þ we have not called L-Matchðd0; q0Þ

before we called L-Matchðd; qÞ. We argue why this

remains true even after calling L-Matchðd; qÞ, but before

the next function call is made. Towards a contradiction,

assume that this was not the case. In that case there would

be a query node q̂oq such that q 2 subtreeðq̂Þ, and a right

sibling d̂ on the path hyðq̂Þ � � � root ðDÞi, such that

d 2 subtreeðd̂Þ. But this cannot be because, due to Lemma

2, the ancestors of q are matched on the pathhd � � � root ðDÞi

and hence d cannot be in a subtree of a right sibling on the

path hyðq̂Þ � � � root ðDÞi. Hence, (I3) is also still true right

after calling L-Matchðd;qÞ. ðyÞ

Next we will consider the four possible function calls

following the kth function call L-Matchðd; qÞ and we will

show that (I1)–(I3) still hold for the next function call.
�
 If the next function call is L-Matchðdþ 1; qþ 1Þ (line
3), then yðqÞ is defined to be d. Here, dþ 1 is the
leftmost child of d and qþ 1 is the leftmost child of q.
The induction hypothesis for (I1) implies that for all
q0Xq, for all data nodes d0Xd, we have not called
L-Matchðd0; q0Þ before we called L-Matchðd; qÞ. In the
meantime, we only executed L-Matchðd; qÞ, so for
all q0Xqþ 1, for all data nodes d0Xdþ 1, we have
not called L-Matchðd0; q0Þ, which proves (I1).
Item (I2) of the induction hypothesis implies that, for all
right siblings q̂ of nodes on the path hq � � � root ðQ Þi, for
all nodes q0 2 subtreeðq̂Þ, for all data nodes d0 2 subtree
ðyðparentðq̂ÞÞÞ, we have not called L-Matchðd0; q0Þ

before we called L-Matchðd;qÞ. Since qþ 1 is the
leftmost child of q, we only need to show that, for all
right siblings q̂ of qþ 1, for all nodes q0 2 subtreeðq̂Þ, for
all data nodes d0 2 subtreeðyðparentðq̂ÞÞÞ (which is the
subtreeðdÞ), we have not called L-Matchðd0; q0Þ before.
But this follows from the induction on (I1), because data
nodes in subtreeðdÞ are greater or equal to d and query
nodes in subtrees of qþ 1’s right siblings are greater
than q. This shows (I2).
In order to prove (I3) we need to show that for q̂oqþ 1,
for all query nodes q0 2 subtreeðq̂Þ, for all right siblings d̂

on the path hyðq̂Þ � � � root ðDÞi, and for all data nodes d0 2

subtreeðd̂Þ we have not called L-Matchðd0; q0Þ before
calling L-Matchðdþ 1; qþ 1Þ.
By the observation ðyÞ above this is true for q̂oq. So, let
us consider q̂ ¼ q. The fact that yðqÞ ¼ d now implies
that d04d and q0Xq. The claim follows from the
induction on item (1) and the fact that we only called
L-Matchðd; qÞ in the meantime.

�
 If the next function call is L-Matchðdþ 1; qÞ (line 5),

then dþ 1 is the leftmost child of d. The induction on
(I1) implies that (I1) is true (as above). Since we only
called L-Matchðd; qÞ in the meantime and did not
change the mapping y at all, (I2) is a direct consequence
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of the induction hypothesis on (I2). Since we did not
change the mapping y and the query node serving as
argument of the kþ 1th function call is the same as the
argument of the kth function call, (I3) follows from the
observation ðyÞ made above.

�
 If the next function call is L-Matchðd0 þ 1; qþ 1Þ

(line 11), then yðqÞ is defined to be d. Here, qþ 1 is a
right sibling of a node on the path hq � � � root ðQ Þi (due to
the left-to-right pre-order and the fact that q is a leaf,
see line 6) and d0 þ 1 is the leftmost child of some
ancestor of d. The induction on (I1) assures that, for all
q0Xq, for all data nodes d0Xd, we have not called
L-Matchðd0; q0Þ before we called L-Matchðd; qÞ. In the
meantime, we executed L-Matchðd; qÞ, so for all
q0Xqþ 1, for all data nodes d0Xd, we have not called
L-Matchðd0; q0Þ. In order to prove (I1), we still need
to show that this is also true for all q0Xqþ 1 and for all
data nodes d0 with d0 þ 1pd0od. We consider two
cases:
3 If q0 2 subtreeðqþ 1Þ we can make use of the

induction hypothesis on (I2). The query node qþ 1
is a right sibling of a node on the path hq � � � root ðQ Þi
and hence we have not called L-Matchðd0; q0Þ

before for all nodes d0 2 subtreeðyðparentðqþ 1ÞÞÞ.
This proves our case because, by Lemma 2,y
ðparentðqþ 1ÞÞ is equal to d0 and d0 is an ancestor
of d. Clearly, subtreeðd0Þ includes all nodes d0 with
d0 þ 1pd0od. Hence, for all q0 2 subtreeðqþ 1Þ and
for all d0 with d0 þ 1pd0od we have not called
L-Matchðd0;q0Þ before.

3 If q0esubtreeðqþ 1Þ we can make use of the
induction hypothesis on (I2) again. By definition of
the left-to-right pre-order, q0 is then in a subtree of
some right sibling q̂ of a node on the path
hqþ 1 � � � root ðQ Þi. This q̂ is also a right sibling of a
node on the path hq � � � root ðQ Þi. By induction on (I2)
it follows that, for all data nodes d0 2 subtree
ðyðparentðq̂ÞÞÞ, we have not called L-Matchðd0; q0Þ.
This proves our case, because parentðq̂Þ is an ancestor
of or equal to parentðqþ 1Þ and, by Lemma
2,yðparentðq̂ÞÞ is an ancestor of or equal to
yðparentðqþ 1ÞÞ, which is equal to d0. Clearly,
subtreeðd0Þ includes all nodes d0 with d0 þ 1pd0od

and so does subtreeðyðparentðq̂ÞÞÞ. Hence, for all
q0esubtreeðqþ 1Þ and for all d0 with d0 þ 1pd0od

we have not called L-Matchðd ; q Þ before.
0 0

As mentioned above, right siblings of a node on the path
hqþ 1 � � � root ðQ Þi are also a right siblings of a node on
the path hq � � � root ðQ Þi. Hence, (I2) immediately follows
from the induction hypothesis on (I2).
In order to prove (I3) we need to show that, for q̂oqþ 1,
for all query nodes q0 2 subtreeðq̂Þ, for all right siblings d̂

on the path hyðq̂Þ � � � root ðDÞi, and for all data nodes
d0 2 subtreeðd̂Þ, we have not called L-Matchðd0; q0Þ

before calling L-Matchðd0 þ 1; qþ 1Þ.
By the observation ðyÞ above this is true for q̂oq. So,
let us consider q̂ ¼ q. The left-to-right pre-order and
the fact that yðqÞ ¼ d, implies that d04d and q0Xq. The
claim follows from the induction on (I1) and the fact
that we only called L-Matchðd; qÞ in the meantime.
�
 If the next function call is L-Matchðdþ 1; q0Þ (lines 21
or 25), then dþ 1 is a right sibling of a node on the path
hd � � � root ðDÞi (due to the left-to-right pre-order and the
fact that d is a leaf, see line 13) and q0 is an ancestor of or
is equal to q.
The induction on (I1) implies that, for all q0Xq, for all
data nodes d0Xd, we have not called L-Matchðd0; q0Þ

before we called L-Matchðd; qÞ. In the meantime,
we only executed L-Matchðd; qÞ, so, for all q0Xq, for
all data nodes d0Xdþ 1, we have not called
L-Matchðd0; q0Þ before.
In order to prove (I1) we still need to show that this is
also true for all query nodes q0 with q0pq0oq and for all
data nodes d0Xdþ 1. So, take a query node q0 such that
q0pq0oq. Note that such a query node q0 is in
subtreeðq0Þ. Furthermore, each node d0 that is greater
or equal to dþ 1 is in the subtree of some right sibling d̂

on the path hprevSibðdþ 1Þ � � � root ðDÞi because d is a
leaf. This path is a sub-path of hyðq0Þ � � � root ðDÞi,
because q0 is the lowest ancestor of q whose parent is
an ancestor of dþ 1, which means that q0 is mapped
onto a node on hparentðdÞ � � �prevSibðdþ 1Þi by Lemma
2 and the fact that q0oq. By induction on (I3) it follows
that we have not called L-Matchðd0; q0Þ before calling
L-Matchðd; qÞ.
Since q0 is an ancestor of or equal to q, the path
hq0 � � � root ðQ Þi is a sub-path of the path hq � � � root ðQ Þi.
Hence, (I2) immediately follows from the induction
on (I2).
Since we did not change the mapping y and the query
node serving as argument of the kþ 1th function call is
smaller or equal to the argument of the kth function call,
(I3) follows from the observation ðyÞ made above. &

Propositions 3, 4, and Lemma 4 imply the correctness of
L-MATCH.

Proposition 5. Algorithm 2 is correct. That is, given the roots

d and q of a data D and query tree Q, L-Matchðd; qÞ decides

whether D � Q.

3.2.2. Space complexity of L-MATCH

We already argued in the main body of the paper that
the recursion stack has no influence on the operation of
L-MATCH. It remains to argue why Backtrack only needs
logarithmic space. Backtrackðd; qÞ calculates the highest
ancestor d0 of the data node d such that the path
hd0 � � � root ðDÞi matches the path hparentðqÞ � � � root ðQ Þi.
The difficulty lies in the fact that we cannot store both
paths. Instead, we store d and q. We also store two help
variables d0 and q0, which are initialized to be root ðDÞ and
root ðQ Þ, respectively. We now iterate over the following.
We compare the labels of d0 and q0. If they match, we
overwrite d0 and q0 with the children of d0 and q0 that lie
on the paths to d and q, respectively. This is performed as
explained in the beginning of this section. We can start at d

(resp., q), scan the input tape for the unique node that has a
child pointer to d (resp., q), and continue upwards in this
manner until we find a child of d0, resp., q0. If the labels of
d0 and q0 do not match, we only overwrite d0 with its child
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on the path to d. We continue until we matched the whole
path hparentðqÞ � � � root ðQ Þi. Finally we return the data node
onto which we matched parentðqÞ.
Fig. 3. Illustration of a hedge interval and RTOP (a) and of subhedgeH
ðhÞ (b).
3.2.3. The complexity of the tree homeomorphism problem

As argued above, L-MATCH can be performed in
LOGSPACE. Putting this together with the fact that reach-
ability in trees is LOGSPACE-complete, given the tree as a
pointer structure [8], we obtain the following Theorem.

Theorem 3. The tree homeomorphism problem is LOGSPACE-

complete.
4. The bottom-up algorithm

Although the previously presented top-down algorithms
for tree homeomorphism matching are quite space-
efficient, their time complexity is quite high and they
involve quite a lot of recomputing of already obtained
matchings, which is unsatisfactory. We therefore turn to a
bottom-up matching approach which has the property
that no obtained matchings between the data and query
tree need to be recomputed, which leads to a better time
complexity of the overall algorithm.

Before presenting the bottom-up algorithm for the tree
homeomorphism matching problem in detail, we need to
introduce several formal notions. As in the previous section,
we first present an algorithm for the tree homeomorphism
problem and then show how to change it into an algorithm
for the tree homeomorphism matching problem.

In the present section, we assume the left-to-right post-

order ordering opost on nodes in trees and hedges. For a
node u, we denote by uþ 1 and u� 1 the successor and
predecessor of u in the left-to-right post-order ordering,
respectively. Moreover, when we, e.g., use terminology such
as ‘‘largest’’ and ‘‘smallest’’, we always assume the left-
to-right post-ordering. In this section, we also assume that
XML documents are stored on tape in left-to-right post-
order (or, alternatively, together with a left-to-right post-
order index), which allows a random-access machine
model to verify the left-to-right post-order ordering
in constant time. To simplify the presentation of our
algorithm, we also assume two dummy nodes in every
tree and hedge: nil and1. The node nil is such that nilþ 1
is the smallest node in the hedge, and the node 1 is
defined as the successor of the largest node of the hedge.
Given two nodes hfrom phuntil in a hedge H, we denote by
the interval ½hfrom;huntil� the subhedge of H consisting only
of the nodes fv j hfrom pvphuntilg.

3 The notion of such
an interval in a tree is illustrated in Fig. 3(a). Here, the
interval ½hfrom;huntil� is the striped area in the tree. Given
a hedge H and a node h 2 Nodes ðHÞ, we denote by
subhedgeH

ðhÞ the subhedge ½hfrom;h�, where hfrom is the
smallest descendant of h’s leftmost sibling according to the
left-to-right post-order ordering. We illustrate this notion
in Fig. 3(b).
3 Notice that our definition of a hedge did not assume all root nodes of

the individual trees to be siblings of one another.
When H is a data hedge or a tree pattern query, we refer
to ½hfrom;huntil� as a data or query hedge interval, respec-
tively. We extend the semantics of tree pattern matching to
hedges as follows. Let Q1 � � �Qn be a query hedge interval
½qfrom; quntil� and D1 � � �Dm be a data hedge interval
½dfrom; duntil�. We say that ½dfrom; duntil� matches ½qfrom; quntil�,
denoted by ½dfrom; duntil� � ½qfrom;quntil�, if, for every Qi,
i ¼ 1; . . . ;n, there exists a Dj, j ¼ 1; . . . ;m, such that Dj � Qi.

Before presenting the intuition about the bottom-up
tree homeomorphism algorithm, we describe an auxiliary
procedure RTOP, which, given two nodes hfrom and huntil,
returns the rightmost node among the topmost nodes in
the interval ½hfrom;huntil�. More formally, RTop ðhfrom;huntilÞ

is the node u such that depth ðuÞ is minimal and u is larger
than every other node v in ½hfrom;huntil� with depth ðuÞ ¼
depth ðvÞ. This notion is illustrated in Fig. 3(a). Further-
more, in order to simplify the presentation of the algorithm,
we define RTop ðhfrom;huntilÞ ¼ 1 if hfrom4huntil. Notice
that RTOP can easily be computed in time linear in the depth
of the tree and in logarithmic space by traversing the path
from huntil to the query root and comparing the previous
siblings of nodes on the path with hfrom w.r.t. the left-to-
right post-ordering. Indeed, assume that hfromphuntil. Let u

be the highest ancestor of huntil that has a previous sibling s

such that sXhfrom. If no such u exists, then rtopðhfrom;huntilÞ

is huntil. Otherwise, rtopðhfrom;huntilÞ is s.
We first present an algorithm for deciding whether D � Q

and show later how it can be extended to an algorithm for
the tree homeomorphism matching problem. The main
procedure of our algorithm is called TMATCH. Given a data
node d and query nodes qfrom and quntil, TMatch returns
the largest query node q in the interval ½qfrom; quntil� such
that subtreeD

ðdÞ matches ½qfrom; q� if q exists; and qfrom � 1
otherwise. Hence, if d is the root of D, and qfrom and quntil are
the leftmost leaf and the root of Q, respectively, then D � Q

if and only if TMATCH returns quntil.
TMATCH uses an auxiliary procedure called HMATCH,

which, given a data node d and query nodes qfrom and
quntil, returns the largest node q in the interval ½qfrom; quntil�

such that subhedgeD
ðdÞ matches ½qfrom; q� if q exists; and

qfrom � 1 otherwise.
We start by explaining the operation of TMATCH, which is

presented in Algorithm 3. Given a data node d and query
nodes qfrom and quntil, TMATCH first starts by recursively
calling HMATCH with the same query nodes for the subhedge
D0 of D defined by d’s last child, yielding result qbest (see
Fig. 4(a)). In the remainder of TMATCH, we essentially want
to test how qbest can be improved when we also consider
the node d in addition to D0. One particular interesting case
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Fig. 4. Illustrations of the tree homeomorphism algorithm. (a) Operation

of TMATCH: recursive call of HMATCH. (b) Operation of TMATCH: recursive call

of TMATCH. (c) Operation of HMATCH: first recursive calls of TMATCH and

HMATCH. (d) Operation of HMATCH: a subsequent recursive call of TMATCH,

trying to improve qtree.
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is when qbest is a last sibling and its parent has the same
label as d. In this case, we can at least improve our best
query node to qbest’s parent which we call here q0best.
Furthermore, it is possible that q0best is not yet the best
query node we can obtain. In particular, we still need to test
which part of the hedge defined by ½q0best þ 1; lastSibðq0bestÞ�

can be matched in the subtree below d (see Fig. 4(b)). The
largest node that is obtained in this manner is the node that
TMATCH should return.

Algorithm 3. Function TMATCH. Here, þ1 and �1 denote the
successor and predecessor in the depth-first left-to-right
post-ordering, respectively.
TMATCH (DNode d, QNode qfrom, QNode quntil)
2:
 if d is a leaf then qbest  qfrom � 1
e
lse qbest  HMatchðlastChildðdÞ, qfrom; quntil)
4:
 end if
if
 qbest þ 1ppostquntil and d matches qbest þ 1 then
6:
 qbest  
qbest þ 1
if qbest þ
 1ppost lastSibðqbestÞ then
8:
 return
 TMatchð
d;qbest þ 1; lastSibðqbestÞÞ
else retu
rn qbest
10:
 end if

e
lse return qbest
12:
 end if
We now explain the operation of HMATCH, which is
presented in Algorithm 4. Essentially, given d, qfrom, and
quntil, HMATCH starts by recursively calling itself with the
same query nodes on the hedge defined by the previous
sibling of d (i.e., D0 in Fig. 4(c)), yielding qhedge, and by
calling TMATCH with the same query nodes on the subtree
under d itself (D00 in Fig. 4(c)), yielding qtree. The remainder
of HMatch consists of iteratively improving qtree and
qhedge. That is, while it is possible that D0 and D00 yield small
values of qtree and qhedge, their concatenation can give rise
to a much larger part of the query that can be matched.
Essentially, this is due to the fact that the matching of tree
pattern queries is unordered. For example, it can occur that
we need to match a certain first sibling in D0, a second
one in D00, a third one again in D0 and so on. Hence, the
procedure HMATCH alternates between finding best matches
in D0 and D00 until it reaches a fixpoint.

Algorithm 4. Function HMATCH. Here, þ1 and �1 denote
the successor and predecessor in the depth-first left-to-
right post-ordering, respectively.
HMATCH (DNode d, QNode qfrom, QNode quntil)
2:
 if d is a first sibling then return TMatchðd; qfrom ;quntilÞ
else

4: q
hedge  HMatchðprevSibðdÞ; qfrom; quntilÞ
q
tree  TMatchðd; qfrom; quntilÞ
6: l
oop

i
f qhedge ¼ qtree then return qhedge
8:
 else if qtreeopost qhedge then
rtop RTop ðqtree þ 1; qhedgeÞ
10:
 while rtopopost1 and qhedgeopost lastSibðrtopÞ do
qtree  TMatchðd; rtopþ 1; lastSibðrtopÞÞ
12:
 rtop RTop ðqtree þ 1;qhedgeÞ
end while

14:
 if qtreeppost qhedge then return qhedge
end if

16:
 e
lse
r
top RTop ðqhedge þ 1; qtreeÞ
18:
 while rtopopost1 and qtreeopost lastSibðrtopÞ do
qhedge  HMatchðprevSibðdÞ; rtopþ 1; lastSibðrtopÞÞ
20:
 rtop RTop ðqhedge þ 1; qtreeÞ
end while

22:
 if qhedgeppost qtree then return qtree
end if

24:
 end if
end loop

26:
 end if
However, we need to take care in how this fixpoint
is computed. One possible case is illustrated in Fig. 4(d).
This particular case builds further on the situation in
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Fig. 5. Illustrations for Example 1. (a) Query tree (left) and data tree (right) of Example 1. (b) Function calls of HMATCH (HM) and TMATCH (TM) of

Example 1.
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Fig. 4(c). Here, we try to improve qtree by starting the TMATCH

procedure again for the node d, but now only with the part of
the query marked with question marks. The case where qtree

is larger than qhedge is dual and not illustrated here.

Example 1. Figs. 5(a) and (b) illustrate an example for the
bottom up algorithm. For brevity, we denote TMATCH and
HMATCH with TM and HM, respectively. The first calls of TM
and HM demonstrate the basic recursive structure of our
algorithm: TM on a node d calls HM on the rightmost child
of d. HM on a node d returns TM of d if that node is a first
sibling; or performs a divide-and-conquer technique by
calling HM on the left sibling of d and TM on d itself (as in
the function call HMðd4; q1; q5Þ). Further recursive calls to
TM or HM are then needed to maximize the part of the
query that can be matched.

The simplest function call in the example that performs

such further recursive calls is the call HMðd2; q1; q5Þ, which
starts by computing qhedge ¼ HMðd1; q1; q5Þ and qtree ¼

TMðd2; q1; q5Þ. As can be seen in Fig. 5(b), qhedge ¼ nil. The

call TMðd2; q1; q5Þ is more successful, because d2 and q1

are both labeled with a. In general, it might be possible

that q2 and further nodes can be matched in subtreeðd2Þ.

The function call TMðd2; q2; q4Þ checks that possibility.

(For sure, q1 and q5 cannot both be matched on d2, which is

why we restrict the query tree interval by q4.) But q2 is not

labeled with a so the return value of the two TM calls is q1.

After this initial phase, HMðd2; q1; q5Þ tries to improve qtree

and qhedge iteratively. It calls HMðd1; q2; q4Þ and improves

qhedge to be q2, because q2 and d1 are both labeled with b.

Further improvements fail as there is no c-labeled node in

the subhedge of d2.

A similar iterative improvement is illustrated by

HMðd3; q1; q5Þ. Observe that we try to improve qtree here

and call TMðd4; q2; q4Þ and TMðd4; q3; q3Þ. Only the latter
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call yields an improvement. But we cannot omit the former

one: if subtreeðd4Þ would match subtreeðq4Þ, then the

former call would yield q4 and the latter call would yield

q3. As we want our algorithm to return the largest query

node such that the interval ending with it can be matched

the result of the former call would have been the relevant

one in that case.

4.1. Correctness

The main technical difficulty of this section is proving
that TMATCH is correct.

Lemma 5. Let D be a data tree and let Q be a query tree.
TMATCH is correct, that is, given the root node d of D, the

smallest and largest node qfrom and quntil of Q, respectively,
TMATCH returns quntil iff D � Q .

For the proof of Lemma 5, we start with a few simple
observations.

Observation 4. A node u is not a last sibling 3uþ 1 is a leaf.

Proof. Left to right: if u is not a last sibling, then uþ 1 is
the leftmost descendant leaf of the right sibling of u, or the
right sibling of u itself if it is a leaf. Right to left: if u is the
last node in a left-to-right post-order traversal, then u is a
last sibling for which uþ 1 does not exist. For all other last
siblings u, uþ 1 is u’s parent, which is not a leaf. &

We call a hedge interval complete when if it contains a
certain node, it also contains its children.

Observation 5. In Algorithms 3 and 4, the following proper-

ties hold:
(1)
 quntil is always a last sibling.

(2)
 qfrom is always a leaf.

(3)
 ½qfrom; quntil� is always a complete interval.
Proof. (1) In our initial call of TMatch, quntil is the root
node of the tree, which is always a last sibling. The property
for the deeper recursive calls follows immediately from a
straightforward inspection of the recursive function calls in
the algorithm.

(2) In our initial call of TMatch, qfrom is the smallest

node of Q, which is always a leaf. Furthermore, in TMatch

we only call HMatch with qfrom as a second parameter and

TMatch with qbest þ 1 as a second parameter if qbest is not

a last sibling (which is a leaf due to Observation 4). In

HMatch all recursive calls have either qfrom or rtopþ 1 as

second parameter. We show that, in this case, rtop is never

a last sibling. Hence, according to Observation 4, rtopþ 1 is

always a leaf. In the calls of TMatch on line 11, we have

that rtopo1 and qhedgeolastSibðrtopÞ, due to the while

condition. As rtopo1, we have that rtoppqhedge due to the

calls of RTop on lines 9 and 12. Hence, rtopolastSibðrtopÞ.

The proof is analogous for the calls of HMatch on line 19.

(3) In the initial call of TMatch, the claim obviously

holds. In TMatch we call HMatch with qfrom and quntil, for

which the claim then trivially also holds; and TMatch
with qbest þ 1 and lastSibðqbestÞ if qbest is not a last sibling.

Hence, ½qbest þ 1; lastSibðqbestÞ� is equal to the hedge

subtreeðnextSibðqbestÞÞ � � � subtreeðlastSibðqbestÞÞ, which is

complete. The proof for the recursive calls in HMATCH is

analogous. &

Observation 6. Let d1 and d2 be data nodes and q be a query

node. If ½d1; d2� does not match subtreeðqÞ, then ½d1;d2� does

not match any query tree interval containing subtreeðqÞ.

Proof. Let qfrom and quntil be such that ½qfrom; quntil� ¼

subtreeðqÞ. For q0frompqfrom and q0untilXquntil, it can be shown
by a simple structural induction on the hedge ½q0from;q

0
until�

that ½d1; d2� does not match ½q0from; q
0
until�. &

Observation 7. Let H be a data hedge and ½qfrom; quntil� be a

complete query tree interval. We have that q is the largest

node in ½qfrom;quntil� such that H � ½qfrom; q� if and only if
�
 H matches ½qfrom; q�; and
�
 either q ¼ quntil or H does not match subtreeðqþ 1Þ.
Proof. Left to right: let H be a data hedge and let
½qfrom; quntil� be a query tree interval. Let q be the largest
node in ½qfrom; quntil� such that H � ½qfrom; q�. If q ¼ quntil we
are done. Otherwise, if, towards a contradiction, H matches
subtreeðqþ 1Þ, then we also immediately have that H

matches ½qfrom; qþ 1�, which contradicts the maximality
of q.

Right to left: let q be a query node in ½qfrom; quntil� such

that H matches ½qfrom; q�. If q ¼ quntil then we are done.

Otherwise, notice that, as qþ 1 is in the complete interval

½qfrom; quntil�, we have that subtreeðqþ 1Þ is entirely con-

tained in ½qfrom; quntil�. Hence, if H does not match

subtreeðqþ 1Þ, then H also cannot match ½qfrom; qþ 1�. The

latter can be shown by a simple structural induction on

½qfrom; qþ 1�. &

4.1.1. Correctness of TMatch

For readability, we split the correctness proof into
several lemmas. Essentially, the proof is by induction on
the height of the data node d in D.

Lemma 6. Let d be a leaf data node and qfrom and quntil be

query nodes. Given d, qfrom, and quntil, TMatch is correct, that

is, TMatch returns the largest node q in ½qfrom; quntil� such

that subtreeðdÞ � ½qfrom; q� if it exists; and qfrom � 1 otherwise.

Proof. By induction on the number of nodes of ½qfrom; quntil�.
qfrom ¼ quntil:
 We initialize qbest with qfrom � 1 on line 2. If d

does not match qfrom on line 5, we immedi-
ately return qbest ¼ qfrom � 1 on line 11. If d

matches qfrom ¼ quntil on line 5, qbest gets the
value qfrom on line 6. As qfrom ¼ quntil is a last
sibling (Observation 5), we do not execute
the recursive call on line 8 and return qfrom in
line 9. Both cases are easily seen to be
correct.
qfromoquntil:
 We initialize qbest with qfrom � 1 on line 2. If d

does not match qfrom on line 5, we return
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qbest ¼ qfrom � 1 in line 11, which is correct. If
d matches qfrom in line 5, then qbest gets the
value qfrom and we enter the if-test on line 7.
We need to consider two cases:
(1) qfrom is a last sibling: In this case, we
return qfrom on line 9. This is correct, as
qfrom þ 1 is qfrom’s parent, which cannot be
matched onto d due to the semantics of the
descendant axis.
(2) qfrom is not a last sibling: if qfrom has a right
sibling, we execute TMATCH recursively on d,
qfrom þ 1, and lastSibðqfromÞ, yielding q. By
induction, q is computed correctly. That is,
if q ¼ ðqfrom þ 1Þ � 1, which implies that d

does not match qfrom þ 1, we return qfrom,
which is correct. Otherwise, we argue that
subtreeðdÞ ¼ d matches ½qfrom; q� but not
subtreeðqþ 1Þ. By Observation 7, this would
complete the proof. By induction, we im-
mediately have that d matches ½qfrom; q�. If
qolastSibðqfromÞ, we also have by induction
that d does not match subtreeðqþ 1Þ. If
q ¼ lastSibðqfromÞ, then qþ 1 is qfrom’s parent.
Hence, d does not match subtreeðqþ 1Þ, as
qþ 1 has a child and d has not. &
Lemma 7. Let d be a data node with height n41 and qfrom

and quntil be query nodes. If HMatch is correct for all data

nodes of height up to n� 1, then TMatch is correct for all

data nodes of height up to n. That is, given d, qfrom, and quntil,
TMatch returns the largest node q in ½qfrom; quntil� such that

subtreeðdÞ � ½qfrom; q� if it exists; and qfrom � 1 otherwise.

Proof. Assume that HMatch is correct for all data nodes
of height up to n� 1. As d is not a leaf, we start by calling
HMatch on lastChildðdÞ, qfrom, and quntil on line 3 (see also
Fig. 4(a)), yielding qbest. By our assumption, qbest is
computed correctly. We now prove the lemma by induction
on the number of nodes of ½qfrom; quntil�.
qfrom ¼ quntil:
 We consider two cases.
(1) If subhedge ðlastChildðdÞÞ does not match
qfrom, then qbest is qfrom � 1. Consequently,
we test whether d matches qfrom on line 5. If
d does not match qfrom, we return qfrom � 1
on line 11. If d matches qfrom, then qbest gets
the value qfrom. As qfrom ¼ quntil is a last
sibling (Observation 5), we do not execute
the recursive call on line 8 and return qfrom

in line 9. Both cases are easily seen to be
correct.
(2) Otherwise, qbest ¼ qfrom ¼ quntil. In this
case we return qbest, which is correct.
qfromoquntil:
 (1) If both subhedge ðlastChildðdÞÞ and d do
not match qfrom, then we return qfrom � 1 on
line 11, which is correct.
(2) If subhedge ðlastChildðdÞÞ matches qfrom

and qbest ¼ quntil on line 5, then we return
quntil. Due to the correctness of HMATCH, this
means that subhedge ðlastChildðdÞÞ already
matches ½qfrom; quntil�, hence, subtreeðdÞ
matches ½qfrom; quntil� by our tree pattern
matching semantics.
(3) If subhedge ðlastChildðdÞÞ matches qfrom,
qbest þ 1pquntil, and d does not match qbest þ

1 on line 5, then we return qbest in line 11.
We consider two cases.

� qbest is not a last sibling: Hence, qbest þ 1
is a leaf (Observation 4). Due to the
correctness of HMatch for subhedge
ðlastChildðdÞÞ, we know that subhedge
ðlastChildðdÞÞ does not match subtree
ðqbest þ 1Þ ¼ qbest þ 1. Hence, returning
qbest is correct.
� qbest is a last sibling: Hence, qbest þ 1 is

qbest’s parent. Due to the correctness
of HMatch, we have that subhedge
ðlastChildðdÞÞ � ½qfrom; qbest�. Towards a
contradiction, assume that subhedge
ðdÞ � subtreeðqbest þ 1Þ. As d does

not match qbest þ 1, this implies
that subhedge ðlastChildðdÞÞ � subtree
ðqbest þ 1Þ. However, this contradicts
that HMatch is correct. Hence, it is
correct to return qbest due to Observa-
tion 7.
(4) Otherwise, denote by q0
best the value of

the variable qbest after the assignment on
line 3. We have that q0

best is correctly
computed on line 3 and that d matches
q0

best þ 1, after which qbest gets the value
q0

best þ 1. Notice that q0
best þ 1Xqfrom. We

need to consider two cases:

� q0
best þ 1 is a last sibling: We return q0

best þ

1 in line 9. If q0
best þ 1 ¼ quntil, this

is correct. If q0
best þ 1oquntil, towards a

contradiction, assume that subtreeðdÞ
matches subtreeðq0

best þ 2Þ. As q0
best þ 2 is

the parent of q0
best þ 1, this would

mean that subhedge ðlastChildðdÞÞ �
subtree ðq0

best þ 1Þ, which is a contra-
diction.
� q0

best þ 1 is not a last sibling: if q0
best þ 1

has a right sibling, we execute TMatch

on d, q0
best þ 2, and lastSibðq0

best þ 1Þ on
line 8, yielding q. By induction, q is
computed correctly. If q is ðq0

best þ 2Þ � 1,
which implies that subtreeðdÞ does not
match q0

best þ 2, we return q0
best þ 1,

which is correct. Otherwise, according
to Observation 7, we need to show that
subtreeðdÞ matches ½qfrom; q� but not
subtreeðqþ 1Þ. By induction, we have
that subtreeðdÞ matches ½qfrom; q�. If
qolastSibðq0

best þ 1Þ, we also have by
induction that subtreeðdÞ does not match
subtreeðqþ 1Þ. If q ¼ lastSibðq0

best þ 1Þ,
we have that subtreeðdÞ doesnot match
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subtreeðqþ 1Þ, because there does not
exist an ua1 s.t. subtreeðdÞ � subtree
ðq0

best þ 1Þ, and qþ 1 is q0
best þ 1’s

parent. &
4.1.2. Correctness of HMatch

Lemma 8. Let rtop ¼ RTop ðq1; q2Þ and q1pq2. If

q1 2 subhedge ðq2Þ, then rtop ¼ q2 and q2plastSibðrtopÞ. If

q1esubhedge ðq2Þ, then rtopoq2 and q2olastSibðrtopÞ.

Proof. Recall that, by definition, subhedge ðq2Þ is the
interval ½qsmall; q2�, where qsmall is the smallest descendant
of q2’s leftmost sibling.

q1 2 subhedge ðq2Þ : As both q1 and q2 are in

subhedge ðq2Þ, we have that ½q1; q2� is entirely contained

in subhedge ðq2Þ.

By definition, rtop is the largest node in ½q1; q2� among the

nodes with minimal depth. As q2 has minimal depth in

subhedge ðq2Þ and q2 is the largest node in ½q1; q2�, we have

that rtop ¼ q2.

q1esubhedge ðq2Þ : Notice that this can only occur when

q2 has a parent. As q1pq2, we have that q1oqsmall. By

definition of the left-to-right post-ordering, we have that q1

is either a left sibling of an ancestor of q2 (not including

the ancestors themselves), or a descendant-or-self thereof.

Let u1 and u2 be the two unique siblings such that u1au2, q1

is in subtreeðu1Þ, and q2 is in subtreeðu2Þ. Notice that

q1pu1oq2ou2. Hence, u1 is in ½q1; q2� and depth ðu1Þo
depth ðq2Þ. As q2 has minimal depth in subhedge ðq2Þ, we

have that rtop is not in subhedge ðq2Þ. By definition of RTOP,

this immediately implies that rtopoq2. Furthermore, as

depth ðlastSibðrtopÞÞ ¼ depth ðrtopÞpdepth ðu1Þ ¼ depth ðu2Þ

and as lastSibðrtopÞ is also rtop’s largest sibling, we have that

lastSib ðrtopÞXu24q2. &

Corollary 1. If rtop ¼ RTopðq1; q2Þ then q1 2 subhedgeðrtopÞ.

Proof. As rtop is in ½q1; q2�, rtop is also the rightmost node
among the topmost nodes in ½q1; rtop�. If we assume that
q1esubhedge ðrtopÞ, then Lemma 8 implies that rtoportop
which is a contradiction. &

Lemma 9. All function calls of TMatchðd;q1; q2Þ in the

loop of HMATCH have the property that ½q1; q2� is an interval

which includes subtreeðqhedge þ 1Þ. All function calls of

HMatchðd; q1; q2Þ in the loop of HMATCH have the property

that ½q1; q2� is an interval which includes subtreeðqtree þ 1Þ.

Proof. For the first statement, we have to show that
(i) q1pqsmall, where qsmall is the smallest node in
subtreeðqhedge þ 1Þ and (ii) q2Xqhedge þ 1.

First, observe that the function calls of RTOP on lines 9 and

12 results in a value of rtop that is at most qhedge. If

rtopoqhedge then rtopoqsmall as, by Lemma 8, rtop ¼ qhedge

when rtop is in ½qsmall; qhedge�. Hence, rtopþ 1pqsmall. If

rtop ¼ qhedge, we know that rtop is not a last sibling due to

the condition of the while loop on line 10. Hence, qsmall ¼

qhedge þ 1 ¼ rtopþ 1 is a leaf (Observation 4). This proves

property (i).
Property (ii) is immediate as the condition of the while-

loop on line 10 requires that q2 ¼ lastSibðrtopÞXqhedge þ 1.

The proof of the second statement is analogous to the

proof of the first statement. &

Lemma 10. The loop on line 6, and the while loops on lines 10
and 18 perform at most a linear number of iterations.

Proof. Notice that we exit the loop on line 6 if
maxðqtree; qhedgeÞ does not increase. However, this value
cannot keep increasing indefinitely as it is bounded from
above by quntil in the algorithm. Hence, the loop performs at
most a linear number of iterations.

The while loop on line 10 terminates after a linear number

of iterations, as the value of rtop increases with each

execution and the while loop only continues as long as rtop

is smaller than qhedge, a value which remains unchanged. The

argument for the while loop on line 18 is analogous. &

Lemma 11. Let d be a data node and qfrom and quntil be query

nodes. If TMatch is correct for all data nodes of height up to

n, then HMatch is correct for all data nodes of height up to n.
That is, given d, qfrom, and quntil, HMATCH returns the largest

node q in ½qfrom; quntil� such that subhedge ðdÞ matches

½qfrom; q� if it exists; and nil otherwise.

Proof. Let k be such that d has k left siblings (including d

itself). We prove the lemma by induction on k.

If k ¼ 1 then the Lemma is immediate from the function

call on line 2 and the assumption that TMatch is correct

for all data nodes of height up to n.

So, from now on, we assume that k41. We need to show

that the algorithm returns qfrom � 1 if subhedge ðdÞ does

not match qfrom. Otherwise, we show that we return a q in

½qfrom; quntil� if subhedge ðdÞ matches ½qfrom; q� and either
�
 q ¼ quntil, or

�
 neither subtreeðdÞ, nor subhedge ðprevSibðdÞÞ matches

subtreeðqþ 1Þ.

In the remainder of the proof, we refer to the above
property with the label ðyÞ. The correctness of property ðyÞ
follows directly from our tree pattern query semantics if we
return qfrom � 1 and from Observation 7 otherwise. Indeed,
from Observation 5 we know that ½qfrom; quntil� is complete.
Furthermore, subhedge ðdÞ does not match subtreeðqþ 1Þ if
and only if neither subtreeðdÞ nor subhedge ðprevSibðdÞÞ
match subtreeðqþ 1Þ.

Notice that the loop on line 6 terminates by Lemma 10.

We now proceed with an induction over the number ‘ of

loop executions proving that the following invariants hold:
(I1):
 if qtree is not qfrom � 1 then subhedge ðdÞ matches
½qfrom; qtree�;
(I2):
 if qhedge is not qfrom � 1 then subhedge ðdÞ matches
½qfrom; qhedge�;
(I3):
 qtree ¼ quntil or subtreeðdÞ does not match
subtreeðqtree þ 1Þ; and,
(I4):
 qhedge ¼ quntil or subhedge ðprevSibðdÞÞ does not
match subtreeðqhedge þ 1Þ.
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At the same time, we show that, if the algorithm returns a

certain value q, the property ðyÞ holds for q.

‘ ¼ 0 (before the first loop execution): We computed qhedge,

which results from executing HMatch on prevSibðdÞ, qfrom,

and quntil; and we computed qtree, which results from

executing TMatch on d, qfrom, and quntil (see also Fig. 4(c)).

By induction on k, we have that qhedge is computed

correctly. Moreover, as we assume that TMATCH is correct

for all data nodes of height up to n, we also have that qtree is

computed correctly. Properties (I1) and (I2) immediately

follow from the correctness of the recursive calls of TMATCH

and HMATCH. Moreover, Observation 7 implies that (I3) and

(I4) also hold. As the algorithm does not return anything up

to here, we do not have to show yet that ðyÞ holds.

‘X1 (subsequent loop executions): We consider three

cases.
(1)
 If qhedge ¼ qtree, we return qhedge. This is correct, as in
this case, properties (I1)–(I4) immediately imply
property ðyÞ.
(2)
 If qtreeoqhedge, notice that we do not change the value
of qhedge in this iteration of the loop. Hence, for the
induction, we only need to show that properties (I1)
and (I3) are preserved. We consider two cases.
If qhedge ¼ quntil the while loop in line 10 is not executed
and we return quntil in line 14. Here, it follows
immediately from (I2) that ðyÞ holds.
If qhedgeoquntil we consider two cases.
� If subtreeðdÞ does not match subtreeðqhedge þ 1Þ,

none of the function calls TMatchðd; q1; q2Þ in the
while loop yield a value greater than qhedge. This
follows from the correctness of TMATCH for data
nodes up to height n, and from Lemma 9, stating
that ½q1; q2� always includes subtreeðqhedge þ 1Þ.
Indeed, should such a function call TMatch

ðd; q1; q2Þ yield a greater value than qhedge, then
we would have that subtreeðdÞ matches subtree
ðqhedge þ 1Þ, which contradicts that we are investi-
gating the case that subtreeðdÞ does not match
subtreeðqhedge þ 1Þ. Hence, we return qhedge in line
14. Correctness of the propertyðyÞ for qhedge now
follows from the following facts:
3 qhedgeXqfrom, as qtreeoqhedge;
3 qhedgeoquntil;
3 subhedge ðdÞ matches ½qfrom;qhedge�, by (I2);
3 subtreeðdÞ does not match subtree ðqhedge þ 1Þ;

and,
3 subhedge ðprevSibðdÞÞ does not match subtree
ðqhedge þ 1Þ by (I4).

� If subtreeðdÞmatches subtreeðqhedge þ 1Þ the proof is
more complicated. First, observe that the while loop
on line 10 terminates by Lemma 10.
For the remainder of this case, we will show that
qtree4qhedge after exiting the while loop in the iþ

1th execution of the test on line 10. In particular,
this implies that the algorithm will not return any
value in iteration ‘ of the loop. So we only need to
show that, at the end of the current iteration,
properties (I1) and (I3) hold.
To show (I3), we will show that, if in the jth execution
of the while loop we obtain a value q for the variable
qtree for which it holds that q4qhedge then we either
have that q ¼ quntil or that subtreeðdÞ does not match
subtreeðqþ 1Þ. Afterwards, we show (I1).
We start by showing that qtree4qhedge after exiting
the while loop:
Goal 1: qtree4qhedge after exiting the while loop

in the iþ 1th execution of the test on line 10.
So we execute the while body i times and then exit the

loop.
Let qi

tree denote the value of qtree at the end of the ith
execution (i.e., after the assignment on line 11) and let
q0

tree be the value of qtree before entering the while
loop. Furthermore, let rtopi denote the value of rtop
at the end of the ith execution (i.e., after the
assignment on line 12). Let rtop0 be the value of
rtop before entering the while loop.
(i ¼ 0): We will show that this case does not occur.
That is, the body of the while loop is always executed
at least once. Towards a contradiction, assume that
we do not execute the body of the while loop. We
consider two cases. If we exit the while loop one of
them must hold.

3 Case 1: rtop0o1 and qhedgeXlastSibðrtop0Þ. Re-
call that rtop0 ¼ RTop ðq0

tree þ 1; qhedgeÞ. Due to
Lemma 8, qhedgeXlastSibðrtop0Þ implies that (i)
rtop0 ¼ lastSibðrtop0Þ ¼ qhedge and that (ii) q0

tree þ

1 is in subhedge ðqhedgeÞ. As qhedgeoquntil and
qhedge is a last sibling this means that q0

tree þ 1 is
in subtreeðqhedge þ 1Þ. Moreover, as we are in the
case that qtreeoqhedge, we know by induction on ‘
(statement (I3) in particular) that subtreeðdÞ
does not match subtreeðq0

tree þ 1Þ. However,
as we have shown above that q0

tree þ 1 is in
subtreeðqhedge þ 1Þ, this contradicts the fact that
we are in the case that subtreeðdÞ matches
subtreeðqhedge þ 1Þ.

3 Case 2: rtop0 ¼ 1. By definition of RTOP, this
means that q0

tree þ 14qhedge. But we are currently
investigating in the case that q0

treeoqhedge. Con-
tradiction.

Hence, we showed that the while loop on line 10 is
executed at least once.
(i40): Again, we consider the two possible settings
in which we exit the while loop. We show again that
the first of the two does not occur here.
3 Case 1: rtopio1 and qhedgeXlastSibðrtopiÞ. Recall

that rtopi ¼ RTop ðqi
tree þ 1; qhedgeÞ. Due to Lem-

ma 8, qhedgeXlastSibðrtopiÞ implies that (i)
rtopi ¼ lastSibðrtopiÞ ¼ qhedge and that (ii) qi

tree þ

1 is in subhedge ðqhedgeÞ, implying that
qi

tree þ 1pqhedge. As qhedgeoquntil and qhedge is a
last sibling this means that qi

tree þ 1 is
in subtreeðqhedge þ 1Þ. Since we did not exit
the while loop in the ith test, we have
that qhedgeolastSibðrtopi�1Þ: Hence, we have
that qi

tree þ 1pqhedgeolastSibðrtopi�1Þ. Recall that
qi

tree ¼ HMatchðprevSibðdÞ; rtopi�1 þ 1;
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M. Götz et al. / Information Systems 34 (2009) 602–623620
lastSibðrtopi�1ÞÞ. By the correctness of TMatch,
Observation 7, and the fact that ½rtopi�1 þ

1; lastSibðrtopi�1Þ� is a complete interval (Obser-
vation 5) we can conclude thatsubtreeðdÞ does
not match subtreeðqi

tree þ 1Þ which, we argued
above, is a subtree of subtreeðqhedge þ 1Þ. Hence,
subtreeðdÞ does not match subtreeðqhedge þ 1Þ,
which contradicts the fact that we are in the case
that subtreeðdÞ matches subtreeðqhedge þ 1Þ.

3 Case 2: rtopi ¼ 1. Hence, qi
tree þ 14qhedge.

We prove that it cannot be the case that
qi

tree ¼ qhedge. Hence, qi
tree4qhedge and Goal 1

follows. To this end, assume, towards a con-
tradiction, that qi

tree ¼ qhedge. Recall that
qi

tree ¼ TMatchðd; rtopi�1 þ 1; lastSibðrtopÞÞ.
Moreover, lastSibðrtopi�1Þ4qhedge since other-
wise we would have exited the while loop right
after test i. We conclude that qhedge þ 1 is a
node in ½rtopi�1 þ 1; lastSibðrtopi�1Þ�. However, as
subtreeðdÞ matches subtreeðqhedge þ 1Þ, this
would imply that subtreeðdÞ also matches
½rtopi�1 þ 1; qhedge þ 1� ¼ ½rtopi�1 þ 1; qi

tree þ 1�
which is in contradiction with the correctness of
TMATCH.

This concludes the proof of Goal 1.
Goal 2. If in the jth execution of the while loop we

obtain a value q for the variable qtree for which it holds

that q4qhedge and qþ 1pquntil, then we have that

subtreeðdÞ does not match subtreeðqþ 1Þ.
Observe that we need at least one execution of the
body of the while, since before the first execution
we have that qtreeoqhedge. Let qj

tree denote the value
of qtree at the end of the jth execution (i.e., after the
assignment on line 11) and let q0

tree be the value of
qtree before entering the while loop. Furthermore let
rtopj denote the value of rtop at the end of the jth
execution (i.e., after the assignment on line 12). Let
rtop0 be the value of rtop before entering the while
loop.
Hence, for every jX1, qj

tree is the result of a func-
tion call TMatchðd; rtopj�1 þ 1; lastSibðrtopj�1ÞÞ. If
qj

tree4qhedge we will exit the while loop right after
the current iteration. We consider three cases.
3 If qj

treeolastSibðrtopj�1Þ we have that subtreeðdÞ
does not match the subtree of qj

tree þ 1 due to the
correctness of TMatch for data nodes up to
height n and Observation 7.

3 If qj
tree ¼ quntil the claim is trivial.

3 The remaining case is that qj
tree ¼ lastSibðrtopj�1Þ

oquntil. In this case, qj
tree þ 1 is the parent of qj

tree

due to Observation 4. We consider two cases.
j ¼ 1: We want to prove that subtreeðdÞ does not
match subtreeðq0

tree þ 1Þ and that subtreeðq0
tree þ

1Þ is a subtree of subtreeðq1
tree þ 1Þ. Then we can

conclude that subtreeðdÞ does not match
subtreeðq1

tree þ 1Þ.
We start by proving that subtreeðdÞ does not
match subtreeðq0

tree þ 1Þ. By induction on ‘ (and,
in particular, by (I3)) we know that q0

tree ¼ quntil

or subtreeðdÞ does not match subtreeðq0
tree þ 1Þ.
If q0
tree ¼ quntil we wouldn’t be in the case that

q0
treeoqhedge. We can conclude that subtreeðdÞ

does not match subtreeðq0
tree þ 1Þ.

It remains to be shown that subtreeðq0
tree þ 1Þ is

a subtree of subtreeðq1
tree þ 1Þ. Line 9 states

that rtop0 ¼ RTop ðq0
tree þ 1; qhedgeÞ. Corollary 1

implies that then q0
tree þ 1 is a node in

subhedge ðrtop0Þ. Now we take into considera-
tion that we are investigating in the case
that q1

tree ¼ lastSibðrtop0Þ which implies that
subhedge ðrtop0Þ 	 subhedge ðq1

treeÞ. Combining
this with the consequence of the Corollary it
follows that q0

tree þ 1 is a node in subhedge ðq1
treeÞ.

Recall that q1
tree þ 1 is q1

tree’s parent. Hence, q0
tree þ

1 is a node in subtreeðq1
tree þ 1Þ and

subtreeðq0
tree þ 1Þ is a subtree of subtreeðq1

tree þ 1Þ.
j41: Analogously as in the j ¼ 1 case, we prove
that subtreeðdÞ does not match subtreeðqj�1

tree þ 1Þ
and that subtreeðqj�1

tree þ 1Þ is a subtree of
subtreeðqj

tree þ 1Þ. Then we can conclude that
subtreeðdÞ does not match subtreeðqj

tree þ 1Þ.
We start by proving that subtreeðdÞ does not

match subtreeðqj�1
tree þ 1Þ. We have that qj�1

tree ¼

TMatchðd; rtopj�2 þ 1; lastSibðrtopj�2ÞÞ. Notice

that, if qj�1
treeolastSibðrtopj�2Þ, we immediately

have by the correctness of TMatch and Ob-

servation 7 that subtreeðdÞ does not match

subtreeðqj�1
tree þ 1Þ. So, towards a contradiction,

let us assume that qj�1
treeXlastSibðrtopj�2Þ.

Notice that qhedgeolastSibðrtopj�2Þ and that

rtopj�1pqhedge, otherwise we wouldn’t have

arrived in the jth iteration. Moreover,

rtopj�2ortopj�1. As rtopj�2ortopj�1p lastSib

ðrtopj�2Þ, we also have that lastSibðrtopj�1Þp
lastSibðrtopj�2Þ. This implies that lastSibðrtopj�1Þ

plastSibðrtopj�2Þo qj�1
tree þ 1pqj

tree, which is in

contradiction with qj
tree ¼ lastSib ðrtopj�1Þ, which

is the case we are investigating.

It remains to be shown that subtreeðqj�1
tree þ 1Þ is a

subtree of subtreeðqj
tree þ 1Þ. Line 12 states that

rtopj�1 ¼ RTop ðqj�1
tree þ 1; qhedgeÞ. Corollary 1 im-

plies that then qj�1
tree þ 1 is a node in

subhedge ðrtopj�1Þ. Now we take into considera-

tion that we are investigating the case that qj
tree ¼

lastSibðrtopj�1Þ which implies that subhedge

ðrtopj�1Þ 	 subhedge ðqj
treeÞ. Combining this with

the consequence of the Corollary it follows that

qj�1
tree þ 1 is a node in subhedge ðqj

treeÞ. Recall that

qj
tree þ 1 is qj

tree’s parent. Hence, qj�1
tree þ 1 is a node

in subtreeðqj
tree þ 1Þ and subtreeðqj�1

tree þ 1Þ is a

subtree of subtreeðqj
tree þ 1Þ.

This concludes the proof of Goal 2.

It remains to show that (I1) holds at the end
of the ‘th iteration of the loop, that is, that
subhedge ðdÞ matches ½qfrom; qtree�. Due to (I2) we
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have that subhedge ðdÞ matches ½qfrom;qhedge�.
Recall that the number of while loop executions
is at least one. Hence, we have that qtree ¼

TMatchðd; rtopþ 1; lastSibðrtopÞÞ, where rtopp
qhedgeoqtreeplastSib ðrtopÞ. The first inequality
follows from the fact that rtopo1 and the defini-
tion of RTOP, the second one follows from Goal 1, and
the third one from the correctness of TMATCH. Hence,
we have that
3 subhedge ðdÞ � ½qfrom; rtop� and
3 subtreeðdÞ � ½rtopþ 1; qtree�.

Moreover, the facts that rtopþ 1 is a leaf (Observa-
tion 4) and qtreeplastSibðrtopÞ imply that
subhedge ðdÞ � ½qfrom; qtree�.
This concludes the proof the case where subtreeðdÞ
matches subtreeðqhedge þ 1Þ.
This concludes the proof of the case where
qhedgeoquntil, and also the proof of the case where
qtreeoqhedge.
(3)
 If qhedgeoqtree the proof is dual to the proof of
case (2). &
The correctness of Lemma 5 now follows from Lemmas 6,
7, and 11.

We now argue how TMATCH can be modified to a
procedure TMATCH-ALL, that computes all data nodes u such
that D�uQ . In order to compute all the matches, we add a
test to line 9 of TMATCH. That is, before returning qbest, we
test whether qbest is the root of Q, and we output d if it is.
Now we return qbest � 1, as if the query root was not
matched. Furthermore, TMATCH-ALL recursively calls TMATCH-
ALL and HMATCH-ALL instead of TMATCH and HMATCH. Here
HMATCH-ALL is the same as HMATCH, except that it recursively
calls TMATCH-ALL and HMATCH-ALL instead of HMATCH and
TMATCH.

The following theorem can now be proved:
Theorem 8. Let d be the root node of D and let qfrom be the

smallest and qroot be the largest node of Q, respectively.
TMATCH-ALL is correct, that is, TMatch�Allðd;qfrom; quntilÞ

outputs the data nodes u such that D�uQ .
Proof. It follows directly from our additional test and the
correctness of TMatch that D�uQ for all the nodes u that
TMatch�All outputs.

It remains to prove that, if D�uQ , then TMATCH-ALL outputs u.

Towards a contradiction, assume that there is an u such that

D�uQ , but u was not reported by TMatch�All. By an easy

induction it can be shown that for every data node d0 in D

there is a call TMatch�All for d0’s subtree and Q. In

particular, there was a call TMatch�Allðu; qfrom; qrootÞ.

Since this call did not output u, it follows that u must have

children and that HMatch-AllðlastChildðuÞ; qfrom; qrootÞo
qroot � 1, (because otherwise qroot and u would have been

compared and u would have been written to the output). In

general, we have that HMatch-Allðd; q1; q2Þ ¼ min

ððHMatchðd; q1;q2Þ; qroot � 1ÞÞ. It then follows that
HMatch-AllðlastChildðuÞ; qfrom; qrootÞ ¼ HMatch ðlastChild

ðuÞ; qfrom; qrootÞ.

If we now call TMatchðu; qfrom;qrootÞ, it calls

HMatchðlastChildðuÞ; qfrom; qrootÞ, which yields again a

value less than qroot � 1. Therefore, the return value of

TMatchðu; qfrom; qrootÞ is less than qroot. But we assumed

that subtreeðuÞ � Q , which contradicts the correctness of

TMatch proved in Lemma 5. &

4.2. Time and space complexity

First, we need to show that our algorithm determines in
PTIME whether D � Q. Notice that the naı̈ve manner of
computing the running time of TMATCH gives rise to only an
exponential upper bound. Indeed, define (i) TðNÞ as the
running time of TMATCH on d, qfrom, and quntil, where
subtreeðdÞ and ½qfrom; quntil� have N nodes in total, and (ii)
HðNÞ as the running time of HMATCH on d, qfrom, and quntil,
where subhedge ðdÞ and ½qfrom; quntil� have N nodes in
total. Then, we have that Tð2ÞppðNÞ for a polynomial p,
TðNÞppðNÞ þ HðN � 1Þ þ TðN � 1Þ, and HðNÞpTðNÞ þ XðNÞ,
where XðNÞX0. Hence, TðNÞp2N�1, which is obviously not
sufficient.

We therefore employ a slightly more sophisticated
approach in the following Lemma.

Lemma 12. Given the root node of a data tree D, and the

smallest and largest query nodes and of a query tree Q,
respectively, TMatch runs in time OðjDj � jQ j � depth ðQ ÞÞ.
Moreover, TMATCH makes OðjDj � jQ jÞ comparisons between a

data node and a query node.

Proof. Let jDj and jQ j be the number of nodes in the
data and query tree, respectively. We first show by
induction on the height n of the data node d that the
number of calls to the function TMATCH in the computation
tree is at most jDjjQ j. To this end, we prove three
intermediate goals.

Goal 1: Let d be a leaf data node. A computation of

TMatchðd; qfrom; quntilÞ yielding result q makes at most

j½qfrom; qþ 1�j calls to TMATCH.

By induction on the size of the query tree interval

½qfrom; quntil�. If d is a leaf and qfrom ¼ quntil, then TMATCH

does not call HMATCH recursively and the test on line 7

fails. Therefore, there is only 1 call to TMATCH and the

induction hypothesis holds. If qfromoquntil, and TMatch is

not called recursively, then the minimal value we return is

qfrom � 1. Again, there is only 1 call to TMATCH and the

induction hypothesis holds. Otherwise, we call TMATCH on

line 8, yielding result q. By induction, the total number of

calls to TMatch is at most 1þ j½qfrom þ 1; qþ 1�j. As

j½qfrom; qþ 1�j ¼ 1þ j½qfrom þ 1; qþ 1�j, the induction holds.

This concludes the proof of Goal 1.

Goal 2: Let d be a data node with height n41. If the

computation of HMatchðlastChildðdÞ; qfrom; quntilÞ, yielding

the result q0
best, performs at most jsubhedge ðlastChildðdÞÞj �

j½qfrom; q
0
best þ 1�j calls to TMatch, then the computation

of TMatchðd;qfrom; quntilÞ, yielding result q, makes at most

jsubtreeðdÞj � j½qfrom; qþ 1�j calls to TMATCH.
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We prove Goal 2 by induction on the size of the

query tree interval ½qfrom;quntil�. TMATCH starts by calling

HMatchðlastChildðdÞ; qfrom; quntilÞ yielding q0
best. Hence,

jsubhedge ðlastChildðdÞÞj � j½qfrom; q
0
best þ 1�j calls to TMATCH

are performed by this subroutine.

If qfrom ¼ quntil, then we either return q0
best on line 11 or

q0
best þ 1 on line 9. In both cases, the number of calls to

TMATCH is at most jsubhedge ðlastChildðdÞÞj � j½qfrom; q
0
best þ

1�j þ 1 which is at most jsubtreeðdÞj � j½qfrom; q
0
best þ 1�j.

If qfromoquntil, and TMatch is not called recursively, then

the minimal value we return is q0
best. Again, the number of

calls to TMATCH is at most 1þ jsubhedge ðlastChildðdÞÞj �

j½qfrom;q
0
best þ 1�j and the induction hypothesis holds.

Otherwise, we call TMATCH on line 8, yielding result q. By

induction, the total number of calls to TMatch is at most

1þ jsubhedge ðlastChildðdÞÞj � j½qfrom; q
0
best þ 1�j þ

jsubtreeðdÞj � j½q0
best þ 2; qþ 1�j which is at most

jsubtreeðdÞj � j½qfrom;qþ 1�j. This concludes the proof of

Goal 2.

Goal 3: Let d be a data node. If the computation of

TMatchðd;q1; q2Þ, yielding qtree makes at most jsubtreeðdÞj �

j½q1; qtree þ 1�j calls to TMATCH, then the computation of

HMatchðd; qfrom; quntilÞ, yielding q makes at most

jsubhedge ðdÞj � j½qfrom; qþ 1�j calls to TMATCH.

Let k be such that d has k left siblings (including d itself).

We prove the lemma by induction on k. If k ¼ 1, Goal 3 is an

immediate consequence from the assumption of Goal 3 and

the recursive call of TMATCH on line 2. If k41, then we start

by calling HMatchðprevSibðdÞ; qfrom; quntilÞ, yielding q1;0
hedge,

and calling TMatchðd; qfrom; quntilÞ, yielding q1;0
tree. By induc-

tion on k, we have that the call of HMATCH induces

jsubhedge ðprevSibðdÞÞj � j½qfrom;q
1;0
hedge þ 1�j calls to TMATCH.

Moreover, by the statement of Goal 3, we have that the

recursive call of TMATCH induces jsubtreeðdÞj � j½qfrom; q
1;0
tree þ

1�j calls to TMATCH in total.

According to Lemma 10, the loops on lines 6, 10, and 18

perform at most a linear number of iterations. Hence,

TMATCH and HMATCH are called (directly) at most a quadratic

number of times in the loop.
By qi;j

tree, we denote the value of the variable qtree in the ith

iteration of the loop and at the end of the jth iteration of the

while loop in line 10. Moreover, let ‘ denote the number

of loop executions and let maxi denote the number

of executions of the while loop on line 10 in the ith

loop execution. Then, we have that every computation

of TMatchðd; q1; q2Þ in the while loop performs at most

jsubtreeðdÞj � j½qi;j�1
tree þ 2;qi;j

tree þ 1�j calls to TMatch when

j41 and at most jsubtreeðdÞj � j½qi�1;maxi�2ðjÞ
tree þ 2;qi;1

tree þ 1�j

calls otherwise. Notice that q1;0
treeoq1;1

treeo � � �o q1;max1
tree o

q2;1
treeo � � �oq‘;max‘

tree pq, where q is the value we return.

Hence, the sum of the calls to TMATCH made by the

computations of TMATCH on line 11 is at most

jsubtreeðdÞj � j½q1;0
tree þ 2; qþ 1�j.

Analogously, we obtain that the sum of the calls to

TMATCH by the computations of HMatch on line 19 is at

most jsubhedge ðprevSibðdÞÞj � j½q1;0
tree þ 2;qþ 1�j.
In total, this means that the number of calls to TMATCH is

at most

jsubhedge ðprevSibðdÞÞj � j½qfrom; q
1;0
hedge þ 1�j

þ jsubhedge ðprevSibðdÞÞj � j½q1;0
hedge þ 2; qþ 1�j

þ jsubtreeðdÞj � j½qfrom; q
1;0
tree þ 1�j

þ jsubtreeðdÞj � j½q1;0
tree þ 2; qþ 1�j

which is at most jsubhedge ðdÞj � j½qfrom; qþ 1�j. Hence, Goal

3 follows.

As a consequence of Goals 1, 2, and 3, the total number of

calls to TMATCH performed by the algorithm is jDjjQ j. As the

only data versus query node comparison in the algorithm

occurs in line 5 of TMATCH, and as each call of TMATCH

performs at most one data versus query node comparison

(excluding comparisons in recursive calls), the total algo-

rithm also performs at most jDjjQ j data versus query node

comparisons.

We now argue how this leads us to showing that the

overall algorithm has polynomial running time. Consider

the entire tree of the calls to TMATCH and HMATCH in the

algorithm, where the children of a node are the functions it

calls directly. This computation tree contains at most jDjjQ j

calls of TMATCH. Moreover, every call of HMATCH performs at

least one direct recursive call to TMATCH, so the computation

tree also contains at most jDjjQ j calls of HMATCH. Analo-

gously, the entire computation tree contains at most jDjjQ j

calls to rtop. As rtop can be implemented to run in time

Oðdepth ðQ ÞÞ, the total algorithm runs in time

OðjDjjQ jdepth ðQ ÞÞ. &

The depth ðQ Þ factor in the complexity of TMATCH is due to
the calls to rtop in HMATCH, and the computation of the
successors of query nodes.

From the complexity of TMATCH and the definition of
TMATCH-ALL, we can immediately infer the following com-
plexity results about TMATCH-ALL.

Theorem 9. TMatch�AllðD;Q Þ runs in time OðjDj�
jQ j � depth ðQ ÞÞ. Moreover, TMATCH-ALL makes OðjDj � jQ jÞ
comparisons between a data node and a query node.

Currently, the maximum recursion depth of TMatch�

All is Oðdepth ðDÞ 
 branchðDÞÞ, where branchðDÞ is the
maximum number of children a node in D has. We have
the branchðDÞ factor because HMatchðd;qfrom; quntilÞ calls
HMatchðprevSibðdÞ; qfrom; quntilÞ. However, this bound can
be improved using a simple preprocessing step: we can
turn D into a binary tree Dbin by inserting intermediate
levels of special nodes between each data node and its
children. By doing so, D only grows linearly in size and the
depth only grows by a factor of logðbranchðDÞÞ.

As Q only uses descendant axes, we have that D�uQ if
and only if Dbin�

uQ .4 When this preprocessing step is
carried out, our algorithm still has OðjDjjQ jdepth ðQ ÞÞ time
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complexity, but the recursion/stack depth is improved to
Oðdepth ðDÞ logðbranchðDÞÞÞ.

5. Conclusions and final thoughts

As our main results we have exhibited a complexity
result, showing that tree pattern matching with only
descendant axes is LOGSPACE-complete; and a time- and
space-efficient bottom-up algorithm for computing all
possible exact matches of such a tree pattern in a tree.

From a theory point of view, this is still only a small step
in finding the exact complexity of positive conjunctive Core
XPath with only child and descendant axes (or, alterna-
tively, tree pattern queries with child and descendant axes),
which is probably the most widely used fragment of XPath
in practice. Hence, it is quite surprising that the exact
complexity of this fragment is still unknown.

From a practical point of view, our bottom-up algorithm
gives a good space and time bound on the processing of
such descendant-only tree pattern queries. A minor
annoyance we still feel for the algorithm is the depth ðQ Þ
factor in the time complexity. However, we need to stress
that, in practical applications, depth ðQ Þwill indeed be very
small. In our algorithm, this depth ðQ Þ factor arises from
computing the RTop ðqtree; qhedgeÞ-values in each call of
HMATCH in the algorithm. It may be possible that this factor
can be avoided when integrating the computation of these
values in the recursion of the algorithm. For a practical
application, one can also avoid the depth ðQ Þ factor in run-
time evaluation by a pre-processing step that computes all
the values of RTop ðqtree; qhedgeÞ in advance on the query.
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