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the tree pattern embedding problem that we call the tree
homeomorphism problem. The question we consider is
whether there is a mapping 6 from the nodes of the first
tree, the tree pattern or query, to the nodes of the second
tree, the data tree, such that if node y is a child of x in the
first tree, then 0(y) is a descendant of 0(x) in the second
tree. We also consider the tree homeomorphism matching
problem: finding all nodes v of the data tree such that
there is such a tree homeomorphism with v the image
of the root node of the pattern tree. This problem of
selecting all nodes whose subtrees match the tree pattern
has frequent application in XML and Web query processing
[1,10].

While this problem is of immediate practical relevance
and a substantial number of papers have studied complex-
ity and efficient algorithms for tree pattern matching,
the precise complexity of both the general tree pattern
matching problem and the tree homeomorphism problem
are open; they are both known to be in LOGCFL and

1. Introduction

Tree patterns are a simple query language for tree-
structured data. They are at the heart of several widely
used Web languages such as XPath and XQuery [4].
As a consequence, they form part of a number of typing
mechanisms such as XML Schema, and of Web Program-
ming Languages. They have also been used as query
languages in their own right, for example for expressing
subscriptions in publish-subscribe systems [1,5,6,14].

The general tree pattern matching problem considered
in the literature is the problem of finding a mapping
between two node-labeled trees which is, in a sense, a cross
of a subtree homomorphism and a homeomorphism. In this
article we consider a clean and important special case of

* The present paper is the full version of Ref. [13], which appeared in
the Symposium on Data Base Programming Languages 2007.
* Corresponding author.
E-mail addresses: goetz@cs.cornell.edu (M. Gotz), koch@cs.cornell.edu
(C. Koch), wim.martens@udo.edu (W. Martens).

0306-4379/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/].is.2009.03.010

LOGSPACE-hard [11]. The former can be immediately
concluded from earlier results on the complexity of the
acyclic conjunctive queries [12] and the positive naviga-
tional fragment of XPath [11], both much stronger
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Table 1

Time and space consumption for algorithms solving the tree homeomorphism matching problem.

Time Space Streaming
Yannakakis (1981) [20] 0(|Q| - |D| - depth(D)) O(depth(Q) - |D|) No
Gottlob et al. (2002) [10] o(Q| - D)) o(Q| - D)) No
Olteanu et al. 2004 [17] 0(|Q| - |D| - depth(D)) 0(|Q| - depth(D) + |DJ) Yes
Bar-Yossef et al. (2005) [3] o(|Q| - |D}) 0(|Q| log |D| + candp) Yes
Ramanan (2005) [18] 0((|Q| + depth(D)) - |D|) 0(|Q| - depth(D) + candp) Yes
Our bottom-up algorithm O(|Q| - |D| - depth(]Q])) O(depth(D) - branch(D)) No
Our LOGSPACE algorithm poly(1Q| + |D|) O(log(|Q| + |D})) No

Here depth(-) and branch(-) denote the depth and maximal branching factor of a tree, respectively.

languages. The latter is a direct consequence of the fact that
reachability in trees is LOGSPACE-complete [8].

Much work has been dedicated to developing efficient
algorithms for finding matches of tree patterns and tree
homeomorphisms. Certain algorithms aim at processing
the data tree as a stream (i.e, in a single scan)
[2,3,5,6,9,14,16-18]. For this case a number of lower bound
results have been obtained using mechanisms from com-
munication complexity [2,3,15]. It is basically known that
streaming algorithms for even simple tree patterns con-
sume space proportional to the size of the data tree in the
worst case. Table 1 lists algorithms for the tree home-
omorphism matching problem together with bounds on
their running time and space consumption. Here D is the
data tree and Q is the tree pattern. We assume a random-
access machine model with unit cost for reading and
writing integers. Some of the algorithms presented support
generalizations of the tree homeomorphism problem but
where a better bound is known for the tree homeomorph-
ism problem, it is shown. Some of the streaming algorithms
[3,18] use a notion of candidate node sets candp which
depends on the algorithm and which can be of size close to
ID| in the worst case. The algorithm of [3] makes the
assumption of so-called non-recursive data trees, in which
no two nodes such that one is a descendant of the other
may have the same label. Finally, streaming algorithms
such as [16] focus on being able to process SAX-events in
constant time, at the cost of an exponential preprocessing
step.

In this article we study the tree homeomorphism
(matching) problem. We establish a tight complexity
characterization and develop an algorithm for the node-
selection problem (shown at the bottom of Table 1) that is
both time- and space-efficient. In detail, the technical
contributions of this article are as follows:

e We first develop a top-down algorithm for the tree
homeomorphism problem that is in LOGDCFL.!

e From this we develop a proof that the problem is
LOGSPACE-complete, improving on the LOGCFL upper
bound from [11].

1 For our purposes, it is enough to know that LOGDCFL is character-
ized by deterministic LOGSPACE bounded pushdown automata which run
in polynomial time [19].

e As our main result we develop a bottom-up LOGDCFL
algorithm for computing all solutions of the tree home-
omorphism problem which is both time- and space-
efficient. This is a rather difficult algorithm and the
correctness proof is involved. The algorithm runs in time
O(ID| - 1Q| - depth(Q)) and employs a stack of depth
bounded by (O(depth(D)branch(D)).

The algorithm may be of relevance in practical im-
plementations. Indeed, in most Web or XML applica-
tions, the data tree is much larger than the tree
pattern yet its depth is rather small. It can be observed
that ours is the only algorithm in Table 1—and to the
best of our knowledge, in existence—that can guarantee
a space bound that does not contain the size, but
only depth and branching factor, of the data tree
as a term. At the same time the algorithm admits a
good time bound.

Furthermore, the algorithm is of relevance in theory
as well. It is a first step in classifying the complexity
of positive Core XPath with only child and descendant
axes, which is probably the most widely used XPath
fragment in practice. Its precise complexity, however, is
unknown.

e In some applications (e.g., for certain XML data trees),
a few nodes can have a very large number of children.
Our algorithm can be made to run in space
O(depth(D) log(branch(D))) with the same time bound
if we assume the data tree to be in a ranked form
that can be obtained by a LOGSPACE linear-time
preprocessing algorithm. Given that ours is an offline
algorithm it means little loss of generality to assume
that data trees are kept in a database in this prepro-
cessed form.

The article presents these result basically in the order
given here.

2. Definitions

By N we denote the set of strictly positive integers. By ~
we always denote a fixed but infinite set of labels. The trees
we consider are rooted, ordered, finite, labeled, unranked
trees, which are directed from the root downwards. That is,
we consider trees with a finite number of nodes and in
which nodes can have arbitrarily many children. A X-tree t
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(or tree t) is a relational structure over a finite number of
unary labeling relations a(-), where each a € 2, and binary
relations Child (-,-) and NextSibling (-,-). Here, a(u) ex-
presses that u is a node with label a, and Child (u,v)
(respectively, NextSibling (u, v)) expresses that v is a child
(respectively, next sibling) of u. We assume that each node
in a tree bears precisely one label, i.e., for each u, there is
precisely one a € X such that a(u) holds in t.

By ¢ we denote the empty tree. By a(T; - - - T,) we denote
the tree in which the root bears the label a and has n non-
empty subtrees Ty --- Ty, from left to right. If the a-labeled
root has no children, we write a rather than a(). By root (t)
we denote the root node of t.

By <pre and <post We denote the depth-first left-to-right
pre-ordering, respectively, left-to-right post-ordering in
trees. That is, if u is a node with children uy,...,u, from
left to right, then we have that u<pe U <pre -+ <pre Un
and uj <post - - + <postUn <postl. Furthermore, u; is the suc-
cessor of u in <y, i.e., there does not exists a v such
that u<pre V<pre u;. Similarly, u is the successor of u;, in
the post-ordering. In Section 3, we will assume the <pe
ordering on nodes, and in Section 4, we will assume the
<post ordering.

A X-hedge H (or hedge H) is a finite ordered sequence
Ty---T, of trees. When we write a hedge as Ty ---T,, we
tacitly assume that every T; is a non-empty tree. In the
hedge T - - - T, we assume that u; <pre Uiy and U; <postliq
holds for each i=1,...,n—1, where u; and u;,; are the
roots of T; and T;,q, respectively. Notice that we do not
necessarily assume a sibling relation between the roots of
T,‘ and Ti+1'

In the sequel, we will slightly abuse terminology and use
the term “tree” to also refer to a hedge consisting of one
tree, and we use the term “hedge” to also refer to the union
of trees and hedges. We assume familiarity with terms such
as child, parent, descendant, ancestor, leaf, root, first child,
last child, first sibling, previous sibling, last sibling, and next
sibling.

For a hedge H, we denote by Nodes (H) the set of nodes of
H. By |H|, we denote the number of nodes of H. Let H =
Ty --- T, with n>1. The label of node u in the tree or hedge
H is sometimes also denoted by lab”(u). The depth of a node
uin H, denoted by depth(u), is 1 when u is the root of some
T; and 1 + depth (v) when u is a child of v. The height of a
node u in hedge H, denoted by height”(u), is 1 when u is a
leaf and max(height™(uy),. .., height(u,)) + 1 when u has
k>0 children uy,...,u,. By subtreeH(u), we denote the
subtree of H rooted at node u. By parent”(u), we denote the
parent of u in H, if it exists. In the remainder of the article,
we usually leave H implicit when H is clear from the
context.

2.1. The tree homeomorphism problem

A tree pattern query (with descendant edges) Q is an
(unranked) tree over the alphabet X w {x}. That is, we
assume that the special label * does not appear in X. In the
following, we use the terms data tree or data hedge to refer
to ordinary X-trees and X-hedges.

Definition 1 (Tree pattern matching). Given a data hedge H,
a node u € Nodes (H), and a tree pattern query Q, we say
that H matches Q at node u, denoted by H=Q, if there exists
a mapping h : Nodes (Q) — Nodes (H) such that,

e if lab%(v) = a for some a e Z, then lab" (h()) = a;

e if Child (vq,v;) holds in Q, then h(v;) is an ancestor of
h(vy) in H; and

e u = h(root (Q)).

If the above mapping h exists, we call h a tree pattern
matching.

Notice that the ordering of children in our tree
pattern queries does not matter, and that the label * is a
wildcard label for the query. This corresponds to the
well known semantics of XPath queries with descendant
axis [7]. In the following, we abbreviate by H = Q that H=*Q
for some u e Nodes (H). Alternatively, we say that H
matches Q.

In this article, we are interested in the following
problems.

Definition 2 (Tree homeomorphism (matching) problem).
Given a data tree T and a tree pattern query Q, the tree
homeomorphism problem consists of deciding whether
T E Q. Furthermore, we are interested in computing all
answers for the tree homeomorphism problem, that is,
computing all nodes u € Nodes (T) such that TE'Q. We
refer to the latter problem as tree homeomorphism matching
problem.

We assume that trees are stored on tape as a set of
records; one for each node. Each record contains a pointer
to its first child, last child, parent, previous sibling, and next
sibling.

In the remainder of the article, we assume a fixed data
tree D and a fixed query tree Q for ease of presentation. We
will refer to nodes of D and Q as data nodes and query nodes,
respectively.

3. A top-down algorithm

This section provides a simple top-down algorithm for
the tree homeomorphism matching problem. The core of
this top-down algorithm lies in a simple procedure that
decides, given a data node d and a query node g, whether
subtree(d) F subtree(q).

3.1. A top-down LOGDCFL algorithm

The procedure March, illustrated in Algorithm 1 tests
whether subtree(d) = subtree(q). The intuition of this
procedure is the following. Essentially, we immediately
follow the semantics of the tree patterns. We test whether d
matches q. If d matches g, it only remains to (recursively)
test whether all subpatterns rooted at children of g can be
matched somewhere in subtrees rooted at children d. of the
data tree d. If d does not match g, then we need to search
whether subtree(q) matches in some subtree rooted at
some child d. of d.
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Algorithm 1. Top-down algorithm MarcH.

MarcH (DNode d, QNode q)
2: if d matches q then
return Vv child g, of q 3 child d. of d: MaTtcu(d,, q.)
4: else I>q not matched yet, try d’s children
return 3 child d. of d: MaTcH(d,q)
6: end if

Lemma 1. MartcH is correct. That is, given a data node d
and a query node q, Martcu returns true if and only if
subtree(d) F subtree(q).

Proof. By induction over the size of the data tree, denoted
by n.

n =1 : We have that subtree(d) = a for some a € X. MarcH
returns true if and only if the query tree consists of
one node and d matches this node. The correctness follows
from the tree pattern matching definition, which says
that if subtree(d) =a, subtree(q) =a or subtree(q) = *,
subtree(d) F subtree(q).

n>1: We consider two cases:

e If d matches g, we return true if, for every child g, of g,
there exists a child d. of d such that MArcH(d.,q.)
returns true. If the query tree consists of only one node,
this is obviously correct. If g has children, the correct-
ness follows from the induction hypothesis and the
definition of tree pattern matchings: if subtree(d) =
a(Ty ---Tp), subtree(q) =x(Qq1---Qp), X € X W {x}, aFx,
and, for every k=1, ...,m, there exists an iy € {1,...,n},
such that T;, k Q, then subtree(d) = subtree(q). If there
exists a g, such that MaTcH(d., q,) is false for every d,
we would also fail to match the whole query tree into a
subtree of a child of d. Again by the definition of tree
pattern matchings it is then correct to return false.

e If d does not match g, we test whether there is a
child d. of d such that subtree(q) can be matched into
subtree(d.). By the induction hypothesis, the recursive
calls of MATCH(d., q) compute this correctly. If there is
such a matching, it is correct to return true by the
definition of tree pattern matchings: if subtree(d) =
a(T;---Tp) and T;F subtree(q), then subtree(d)
elssubtree(q). Furthermore, if subtree(d) = a(T; ---Ty), d
does not match q, and there does not exist a T; such
that T; F subtree(q), then, by definition, subtree(d)
subtree(q). Hence, it is correct to return false. 0O

Hence, MarcH is a correct algorithm for the tree home-
omorphism problem. By slightly adapting MarcH, we can
even turn it into an algorithm Topr-DowN-MATCH for
the tree homeomorphism matching problem too. First, we
need a procedure EXACT-MATCH that, given a data node d
and query node q, decides whether subtree(d) matches
subtree(q) at node d. This is easy: EXAcT-MATCH only
differs from MarcH in line 5, where it just returns false.
Given a data node d and the root q,,, of the query tree,
Tor-DowN-MATCH now simply iterates over all the
data nodes and returns every data node d for which
ExacT-MATCH(, q,,) returns true. From this construction
and from the correctness of MarcH, it is now immediate that
Topr-DowN-MATCH is correct as well.

3.1.1. Time and space complexity

We start with an analysis of the time complexity of
MartcH and then we describe how an upper bound of the
runtime of EXACT-MATCH can be derived from that.

Observation 1. MATcH(d,q) compares each node in
subtree(d) at most once with each node in subtree(q). The
running time of MATCH(d, q) is |subtree(d)| - |subtree(q)|.

Proof. This is an easy induction on |[subtree(d)|. If
|subtree(d)| = 1, then MartcH tests whether d matches ¢
and discovers that there are no children of d to iterate over.
Hence, the running time is in ((|subtree(q)|).

If |subtree(d)| > 1, then MarcH tests whether d matches g
and it either calls itself recursively for every child d. of d
and every child g, of g; or it calls itself recursively for every
child d. of d and g. In both cases, we can apply the
induction hypothesis. In the first case, the time complexity
becomes (3, (3-4 (Isubtree(d.)| - |subtree(q,)[))), and in
the second case, the time complexity becomes
O34, (Isubtree(d.)| - |subtree(q)|)). Hence, both cases are
in O(|subtree(d)| - |subtree(q)|). O

It is easy to see that Observation 1 implies that the time
complexity of EXACT-MATCH(d, q) is also in @(|subtree(d)|-
|subtree(q)|). As Top-DowN-MATCH simply calls Exact-
MartcH for every data node, we immediately have the
following result.

Proposition 1. The running time of Top-DowN-MATcH is in
O(D}? - |1Q]). Moreover, Top-Down-Marcu makes O(|D|? - |Q|)
comparisons between a data node and a query node.

It is immediate from our implementation that the
algorithm can be executed by a deterministic logarithmic
space bounded auxiliary pushdown automaton (see, e.g.,
[19]). Moreover, by Proposition 1, this auxiliary pushdown
automaton runs in polynomial time. It follows from [19]
that the tree homeomorphism matching problem is in
LOGDCEFL. As the maximum recursion depth of Algorithm 1
is ((depth (D)), this renders the algorithm quite space-
efficient, but the running time being quadratic in the size of
the data tree, and the many unnecessary comparisons
between query and data nodes are quite unsatisfactory.
In Section 4, we show how these issues can be resolved by
turning to a bottom-up approach.

3.2. A LOGSPACE procedure

While the top-down algorithm does not seem to be
well-suited for efficiently computing all nodes u for which
DE"Q, it is quite useful for deciding whether D  Q, from a
complexity theory point of view. Indeed, as we will exhibit,
a modified version of Marcu can decide in LOGSPACE
whether D = Q.

For ease of presentation of the algorithm, we assume the
depth-first left-to-right pre-order ordering on nodes in trees
and hedges in the remainder of this section. For a node u,
we denote by u + 1 the successor node of u in the left-to-
right pre-order <. We note that this assumption does not
restrict our algorithm as one can compute this successor in
LOGSPACE.
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Algorithm 2. Top-down algorithm L-MartcH. Here, +1 denotes the successor in the depth-first left-to-right pre-ordering.

L-MarcH (DNode d, QNode q)

2: if d matches ¢, and both d and g have children then >0(q) =
return L-MatcH (d+ 1, g+ 1)
4: else if d does not match g and d has a child then
return L-Martch (d + 1, q)
6: else if d matches g and q is a leaf then >0(q) =
if g is maximal then
8: return true I>none of g’s ancestors has a next sibling
else
10: d' < BACKTRACK(d,q + 1) >node to which parent(q + 1) matched
return L-Marci (d' +1,q+1)
12: end if
else I>d is a leaf and (d does not match q or q is not a leaf)
14: if d is maximal then
return false
16: end if
q<q
18: while ¢’ has a parent do
d" < BACKTRACK(d, q') > node to which parent(q’) was matched
20: if d’ is an ancestor of d + 1 then
return L-Martcu (d + 1, q')
22: else g’ < parent(q’)
end if
24: end while
return L-Martcu (d + 1, q')
26: endif

We argue how to transform Algorithm 1 into a LOGSPACE
algorithm that decides whether D F Q. We will first give an
intuition of the transformation. Then we will discuss some
implementation details that will allows us to analyze the
space consumption. A formal proof of the correctness
follows.

Intuitively, the LOGSPACE algorithm processes the data
and query trees in a top-down manner, just like Algorithm
1, and it processes the children of a node from left to right.
Whenever Algorithm 1 uses the recursion stack to deter-
mine which function call to issue next or which final value
to return, the LOGSPACE algorithm recomputes the informa-
tion necessary to make these decisions.

Therefore, the essential difference between Algorithm 1
and the LOGSPACE algorithm lies in a backtracking
procedure. When, for example, Algorithm 1 matches a leaf
q of the query tree onto some data node d, then it uses the
recursion stack to discover the data node onto which q’s
parent was matched in the data tree and tries to match q’s
next sibling in some subtree of that data node. Instead of
using this recursion stack, the LOGSPACE algorithm enters a
subprocedure BACKTRACK(d, q) that recomputes the data
node onto which g's parent was matched. In particular,
BACKTRACK(d, q) computes the highest possible node d’ on
the path from D’s root to d, such that the path from D’s root
to d’ matches the path from Qs root to q's parent. The crux
of the algorithm is that this is correct, i.e., d’ is equal to the
data node onto which ¢’s parent was matched; and that
BACKTRACK(d, q) can be performed using only logarithmic
space on a Turing Machine. BACKTRACK(d, q) stores d and ¢
on tape and goes to the roots of the query and data tree. It
then matches the path to d with the path to g in a greedy
manner. The crux of executing BACKTRACK(d,q) using
logarithmic space lies in the following. If we arrive at a
node u in D (resp., Q), we have to be able to determine the

child of u that lies on the path to d (resp., q). To this end,
we first store d (resp., q) in a temporary variable v. We
continue following the parent relation in this fashion until
we find u, at which point we return the value of v, which is
a child of u.?

In more detail, for given input nodes d and q the
LOGSPACE procedure tests whether d matches q and based
on the result of this test it computes the next function call.
This is a rather extensive case study. In case d matches q
and both nodes have children the next function call has the
leftmost child of d and the leftmost child of q as its input. In
case d does not match g but has children the next function
call has the leftmost child of d and q as its input. In other
cases, computing the next function call can be more
complicated. When, for example, Algorithm 1 matches a
leaf g of the query tree onto some data node d it will try to
match g+ 1 next, which is the lowest right sibling we
encounter on the path from q to the root. If no such sibling
exists, all query nodes are matched and the algorithm
returns true. Otherwise, Algorithm 1 uses the recursion
stack to compute the data node onto which g + 1’s parent
was matched in the data tree and tries to match g+ 1 in
some proper subtree of that data node. Instead of using this
recursion stack, the LOGSPACE algorithm enters the sub-
procedure BACKTRACK(d, ¢ + 1) that recomputes the data
node onto which g+ 1's parent was matched. The next
function call in that case has the leftmost child of
BackTrRACK(d,q + 1) and g + 1 as input. There is one more
case: if d is a leaf and either d does not match q or g has
children, then Algorithm 1 tries to match q to d’'s right

2 Notice that the parent pointer is not mandatory for this argument.
One can also determine v’s parent in LOGSPACE by scanning the input tape
and searching for a node with a child pointer to v.
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Fig. 1. [llustration of the remainder of q in Q.

sibling if it has one. In general, Algorithm 1 will try to move
a query node onto d+ 1 next if such a node exists,
otherwise it returns false. If d+ 1 exists, it uses the
recursion stack to find the ancestor-or-self of g that
is closest to g and whose parent was matched to an
ancestor of d + 1. Algorithm 1 tries to match this ancestor
in subtree(d + 1). If no such parent exists then Algorithm 1
tries to match the root in the subtree(d + 1). Analogously as
before, the LOGSPACE algorithm uses BackTrack to test for
an ancestor of g whether its parent was matched to an
ancestor of d + 1.

We present the LOGSPACE procedure in Algorithm 2. For
ease of presentation, we have written the algorithm as a
recursive procedure, but it can be implemented to only
use logarithmic space. This can be seen by observing that
every recursive call to L-March in Algorithm 2 is a return-
statement, so the algorithm does not change when the
recursion stack is not used at all. The input of the algorithm
is, just as before, the root nodes d and g of the data tree D
and query tree Q, respectively. In particular, we can rewrite
the LOGSPACE procedure into a non-recursive algorithm:
we wrap a while loop (with condition true) around the
function body. In the function body we replace each
function call by an update of d and q (according to the
input of the function call) followed by a break statement.
Thus we start an execution of the while loop for each
function call.

For the sake of understanding the general idea behind
Algorithm 2, let, for a query node q, the remainder of q in
Q be the subhedge of Q consisting of the nodes
{q'| q<pre q/spre Amax}» where Amax is the maximal query
node w.r.t. the depth-first left-to-right ordering. We
illustrate the remainder of q in Q in Fig. 1. Given a data
node d and a query node ¢, the algorithm first tries to
match the remainder of g in Q consistently with what has
already been matched in D (lines 2-12). If this fails, it either
returns false (line 15), or enters the backtracking procedure
(lines 18-25).

We argued above that we can implement BAckTRACK
in LOGSPACE. Algorithm 2 does not require a recursion
stack and only uses logarithmic space. Thus we have the
following proposition.

Proposition 2. Algorithm 2 runs in LOGSPACE.
3.2.1. Correctness of L-MAtcH

We want to show that L-MarcH returns true on input D
and Q if and only if DF Q. To simplify the analysis, we

imaginarily extend the algorithm by defining a matching 0.
If the algorithm compares the labels of d and q in the
function call L-MATCcH(d, q) and they agree (in lines 2 and
6), we set 0(q) = d (and may overwrite older assignments).
This mapping 6 is merely used to simplify the reasoning
about the algorithm.

Soundness. We will prove that whenever L-MarcH returns
true on input D and Q, then D= Q. In fact we prove a
stronger claim: if L-MAartcH returns true, then our mapping 0
is a tree pattern matching (cfr. Definition 1). Hence 0
witnesses that if L-Marcu returns true, then D E Q.

In order to prove the soundness of L-MarcH, we first
show the following Lemma, that also implies that BackTrACK
is indeed correct. That is, given q and d, the node onto
which ¢’s parent was matched can be computed by
calculating the highest possible node d’ on the path from
D’s root to d, such that the path from D’s root to d’ matches
the path from Q’s root to g's parent.

Lemma 2. Let D be a data tree and Q be a query tree. Further,
let L-MATCH(d, q) be a function call resulting from the initial
procedure call L-MATCH(root (D), root (Q)). Then at the time
when L-MATCH(d, q) is called

(1) the restriction of 0 to query nodes smaller than q in the
ordering <pre is a tree pattern matching;

(2) 0 matches the path (parent(q)---root (Q)) into the path
(parent(d) - - - root (D)) as high as possible; and

(3) the path (q---root (Q)) cannot be matched into the path
(parent(d) - - - root (D)).

Proof. We prove the Lemma by induction on the position k
of L-MATCH(d, q) in the sequence of function calls resulting
from the initial procedure call L-MATcH(root (D), root (Q)).
If k = 1 then we have L-MATcH(root (D), root (Q)), in which
case there is nothing to show.

So, from now on, we assume that Lemma 2 is true for the
first k function calls and we let L-MATCH(d, q) be the kth
function call. We prove that it is also true for the k + 1th
function call (if there is one). We consider four cases
according to Algorithm 2.

o If the labels of d and g agree and both nodes have
children (line 2), the next function «call is
L-MatcH(d + 1,9 + 1), where d+1 and g+ 1 are the
leftmost children of d and g, respectively. We know by
induction that 6, restricted to query nodes smaller than
q, is a tree pattern matching. We extend this mapping by
0(q) = d. This mapping clearly preserves labels. Hence,
we only need to show that 6(q) is a descendant
of 6O(parent(q)). But this clear, since by induction
(parent(q) - - -root (Q)) is matched as high as possible
into the path (parent(d)---root (D)), which proves (1).
Combining this with the fact that (q---root (Q)) cannot
be matched into (parent(d) - - - root (D)) we conclude that
(q---root (Q)) is matched as high as possible into
(d---root (D)), which proves (2). As we must match
q + 1 onto a descendant of 6(q), it then follows that the
path (d---root (D)) cannot match the path (g+1---
root (Q)), which proves (3).
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If the labels of d and g do not agree and d has children
(line 4), the next function call is L-MaTcH(d + 1, q),
where d + 1 is the leftmost child of d. We do not extend
0 in that case and all requirements (1)-(3) follow from
the induction hypothesis.

If the labels of d and q agree, q is a leaf, and g is not
maximal (line 6), we extend the mapping 0 by 0(q) = d.
As in the first case of this proof we know by induction
that 0, restricted to query nodes less than g, is a tree
pattern matching. The extended @ is still a tree pattern
matching, because, due to the induction hypothesis,
(parent(q)---root (Q)) is matched into the path
(parent(d) - - - root (D)). Hence, (1) is true.
BACKTRACK(d, g + 1) calculates the highest ancestor d’
of the data node d such that (d'---root (D)) matches
(parent(q 4+ 1)---root (Q)). Why does d exist? First,
note that parent(q + 1) is an ancestor of g due to the
left-to-right pre-order ordering. Second, by induction,
(parent(q) - - -root (Q)) can be matched into the path
(parent(d) - - - root (D)). Putting both facts together, the
sub-path (parent(q + 1) - - - root (Q)) can still be matched
into the path (parent(d) - - - root (D)). Hence, d’ exists and
d + 1 is its leftmost child.

The next function call is L-MAtcu(d + 1,9+ 1). By
induction, the mapping 0 matches the path (parent(q)- - -
root (Q)) into the path (parent(d)- - - root (D)) as high as
possible and therefore, # also matches the sub-path
(parent(q + 1)---root (Q)) as high as possible into
(parent(d) - - - root (D)). It also follows that Backtrack in
fact calculated the node onto which parent(q + 1) was
matched, e.g. d’ = 0(parent(q + 1)). Combining the last
two facts with the descendant requirement that is
fulfilled by 0 yields (2) and (3): 6 matches the sub-path
(parent(q + 1)---root (Q)) as high as possible into the
path (d'---root (D)) and therefore (q+1---root (Q))
cannot be matched into (d'- - - root (D)).

If d is a leaf and (d does not match q or g is not a leaf)
and d is not maximal (line 13), we have to try to match q
somewhere else. We do not extend 6, so 0 restricted to
query nodes smaller than g is still a tree pattern
matching, which proves (1). To prove the other items,
we consider two cases.

Case 1: Assume that the next function call is
L-MAtcH(d + 1,q’) in line 25. Then g’ has no parent
(¢’ = root (Q)) and (2) is trivially true. To prove (3), i.e.,
to prove that root (Q) cannot be matched into the path
(parent(d + 1) - - - root (D)), we consider two cases.

o If q=¢q =root (Q), by induction, root (Q) cannot
be matched into (parent(d)---root (D)) and there-
fore also not into (parent(d + 1)---root (D)), which
is a sub-path of (parent(d)---root (D)), which
proves (3).

o If g#q' = root (Q), then root (Q) is an ancestor of q.
By the induction hypothesis on (1) we have that
(parent(0(root (Q))---root (D)) is a sub-path of
(d---root (D)). Also, (parent(d+ 1)---root (D)) is a
sub-path of (d- - - root (D)). As L-MarcH did not return
a function call in line 21, 6(root (Q)) is not an
ancestor of parent(d + 1). Hence, (parent(f(root
(Q))) - - -root (D)) includes (parent(d + 1)---root (D)).
By induction, (parent(f(root (Q)))---root (D)) does

not match root (Q) and this property carries over to
(parent(d + 1) - - - root (D)), which proves (3).

Case 2: Otherwise, the next function «call is
L-MAtcH(d + 1,q') in line 21. BACKTRACK(d,q') has
calculated the highest ancestor d’ of the data node d
such that (d’---root (D)) matches (parent(q)---root
(Q)). Why does d' exist? First, note that g’ lies on the
path (q---root (Q)) and has a parent (line 20). Further,
note that, by induction, the path (parent(d)- - - root (D))
matches the path (parent(q)---root (Q)) and therefore
it also matches the sub-path (parent(q’)---root (Q)). It
follows that d’ exists and that d' + 1 is its leftmost child.
We know that g’ is the lowest node on (q---root (Q))
such that BAckTRACK(d. q) = d' is an ancestor of d + 1, by the
condition in the while loop. Next, we will prove (2). By
induction, the mapping 6 matches the query path
(parent(q) - - -root (Q)) and therefore also the sub-path
(parent(q’) - - -root (Q)) as high as possible into the data
path (parent(d) - - - root (D)). It follows that the mapping
0 also matches the path (parent(q’)---root (Q)) as high
as possible into the sub-path (d'---root (D)). As d’ is
an ancestor of d+ 1 (line 21) we now have that the
mapping € matches the path (parent(q’)---root (Q)) as
high as possible into the path (parent(d + 1) - - - root (D)),
which proves (2).

In order to prove (3), i.e., to prove that the path
(parent(d + 1) - - - root (D)) cannot match the path (q’ - --
root (Q)), we consider two cases:

o If g=gq, by the induction hypothesis, the path
(parent(d) - - - root (D)) cannot match the path (q---
root (Q)). We have that (parent(d + 1) - - - root (D)) is a
sub-path of (parent(d) - - - root (D)) because d is a leaf.
The claim follows.

o If g#¢q/, recall that g’ is the lowest ancestor of g such
that O(parent(q’)) is an ancestor of d+1 (observe
the while loop and recall that, by induction, d' =
O(parent(q))). It follows, that ¢’ is matched some-
where on the path from parent(d) to (but not
including) parent(d + 1). By the induction hypoth-
esis, we cannot match the path (q’---root (Q)) any
higher. Hence, the path (parent(d+ 1)---root (D))
does not match the path (g’ - - -root (Q)).

e Otherwise there does not follow a function call. O

Proposition 3. Algorithm 2 is sound. That is, given a data D
and query tree Q, if Algorithm 2 returns true, then D E Q.

Proof. If L-MATCH(d, q) returns true in line 8, then q is
maximal (line 7) and the label of d matches the one of gq
(line 6). By Lemma 2 the mapping 6 is a tree pattern
matching of Q\{q} on D, such that gq’s parent is matched
onto some ancestor of d. We extend the mapping by
0(q) = d, and conclude that DF Q. O

Completeness. In this section we want to prove that
whenever L-March returns false on input D and Q, then
D Q. For two nodes x and y in a tree, we denote by (x---¥)
the path from x to y that excludes y itself. In order to prove
the completeness, we first show the following Lemma.
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Recall that the previous sibling of a node is its sibling to
the left.

Lemma 3. Let D be a data tree and let Q be a query tree. Let
L-MaTcH(d, q) be a function call resulting from the initial
procedure call L-MATCH(root (D), root (Q)). Then, it holds for
all previous siblings d of nodes on the path (d - - - O(parent(q)))
or, in case q has no parent, on the path (d- - -root (D)) that

subtree([i) ¥ subtree(q).

Proof. Note that, by Lemma 2, we can refer to the
restriction of 0 to query nodes smaller than g as a tree
pattern matching. The proof is by induction on the position
k of L-MATcH(d,q) in the sequence of function calls
resulting from the initial procedure call L-MATCH
(root (D), root (Q)). If k=1 then we have L-MATCH
(root (D), root (Q)) in which case there is nothing to show
because there are no left siblings on the path (root (D)).

So, from now on, we assume that k>1 and the Lemma is
true for the first k function calls. Let L-MATCH(d, q) be the
kth function call. We prove that it is also true for the k + 1th
function call (if there is one). We consider four cases
according to Algorithm 2.

e If the labels of d and g agree and both nodes have
children (line 2), 0(q) is defined to be d. The next
function call is L-MATcH(d + 1,q + 1), where d + 1 and
q + 1 are the leftmost children of d and g, respectively.
The path (d+1-.--6(parent(q+ 1))) is the path
({d+1---d). Since d+1 has no left sibling there is
nothing to show.

e If the labels of d and q do not agree and d has children
(line 4), the next function call is L-MaATcH(d + 1,q),
where d + 1 is the leftmost child of d. Since d + 1 has no
left siblings, the claim follows from the induction
hypothesis.

e If the labels of d and q agree, q is a leaf (line 6), and
g is not maximal, 6(q) is defined to be d.
BACKTRACK(d, g + 1) calculates the highest ancestor d'
of d such that (d - - - root (D)) matches (parent(q+1)---
root (Q)). By Lemma 2 we have that 6(parent
(q+1)=d. The next function call is L-MATCH
(d' +1,q+1). The path (d'+1---0(parent(q+ 1))) is
the path (d'+1-..d), where d' is d + 1’s parent. As
d' + 1 has no left sibling, there is nothing to show.

e If d is a leaf and (the labels of d and q do not agree or g
has children) (line 13) and d is not maximal, then
subtree(d) does not match subtree(q). We first show the
following invariant which we will need later:

Invariant 2. For every call of L-MATcH until the kth call,
whenever the body of the while loop in line 18 is executed
without returning a function call in line 21, it follows for
the current q' that subtree(O(parent(q’))) does not match
subtree(parent(q’)).

Proof. We prove the claim by induction over the
number of executions of the while body, denoted by ¢.
¢ =1: Here g’ = q, q has a parent (line 18), and we know
that (i) subtree(q) cannot be matched into
subtree(d) (line 13), (ii) q¢ cannot be matched

into the path (parent(d)- - - O(parent(q))) by Lem-
ma 2, (iii) there are no right siblings on the path
(d---0(parent(q))), since otherwise we would
have returned a function call in line 21, and (iv)
subtree(q) cannot be matched into subtree(a) for
every left sibling d of the path (d- - - O(parent(q))),
by the induction hypothesis of Lemma 3. From
(i-iv) we can conclude that no proper subtree of
O(parent(q)) matches subtree(q), which implies
that subtree(f(parent(q))) does not match subtree
(parent(q)).

¢>1: Let the claim be true for the first ¢ while loop
executions. We prove that it is also true for the
¢+ 1th execution. Let g’ be the query node of the
¢ + 1th while loop execution. Here, ¢’ #q and q’
has a parent (line 18). There must have been a
function call L-MATCH(q, 6(q')) and there must
have been a while loop execution with the child
of ¢’ on the path from q to q’ as current node. We
know that (i) subtree(q’) cannot be matched
into subtree(0(q’)) by the induction hypothesis,
(i) q cannot be matched into the path
(parent(0(q)) - - - O(parent(q’))) by Lemma 2, (iii)
there are no right siblings on the path
(0(q) - - - O(parent(q’))), since otherwise we would
have returned a function call in line 21, and (iv)
subtree(q’) cannot be matched into subtree(a),
for every left sibling dof the path (8(q)---
O(parent(q’))) by the induction hypothesis of
Lemma 3. From (i-iv), we can conclude that no
proper subtree of O(parent(q’)) matches subtree
(q), which implies that the subtree(f(parent(q’)))
does not match the subtree(parent(q’)). O

We return to the proof of the main induction. We denote
the left sibling of d + 1 by prevSib(d + 1). We consider
two cases.

Case 1: Assume that next function call is L-MATcH(d +
1,q) in line 25. Here, q' is the query root. We need
to show that there is no left sibling d on the path
(d+1---root (D)), such that subtree(d) F subtree(q’).
We consider two cases:

o If q=q =root (Q), by the induction hypothesis,
subtree(q) cannot be matched into subtree(d) for
any left sibling d of the path (d---root (D)). Since
parent(d + 1) is an ancestor of d, it is enough to show
that the subtree rooted at prevSib(d + 1), which is a
subtree that includes d, does not match subtree(q).
We know that (i) subtree(q) cannot be matched into
subtree(d), (ii) g cannot be matched into the path
(parent(d) - - - root (D)) by Lemma 2, (iii) there are no
right siblings on the path (d.--prevSib(d + 1))due
to the left-to-right pre-order successor, and (iv)
subtree(q) cannot be matched into the subtree(d)
for every left sibling d of the path from d to root (D)
by the induction hypothesis. From (i-iv) it follows
that we cannot match subtree(q) into the subtree
rooted at prevSib(d + 1).

o If g#q = root (Q), then by Lemma 2 there must have
been a function call L-MATcH(q,0(q")). By the
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induction hypothesis, subtree(q’) cannot be matched
into subtree(d) for any of the left siblings d of the
path (6(q’) - - - root (D)). Furthermore, there must have
been a while loop execution with ¢”’s child on
the path from g to g’ as current query node. Since
parent(d + 1) is an ancestor of 0(q’) (otherwise
we would have returned a function call in line 21),
it is enough to show that the subtree rooted at
prevSib(d + 1) does not match the subtree(q).
We know that (i) subtree(q’) cannot be matched
into subtree(0(q’)) by Invariant 2, (ii) ¢’ cannot be
matched into the path from parent(6(q’)) to root (D)
by Lemma 2, (iii) there are no right siblings on the
path (6(q)- - - prevSib(d + 1)), because parent(d + 1)
is an ancestor of 6(q’), which is an ancestor of d, and
(iv) subtree(q’) cannot be matched into subtree(fi) for
every left sibling d of the path from 6(q’) to root (D)
by the induction hypothesis. From (i-iv) it follows
that we cannot match subtree(q’) into the subtree
rooted at prevSib(d + 1).

Case 2: Otherwise, the next function call is
L-MaTcH(d+1,q) in line 21. BACKTRACK(d,q)
has calculated the highest ancestor d' of the data
node d such that (d - - - root (D)) matches (parent(q)- - -
root (Q)). By Lemma 2, d’ equals O(parent(q)).

We know that g’ is the lowest node on (q---root (Q))
such that O(parent(q’)) is an ancestor of d + 1, because of
the condition in the while loop. It follows that q' is
matched somewhere on the path (d---parent(d + 1))
(for the case q'#q). No matter whether q' = q or not,
there was a function call L-MATCH(q, dp) for some dy on
the path (d- .- parent(d + 1)). By the induction hypoth-
esis and Lemma 2 there is no left sibling d on the path
(do - - - O(parent(q’))) such that subtree(a) matches
subtree(q).

Since dp is in the subtree rooted at prevSib(d + 1), we
now only need to show that subtree(prevSib(d + 1))
does not match subtree(q’). We consider two cases:

o If ¢ = q/, then we know that (i) subtree(q) cannot be
matched into subtree(d), (ii) g cannot be matched
into the path (parent(d) - - - f(parent(q))) by Lemma 2,
(iii) there are no right siblings on the path (d---
prevSib(d + 1)) due to the definition of the left-to-
right pre-order successor, and (iv) subtree(q) cannot
be matched into subtree(&) for every left sibling d of
the path (d- - - O(parent(q))) by the induction hypoth-
esis. From (i-iv) it follows that the subtree rooted at
prevSib(d + 1) does not match subtree(q’).

o If g#¢q/, there must have been a while loop execution
with ¢q”’s child on the path from g to ¢’ as current
query node and there must have been a function call
L-MATcH(0(q'),q'). We know that (i) subtree(q)
cannot be matched into subtree(0(q’))by Invariant 2,
(ii) ¢' cannot be matched into the path (parent
0(q)) - - - O(parent(q))) by Lemma 2, (iii) there are no
right siblings on the path (0(q')---prevSib(d + 1)),
because there are no right siblings on the
path (d-..-prevSib(d + 1)), and the path (6(q)---
prevSib(d + 1)) is a sub-path of that path (otherwise
we would have returned a function call earlier, when

the child of ¢’ was the current query node), and (iv)
subtree(q’) cannot be matched into subtree(d) for
every previous sibling d of the path (6(q)---
O(parent(q))) by the induction hypothesis. From
(i-iv) it follows that we cannot matchsubtree(q’) into
the subtree rooted at prevSib(d + 1).

o Otherwise there does not follow a function call. O

Proposition 4. Algorithm 2 is complete. That is, given a data
D and query tree Q, if Algorithm 2 returns false, then D #Q.

Proof. We prove the proposition by induction on the
number of nodes in the data tree D. If |D|=1 then
L-MATtcH(root (D), root (Q)) returns true if root (Q) is a
leaf with an appropriate label in line 8 and false otherwise
in line 15, which proves the completeness for that case.

Now suppose that [D| > 1. Assume L-MATCH returns false
in line 15. Let d and g be the nodes such that, in the
execution of L-MATCH(d, q), false was returned. Due to line
13, d is a leaf and either g has children or the labels of g and
d do not agree. Due to line 14, d is the maximal node w.r.t.
<pre, Which means that there are no right siblings on the
path from d to the root.

Consider a slight modification of the data tree: we attach
an extra rightmost child to the root. Its value in the left-to-
right pre-order is now d + 1, the highest value of nodes in
the data tree. Call this tree D'. Observe from the algorithm,
that replacing D by D’ does not make any difference in the
function calls before L-MATCH(d, q), because the algorithm
traverses the data tree according to the left-to-right pre-
order. However, in the function call L-MATcH(d,q) the
algorithm would not return false anymore, instead it would
call L-MAtcH(d + 1,q’) for some query node q'. By Lemma
3 we know that for every child d' of the data root in D,
subtree(d’) cannot match subtree(q’). We consider two
cases.

e Assume that g’ has a parent. It is clear that if there was a
matching from Q into D, we would be able to match the
subtree(q’) into some subtree of the data root. But we
are not able to do this, so D¥Q.

e Assume that ¢’ is the query root. By Lemma 2 we know
that we cannot match the query root into the path
(parent(d + 1) - - - root (D)). Hence, the labels of the query
root and the data root do not agree and if there was a
matching from Q into D, we would be able to match
subtree(q’) into some subtree of the data root. But we
are not able to do this, so D¥Q. O

Termination: Before we can conclude that L-MartcH
is correct, we need to prove that the function call
L-MAtcH(root (D), root (Q)) terminates on every input D
and Q. First, note that the while loop in line 18 terminates,
because in every execution ¢’ is overwritten with parent(q’)
and our input trees are of finite depth.

We now only need to argue that whenever we call
L-MATcH(d, q) for some d € D and q € Q, we have not called
L-MaTtcH(d, q) before. We prove this in the following
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root(Q)

root(Q) -0 root(D)

A&
—Aq
Fig. 2. Illustrations of the induction hypotheses in the proof of Lemma 4.

(a) Induction hypothesis (I12) and (b) induction hypothesis (I3), respec-
tively.

lemma (it is an immediate consequence of Lemma 4 letting
qo = q and dy = d).

Lemma 4. Let L-MATtcH(d,q) be a function call resulting
from the initial procedure call L-MATcH(root (D), root (Q)).
Then at the time when L-MATCH(d, q) is called

vqo=q, Vdo=d, we have not yet called
L-MaTtcH(dy, q¢) before.

Proof. We prove the lemma by induction on the position k
of L-MATCH(d, q) in the sequence of function calls resulting
from the initial procedure call.

More specifically, our induction hypothesis will be: at the
time when L-MATCH(d, q) is called

(I1): vqo=>q,vdo>d, we have not yet called L-MATCH
(do, qp) before;

(12): for all right siblings ¢ of nodes on the path
(q---root (Q)), for all nodes g, < subtree(q), and for
all data nodes dy e subtree(f(parent(g))), we have not
yet called L-MATCH(dy, q9)-

(13): for all nodes g<gq, for all nodes q, € subtree(q), for all
right siblings d on the path (0(q) - - - root (D)), and for
all data nodes dy e subtree(d), we have not yet called
L-MATCH(d, q¢)-

We illustrate the hypotheses (12) and (I3) in Fig. 2.

If k=1 then we have L-MATcH(root (D),root (Q)) in
which case there is nothing to show.

So, from now on we assume that the Lemma holds for the
first k function calls. Let L-MATCH(d, q) be the kth function

call. We prove that the Lemma also holds for the k + 1th
function call (if there is one).

Let us start with a simple observation concerning (I3).
The induction hypothesis for (I3) implies that, for all query
nodes g <gq, for all query nodes g, < subtree(q), for all right
siblings d on the path (6(q)---root (D)), and for all data
nodes dy € subtree(a) we have not called L-MATcH(dy, qy)
before we called L-MaTcH(d,q). We argue why this
remains true even after calling L-MATcH(d, q), but before
the next function call is made. Towards a contradiction,
assume that this was not the case. In that case there would
be a query node g<gq such that q € subtree(q), and a right
sibling d on the path (6(q)---root (D)), such that
d e subtree(d). But this cannot be because, due to Lemma
2, the ancestors of g are matched on the path(d - - - root (D))
and hence d cannot be in a subtree of a right sibling on the
path (6(G)---root (D)). Hence, (I3) is also still true right
after calling L-MATCH(d, q). (1)

Next we will consider the four possible function calls
following the kth function call L-MATcH(d, q) and we will
show that (I1)-(I13) still hold for the next function call.

e If the next function call is L-MATcH(d + 1,q + 1) (line
3), then 0(q) is defined to be d. Here, d+1 is the
leftmost child of d and q + 1 is the leftmost child of g.
The induction hypothesis for (I1) implies that for all
qo=>q, for all data nodes dy>d, we have not called
L-MATcH(dy, q,) before we called L-MATcH(d, g). In the
meantime, we only executed L-MATCH(d,q), so for
all gy=q+1, for all data nodes dy>d+ 1, we have
not called L-MATcCH(dy, q,), which proves (I1).

Item (I2) of the induction hypothesis implies that, for all
right siblings ¢ of nodes on the path (q-- - root (Q)), for
all nodes q, € subtree(q), for all data nodes dy € subtree
(0(parent(q))), we have not called L-MATcH(dy,qq)
before we called L-MATCH(d,q). Since g+ 1 is the
leftmost child of g, we only need to show that, for all
right siblings § of g + 1, for all nodes q, € subtree(q), for
all data nodes dy € subtree(f(parent(q))) (which is the
subtree(d)), we have not called L-MATcH(dy, q,) before.
But this follows from the induction on (I1), because data
nodes in subtree(d) are greater or equal to d and query
nodes in subtrees of g+ 1's right siblings are greater
than q. This shows (12).

In order to prove (I3) we need to show that for g<q + 1,
for all query nodes q, € subtree(q), for all right siblings d
on the path (68(q) - - - root (D)), and for all data nodes dy
subtree(d) we have not called L-MATcH(do, qy) before
calling L-MATcH(d + 1,q + 1).

By the observation (1) above this is true for §<gq. So, let
us consider g = q. The fact that 0(q) = d now implies
that do>d and qy>q. The claim follows from the
induction on item (1) and the fact that we only called
L-MATcH(d, q) in the meantime.

e If the next function call is L-MATcH(d + 1, q) (line 5),
then d + 1 is the leftmost child of d. The induction on
(I1) implies that (I1) is true (as above). Since we only
called L-MATcH(d,q) in the meantime and did not
change the mapping 6 at all, (12) is a direct consequence
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of the induction hypothesis on (12). Since we did not
change the mapping 6 and the query node serving as
argument of the k + 1th function call is the same as the
argument of the kth function call, (I13) follows from the
observation (1) made above.

If the next function call is L-MArcu(d +1,q+1)
(line 11), then 0(q) is defined to be d. Here, g+ 1 is a
right sibling of a node on the path (g - - - root (Q)) (due to
the left-to-right pre-order and the fact that q is a leaf,
see line 6) and d + 1 is the leftmost child of some
ancestor of d. The induction on (I1) assures that, for all
qo>q, for all data nodes dy>d, we have not called
L-MATcCH(dy, q,) before we called L-MATcH(d, g). In the
meantime, we executed L-MATcH(d,q), so for all
qo=>q + 1, for all data nodes dp>d, we have not called
L-MATCH(do, qg)- In order to prove (I1), we still need
to show that this is also true for all g, >q + 1 and for all
data nodes dy with d + 1<dy<d. We consider two
cases:

o If qg € subtree(q+1) we can make use of the

induction hypothesis on (I2). The query node q + 1
is a right sibling of a node on the path (g - - - root (Q))
and hence we have not called L-MATCH(d,qg)
before for all nodes dgy e subtree(f(parent(q + 1))).
This proves our case because, by Lemma 2,0
(parent(q + 1)) is equal to d’ and d' is an ancestor
of d. Clearly, subtree(d’) includes all nodes dy with
d' + 1<dp<d. Hence, for all g, e subtree(q + 1) and
for all dy with d +1<dy<d we have not called
L-MaATcH(dy, qy) before.
If qo¢subtree(g+1) we can make use of the
induction hypothesis on (I12) again. By definition of
the left-to-right pre-order, q, is then in a subtree of
some right sibling ¢ of a node on the path
(q+1---root (Q)). This ¢ is also a right sibling of a
node on the path (q- - - root (Q)). By induction on (I2)
it follows that, for all data nodes dj e subtree
(O(parent(q))), we have not called L-MATcH(do, qy).
This proves our case, because parent(§) is an ancestor
of or equal to parent(q+1) and, by Lemma
2,0(parent(q)) is an ancestor of or equal to
O(parent(q + 1)), which is equal to d. Clearly,
subtree(d’) includes all nodes doy with d' + 1<dy<d
and so does subtree(f(parent(q))). Hence, for all
qo ¢ subtree(q + 1) and for all dy with d' + 1<dp<d
we have not called L-MATCH(dy, q,) before.

o

As mentioned above, right siblings of a node on the path
(q+1---root (Q)) are also a right siblings of a node on
the path (q- - - root (Q)). Hence, (I12) immediately follows
from the induction hypothesis on (12).

In order to prove (I3) we need to show that, for g<q + 1,
for all query nodes g, € subtree(q), for all right siblings d
on the path A(H(f]) -..root (D)), and for all data nodes
dp € subtree(d), we have not called L-MATCH(dy,q)
before calling L-MATcH(d + 1,9 + 1).

By the observation (f) above this is true for g<g. So,
let us consider g = q. The left-to-right pre-order and
the fact that 6(q) = d, implies that dy>d and g, >q. The
claim follows from the induction on (I1) and the fact
that we only called L-MATCH(d, q) in the meantime.

o If the next function call is L-MaTcH(d + 1,¢q’) (lines 21
or 25), then d + 1 is a right sibling of a node on the path
(d---root (D)) (due to the left-to-right pre-order and the
fact that d is a leaf, see line 13) and ¢’ is an ancestor of or
is equal to q.

The induction on (I1) implies that, for all g, >gq, for all
data nodes dp>d, we have not called L-MATCH(dy, qo)
before we called L-MATcH(d,q). In the meantime,
we only executed L-MATCH(d, q), so, for all qy>gq, for
all data nodes dy>d+1, we have not called
L-MATcH(dy, q,) before.

In order to prove (I1) we still need to show that this is
also true for all query nodes q, with ¢’ <qy<q and for all
data nodes dp >d + 1. So, take a query node g, such that
q'<qo<gq. Note that such a query node g, is in
subtree(q’). Furthermore, each node d, that is greater
or equal to d + 1 is in the subtree of some right sibling d
on the path (prevSib(d + 1)---root (D)) because d is a
leaf. This path is a sub-path of (0(q)---root (D)),
because ¢’ is the lowest ancestor of ¢ whose parent is
an ancestor of d + 1, which means that ¢’ is mapped
onto a node on (parent(d) - - - prevSib(d + 1)) by Lemma
2 and the fact that ¢’ <q. By induction on (I3) it follows
that we have not called L-MATCH(dy, q,) before calling
L-MATcH(d, q).

Since ¢’ is an ancestor of or equal to g, the path
(q’---root (Q)) is a sub-path of the path (q---root (Q)).
Hence, (I12) immediately follows from the induction
on (12).

Since we did not change the mapping 6 and the query
node serving as argument of the k + 1th function call is
smaller or equal to the argument of the kth function call,
(I3) follows from the observation () made above. O

Propositions 3, 4, and Lemma 4 imply the correctness of
L-MATtcH.

Proposition 5. Algorithm 2 is correct. That is, given the roots
d and q of a data D and query tree Q, L-MATCH(d, q) decides
whether D E Q.

3.2.2. Space complexity of L-MAtcH

We already argued in the main body of the paper that
the recursion stack has no influence on the operation of
L-MartcH. It remains to argue why BACKTRACK only needs
logarithmic space. BACKTRACK(d, q) calculates the highest
ancestor d of the data node d such that the path
(d'---root (D)) matches the path (parent(q)---root (Q)).
The difficulty lies in the fact that we cannot store both
paths. Instead, we store d and q. We also store two help
variables dy and g, which are initialized to be root (D) and
root (Q), respectively. We now iterate over the following.
We compare the labels of dy and qq. If they match, we
overwrite dy and q, with the children of dy and g, that lie
on the paths to d and g, respectively. This is performed as
explained in the beginning of this section. We can start at d
(resp., q), scan the input tape for the unique node that has a
child pointer to d (resp., q), and continue upwards in this
manner until we find a child of dy, resp., q,. If the labels of
dy and g, do not match, we only overwrite do with its child
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on the path to d. We continue until we matched the whole
path (parent(q) - - - root (Q)). Finally we return the data node
onto which we matched parent(q).

3.2.3. The complexity of the tree homeomorphism problem
As argued above, L-Marcu can be performed in
LOGSPACE. Putting this together with the fact that reach-
ability in trees is LOGSPACE-complete, given the tree as a
pointer structure [8], we obtain the following Theorem.

Theorem 3. The tree homeomorphism problem is LOGSPACE-
complete.

4. The bottom-up algorithm

Although the previously presented top-down algorithms
for tree homeomorphism matching are quite space-
efficient, their time complexity is quite high and they
involve quite a lot of recomputing of already obtained
matchings, which is unsatisfactory. We therefore turn to a
bottom-up matching approach which has the property
that no obtained matchings between the data and query
tree need to be recomputed, which leads to a better time
complexity of the overall algorithm.

Before presenting the bottom-up algorithm for the tree
homeomorphism matching problem in detail, we need to
introduce several formal notions. As in the previous section,
we first present an algorithm for the tree homeomorphism
problem and then show how to change it into an algorithm
for the tree homeomorphism matching problem.

In the present section, we assume the left-to-right post-
order ordering <post on nodes in trees and hedges. For a
node u, we denote by u+1 and u—1 the successor and
predecessor of u in the left-to-right post-order ordering,
respectively. Moreover, when we, e.g., use terminology such
as “largest” and “smallest”, we always assume the left-
to-right post-ordering. In this section, we also assume that
XML documents are stored on tape in left-to-right post-
order (or, alternatively, together with a left-to-right post-
order index), which allows a random-access machine
model to verify the left-to-right post-order ordering
in constant time. To simplify the presentation of our
algorithm, we also assume two dummy nodes in every
tree and hedge: nil and co. The node nil is such that nil + 1
is the smallest node in the hedge, and the node oo is
defined as the successor of the largest node of the hedge.
Given two nodes hgom <hyn in @ hedge H, we denote by
the interval [hgom, huni] the subhedge of H consisting only
of the nodes {v | hgom <V<hyy).> The notion of such
an interval in a tree is illustrated in Fig. 3(a). Here, the
interval [hgom, Bunel] 1S the striped area in the tree. Given
a hedge H and a node h < Nodes (H), we denote by
subhedge/(h) the subhedge [hgom,h], Where hgom is the
smallest descendant of h’s leftmost sibling according to the
left-to-right post-order ordering. We illustrate this notion
in Fig. 3(b).

3 Notice that our definition of a hedge did not assume all root nodes of
the individual trees to be siblings of one another.

10D (Pgrom, Puntil)

huntil

[ from

Fig. 3. Illustration of a hedge interval and RTor (a) and of subhedge’ (h) (b).

When H is a data hedge or a tree pattern query, we refer
to [Mfom, Muntii] @S @ data or query hedge interval, respec-
tively. We extend the semantics of tree pattern matching to
hedges as follows. Let Q; ---Q, be a query hedge interval
[9ftom>Quniit] and Di---Dp, be a data hedge interval
[dfrom, duntil]- We say that [dfrom,duntil] matches [9from> Quntitl:
denoted by [dfrom: duntil] F [from> Guntit) if, for every Qi-
i=1,...,n, there exists a D;, j=1,...,m, such that D; £ Q;.

Before presenting the intuition about the bottom-up
tree homeomorphism algorithm, we describe an auxiliary
procedure RTop, which, given two nodes hgoy and hyggir,
returns the rightmost node among the topmost nodes in
the interval [hom, huni]- More formally, RToP (hgom, Buntl)
is the node u such that depth (u) is minimal and u is larger
than every other node v in [Rgom, huneii] With depth (u) =
depth (v). This notion is illustrated in Fig. 3(a). Further-
more, in order to simplify the presentation of the algorithm,
we define RToP (hgom, huntit) = 00 if Agom > hunil- Notice
that RTopr can easily be computed in time linear in the depth
of the tree and in logarithmic space by traversing the path
from hy, to the query root and comparing the previous
siblings of nodes on the path with hg,,, w.r.t. the left-to-
right post-ordering. Indeed, assume that hgom < hynil- Let u
be the highest ancestor of hy,,; that has a previous sibling s
such that s> hgon. If no such u exists, then rtop(hgom, Runti)
is hyneil. Otherwise, rtop(hfom, Runtl) 1S S.

We first present an algorithm for deciding whether D F Q
and show later how it can be extended to an algorithm for
the tree homeomorphism matching problem. The main
procedure of our algorithm is called TMatcH. Given a data
node d and query nodes qgom and qune, TMATCH returns
the largest query node q in the interval [Gfom, Quni] Such
that subtree”(d) matches [qgom, q] if g exists; and ggom — 1
otherwise. Hence, if d is the root of D, and ¢y, and g, are
the leftmost leaf and the root of Q, respectively, then D F Q
if and only if TMATcH returns q.-

TMatcH uses an auxiliary procedure called HMarch,
which, given a data node d and query nodes ¢f,y, and
Guntil> Teturns the largest node q in the interval [Gfom»> Quntill
such that subhedge®(d) matches [qgom.q] if q exists; and
Jfom — 1 otherwise.

We start by explaining the operation of TMarcH, which is
presented in Algorithm 3. Given a data node d and query
nodes Qgom and qunqg, TMartcH first starts by recursively
calling HMarcH with the same query nodes for the subhedge
D' of D defined by d’s last child, yielding result gy, (see
Fig. 4(a)). In the remainder of TMatcH, we essentially want
to test how @, can be improved when we also consider
the node d in addition to D'. One particular interesting case
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Fig. 4. lllustrations of the tree homeomorphism algorithm. (a) Operation
of TMarcH: recursive call of HMartcH. (b) Operation of TMartcH: recursive call
of TMartcH. (c) Operation of HMarch: first recursive calls of TMarch and
HMarcH. (d) Operation of HMartcH: a subsequent recursive call of TMatcH,
trying to improve qee.-

is when gy, is a last sibling and its parent has the same
label as d. In this case, we can at least improve our best
query node to qpe's parent which we call here gj.
Furthermore, it is possible that gj., is not yet the best
query node we can obtain. In particular, we still need to test
which part of the hedge defined by [qj,, + 1,lastSib(qy,,)]
can be matched in the subtree below d (see Fig. 4(b)). The
largest node that is obtained in this manner is the node that
TMarcH should return.

Algorithm 3. Function TMarcH. Here, +1 and —1 denote the
successor and predecessor in the depth-first left-to-right
post-ordering, respectively.

TMartch (DNode d, QNode g;om, QNode qynei)
2:  if dis a leaf then qpesr < Grom — 1
else g, < HMaTtcH(lastChild(d), Gfom» Quntil)

4:  endif
if Gpest + 1 <postGunei and d matches qpes + 1 then
6: Gbest < Gpest + 1
if gpest + 1 <post 1astSib(Gpes;) then
8: return TMATCH(d, Qpes; + 1,1astSib(qpes;))
else return
10: end if
else return qy.;
12: end if

We now explain the operation of HMarcH, which is
presented in Algorithm 4. Essentially, given d, g0, and
Quntii,» HMATcH starts by recursively calling itself with the
same query nodes on the hedge defined by the previous
sibling of d (i.e, D' in Fig. 4(c)), yielding gpeqge, and by
calling TMarcu with the same query nodes on the subtree
under d itself (D” in Fig. 4(c)), yielding ¢, .. The remainder
of HMATCH consists of iteratively improving .. and
Qhedge- That is, while it is possible that D" and D” yield small
values of Giree and Gpeqqe, their concatenation can give rise
to a much larger part of the query that can be matched.
Essentially, this is due to the fact that the matching of tree
pattern queries is unordered. For example, it can occur that
we need to match a certain first sibling in D, a second
one in D”, a third one again in D' and so on. Hence, the
procedure HMaTcH alternates between finding best matches
in D' and D" until it reaches a fixpoint.

Algorithm 4. Function HMatcH. Here, +1 and —1 denote
the successor and predecessor in the depth-first left-to-
right post-ordering, respectively.

HMarcH (DNode d, QNode ¢om, QNode qypeir)
2: if d is a first sibling then return TMATCH(d, Gf.om» Quntil)
else
4: Ghedge < HMATCH(prevSib(d), rom, Guntit)
Giree < TMATCH(d, Gfrom Guntit)

6: loop
if qhedge = iree then return qpeqq.
8: else if qyree <post Jhedge then
rtop < RTOP (Gyree + 1~qhedge)
10: while rtop < o5t 50 and Ghegge < post 1astSib(rtop) do
Giree < TMATCH(d, rtop + 1, lastSib(rtop))
12: rtop < RTOP (Gyee + 1, Gnedge)
end while
14: if Giree <post Ghedge then return gyeqq.
end if
16: else
rtop < RTOP (Gpedge + 1. Gree)
18: while rtop < post 00 and qyee < post lastSib(rtop) do
Ghedge < HMATCH(prevSib(d), rtop + 1, lastSib(rtop))
20: 1top < RTOP (Ghedge + 1. Grree)
end while
22: if Ghedge < post Jiree then return Giree
end if
24: end if
end loop
26: end if

However, we need to take care in how this fixpoint
is computed. One possible case is illustrated in Fig. 4(d).
This particular case builds further on the situation in
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TM(ds, q1,45) = g5
HM(d5, q1,¢5) = @
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HM(dy, q1, ¢5) = q3

~HM(d3, q1,¢5) = ¢
TM(ds, q1,95) = ¢
HM(d2, q1,¢5) = ¢2

~HM(d:., q1,q5) = nil

TM(dy, q1, ¢s) = nil

~TM(d2, q1,65) = @1

TM(dy, g2, qa) = @1

HM(d1, g2, 1) = @2

TM(dy, g2, qa) = 2
TM(dy, q3,93) = ¢

L-TM(d2, g3, q3) = @2

=TM(dy, q1,q5) = nil
~TM(ds, @2, 41) = @1
=TM(ds, g3, G3) = @3

Fig. 5. Illustrations for Example 1. (a) Query tree (left) and data tree (right) of Example 1. (b) Function calls of HMarci (HM) and TMarcH (TM) of

Example 1.

Fig. 4(c). Here, we try to improve q,... by starting the TMarcH
procedure again for the node d, but now only with the part of
the query marked with question marks. The case where .
is larger than gpeqge is dual and not illustrated here.

Example 1. Figs. 5(a) and (b) illustrate an example for the
bottom up algorithm. For brevity, we denote TMarcH and
HMartcH with TM and HM, respectively. The first calls of TM
and HM demonstrate the basic recursive structure of our
algorithm: TM on a node d calls HM on the rightmost child
of d. HM on a node d returns TM of d if that node is a first
sibling; or performs a divide-and-conquer technique by
calling HM on the left sibling of d and TM on d itself (as in
the function call HM(dy, q1,gs)). Further recursive calls to
TM or HM are then needed to maximize the part of the
query that can be matched.

The simplest function call in the example that performs
such further recursive calls is the call HM(d;, g1, gs), which

starts by computing Ghedge = HM(dlsqI:QS) and Qtree =
TM(d3,q1,Gs)- As can be seen in Fig. 5(b), gpeqge = nil. The
call TM(d;,q4,qs) is more successful, because d, and g,
are both labeled with a. In general, it might be possible
that g, and further nodes can be matched in subtree(d,).
The function call TM(d2,q5,q4) checks that possibility.
(For sure, g; and g5 cannot both be matched on d,, which is
why we restrict the query tree interval by g,.) But g, is not
labeled with a so the return value of the two TM calls is q;.
After this initial phase, HM(d-, q;,qs) tries to improve g e
and @peqge iteratively. It calls HM(d1,q,,q,) and improves
Jhedge tO b€ g5, because g, and d; are both labeled with b.
Further improvements fail as there is no c-labeled node in
the subhedge of d,.

A similar iterative improvement is illustrated by
HM(ds, q4,q5). Observe that we try to improve ... here
and call TM(d4,q,,q,) and TM(d4, q3,q3). Only the latter
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call yields an improvement. But we cannot omit the former
one: if subtree(d;) would match subtree(q,), then the
former call would yield g, and the latter call would yield
q;. As we want our algorithm to return the largest query
node such that the interval ending with it can be matched
the result of the former call would have been the relevant
one in that case.

4.1. Correctness

The main technical difficulty of this section is proving
that TMATcH is correct.

Lemma 5. Let D be a data tree and let Q be a query tree.
TMatcH is correct, that is, given the root node d of D, the
smallest and largest node qgom and quna of Q, respectively,
TMATCcH returns qung iff D F Q.

For the proof of Lemma 5, we start with a few simple
observations.

Observation 4. A node u is not a last sibling <-u + 1 is a leaf.

Proof. Left to right: if u is not a last sibling, then u+1 is
the leftmost descendant leaf of the right sibling of u, or the
right sibling of u itself if it is a leaf. Right to left: if u is the
last node in a left-to-right post-order traversal, then u is a
last sibling for which u + 1 does not exist. For all other last
siblings u, u + 1 is u’s parent, which is not a leaf. O

We call a hedge interval complete when if it contains a
certain node, it also contains its children.

Observation 5. In Algorithms 3 and 4, the following proper-
ties hold:

(1) quner is always a last sibling.
(2) Ggom is always a leaf.
(3) [Gfrom> Quntit] s always a complete interval.

Proof. (1) In our initial call of TMATCH, q, is the root
node of the tree, which is always a last sibling. The property
for the deeper recursive calls follows immediately from a
straightforward inspection of the recursive function calls in
the algorithm.

(2) In our initial call of TMATCH, qgom is the smallest
node of Q, which is always a leaf. Furthermore, in TMATCH
we only call HMATcH with g, as a second parameter and
TMATCH with gpes + 1 as a second parameter if gy is not
a last sibling (which is a leaf due to Observation 4). In
HMaAarcH all recursive calls have either gg,, or rtop + 1 as
second parameter. We show that, in this case, rtop is never
a last sibling. Hence, according to Observation 4, rtop + 1 is
always a leaf. In the calls of TMATCH on line 11, we have
that rtop<oo and gheqge <lastSib(rtop), due to the while
condition. As rtop < oo, we have that rtop <gpeqg. due to the
calls of RTopr on lines 9 and 12. Hence, rtop <lastSib(rtop).
The proof is analogous for the calls of HMATCH on line 19.

(3) In the initial call of TMATCH, the claim obviously
holds. In TMATcH we call HMATCH with gy, and gy, for
which the claim then trivially also holds; and TMATCH

with Gpes + 1 and lastSib(qpes;) if Gpese iS NOt a last sibling.
Hence, [Gpest + 1,1astSib(qpesr)] is equal to the hedge
subtree(nextSib(qyes;)) - - - subtree(lastSib(qpes;)), Which is
complete. The proof for the recursive calls in HMarcH is
analogous. 0O

Observation 6. Let d; and d, be data nodes and q be a query
node. If [dy, d>] does not match subtree(q), then [dy,d,] does
not match any query tree interval containing subtree(q).

Proof. Let Afrom and Quntil be such that [from> Quntit]l =
subtree(q). For g, <Qgom and G > Guneir» it can be shown
by a simple structural induction on the hedge [qf. ... @\l
that [dy, d>] does not match [qg, . Gl O

Observation 7. Let H be a data hedge and [qom»> Quntil] b€ @
complete query tree interval. We have that q is the largest
node in [Ggom: Gunc] SUCh that H = [qrom. q1 if and only if

o H matches [Gsom» q]; and
e either q = qu,y or H does not match subtree(q + 1).

Proof. Left to right: let H be a data hedge and let
[9from» Quniit] b€ @ query tree interval. Let g be the largest
node in [9from> Guntill such that HF [4from- q]- If 4 = Quntii W€
are done. Otherwise, if, towards a contradiction, H matches
subtree(q + 1), then we also immediately have that H
matches [qGfom»q + 1], which contradicts the maximality
of q.

Right to left: let g be a query node in [Gfom» Quneit] SUCh
that H matches [qfom.ql- If ¢ = qunt then we are done.
Otherwise, notice that, as g + 1 is in the complete interval
[Gfrom» Quniitl, We have that subtree(q + 1) is entirely con-
tained in [Qfom>Qunii]- Hence, if H does not match
subtree(q + 1), then H also cannot match [ggm,q + 1]. The
latter can be shown by a simple structural induction on

[qfrom, q-+ 1]- t

4.1.1. Correctness of TMatch

For readability, we split the correctness proof into
several lemmas. Essentially, the proof is by induction on
the height of the data node d in D.

Lemma 6. Let d be a leaf data node and Q. and qu.e be
query nodes. Given d, Gfom, Gnd qnq1, TMATCH is correct, that
is, TMATCH returns the largest node q in [Ggom» Qunit] SUch
that subtree(d) F [qfom» q] if it exists; and g, — 1 otherwise.

Proof. By induction on the number of nodes of [Gf;om> Quntitl-

Gtrom = Guniii: We initialize gyes; With ggo, — 1 on line 2. If d
does not match gy, on line 5, we immedi-
ately return Qpest = Gfrom — 1 0N line 11. If d
matches qgom = Gunel ON line 5, gpege gets the
value gy, On line 6. AS Qgom = Qundr 1S @ last
sibling (Observation 5), we do not execute
the recursive call on line 8 and return gy, in
line 9. Both cases are easily seen to be
correct.

Gfrom <quntil: We initialize qpes With ggo — 1 online 2. If d
does not match ¢s,, on line 5, we return
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Qpest = Gfrom — 1 in line 11, which is correct. If
d matches ggom, in line 5, then gy gets the
value ¢y, and we enter the if-test on line 7.
We need to consider two cases:

(1) qgom is a last sibling: In this case, we
return ¢pon on line 9. This is correct, as
Grom + 1 1S Qfom’S Parent, which cannot be
matched onto d due to the semantics of the
descendant axis.

(2) Ggrom is not a last sibling: if g, has a right
sibling, we execute TMarcH recursively on d,
Gfom + 1, and lastSib(qgem), yielding gq. By
induction, g is computed correctly. That is,
if ¢ =(qgom +1)— 1, which implies that d
does not match ggom + 1, We return Ggom,
which is correct. Otherwise, we argue that
subtree(d) = d matches [qfom,.q] but not
subtree(q + 1). By Observation 7, this would
complete the proof. By induction, we im-
mediately have that d matches [Gfom.ql- If
q<lastSib(gsom), We also have by induction
that d does not match subtree(q+ 1). If
q = lastSib(qgom), then g + 1 is ggon's parent.
Hence, d does not match subtree(q + 1), as
q+ 1 has a child and d has not. O

Lemma 7. Let d be a data node with height n>1 and g
and qn be query nodes. If HMATCH is correct for all data
nodes of height up to n — 1, then TMATCH is correct for all
data nodes of height up to n. That is, given d, g.om, and Qunsir
TMATCH returns the largest node q in [qfom»> Qunil] SUch that
subtree(d) F [Grom. q] if it exists; and Ggom — 1 otherwise.

Proof. Assume that HMATCH is correct for all data nodes
of height up to n — 1. As d is not a leaf, we start by calling
HMaATcH on lastChild(d), ggom, and e on line 3 (see also
Fig. 4(a)), yielding (Qpes- By our assumption, Qpes IS
computed correctly. We now prove the lemma by induction
on the number of nodes of [Gfoms> Quntil]-

Gfrom = until*

Qfrom <quntil *

We consider two cases.

(1) If subhedge (lastChild(d)) does not match
Qfrom» then qpesr 1S Grom — 1. Consequently,
we test whether d matches gy, on line 5. If
d does not match gy, We return qgom — 1
on line 11. If d matches gy, then qpes: gets
the value Ggom. AS Gfrom = Qunet 1S @ last
sibling (Observation 5), we do not execute
the recursive call on line 8 and return g,
in line 9. Both cases are easily seen to be
correct.

(2) Otherwise, Gbest = Gfrom = Guneit- 1N this
case we return gy, Which is correct.

(1) If both subhedge (lastChild(d)) and d do
not match ¢g,n,, then we return ggo, — 1 0N
line 11, which is correct.

(2) If subhedge (lastChild(d)) matches Gsom
and Qpesc = Qung ON line 5, then we return
Quntil- Due to the correctness of HMarch, this
means that subhedge (lastChild(d)) already
matches [Gfom>Qunit], hence, subtree(d)

matches [Gfom»unit] Dy our tree pattern
matching semantics.

(3) If subhedge (lastChild(d)) matches gGom,
Gpest + 1<qune1, and d does not match qpes; +
1 on line 5, then we return g in line 11.
We consider two cases.

® (pes; iS N0t a last sibling: Hence, Gpe + 1
is a leaf (Observation 4). Due to the
correctness of HMATcH for subhedge
(lastChild(d)), we know that subhedge
(lastChild(d)) does not match subtree
(@pest + 1) = Qpest + 1. Hence, returning
Qpes; 1S correct.

o (pest iS a last sibling: Hence, qpes + 1 is
Qpest'S Parent. Due to the correctness
of HMATCH, we have that subhedge
(lastChild(d))  [Gfrom» Gbest]- Towards a
contradiction, assume that subhedge
(d) F subtree(qpess +1). As d does
not match que+1, this implies
that subhedge (lastChild(d)) F subtree
(Gpest +1). However, this contradicts
that HMATCH is correct. Hence, it is
correct to return Qpes; due to Observa-
tion 7.

(4) Otherwise, denote by g2, the value of
the variable g, after the assignment on
line 3. We have that ql., is correctly
computed on line 3 and that d matches
@0, + 1, after which gy gets the value
q. +1. Notice that qd. . +1>qgn. We
need to consider two cases:

e g%, + 1isalast sibling: We return q2,., +
1 in line 9. If qd. +1=quq, this
is correct. If qQ. +1<qyne, towards a
contradiction, assume that subtree(d)
matches subtree(q,., + 2). As g, + 2 is
the parent of g, +1, this would
mean that subhedge (lastChild(d)) F
subtree (¢%,, + 1), which is a contra-
diction.

e q0. +1 is not a last sibling: if qQ. + 1
has a right sibling, we execute TMATCH
on d, qd., +2, and lastSib(gd,, + 1) on
line 8, yielding g. By induction, g is
computed correctly. If q is (q. +2) — 1,
which implies that subtree(d) does not
match qd. +2, we return qd. +1,
which is correct. Otherwise, according
to Observation 7, we need to show that
subtree(d) matches [gfom.q] but not
subtree(q + 1). By induction, we have
that subtree(d) matches [Ggom-q]- If
g<lastSib(qd,, + 1), we also have by
induction that subtree(d) does not match
subtree(q +1). If q =lastSib(q2., + 1),
we have that subtree(d) doesnot match
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subtree(q + 1), because there does not
exist an u#1 s.t. subtree(d) F subtree
@ +1, and qg+1 is gl +1's
parent. O

4.1.2. Correctness of HMatch

Lemma 8. Let rtop=RTor(q,q;) and ¢q;<q,. If
q, € subhedge (q,), then rtop = q, and g, <lastSib(rtop). If
q, ¢ subhedge (q,), then rtop<gq, and g, <lastSib(rtop).

Proof. Recall that, by definition, subhedge (q,) is the
interval [qgman» q2], where gg,,y is the smallest descendant
of g,’s leftmost sibling.

g, € subhedge (q;): As both ¢; and ¢, are in
subhedge (q,), we have that [q;,q;] is entirely contained
in subhedge (q,).

By definition, rtop is the largest node in [q, ;] among the
nodes with minimal depth. As g, has minimal depth in
subhedge (q,) and g, is the largest node in [q,, g,], we have
that rtop = q,.

q, ¢ subhedge (q,) : Notice that this can only occur when
g, has a parent. As q;<q,, we have that q; <qgn- By
definition of the left-to-right post-ordering, we have that q,
is either a left sibling of an ancestor of g, (not including
the ancestors themselves), or a descendant-or-self thereof.
Let u; and u, be the two unique siblings such that u; #u5, q;
is in subtree(u;), and g, is in subtree(u,). Notice that
q; <u;<q,<uy. Hence, u; is in [q;,q,] and depth (u;)<
depth (q,). As g, has minimal depth in subhedge (g,), we
have that rtop is not in subhedge (g,). By definition of RTop,
this immediately implies that rtop<gq,. Furthermore, as
depth (lastSib(rtop)) = depth (rtop)<depth (u;) = depth (u5)
and as lastSib(rtop) is also rtop’s largest sibling, we have that
lastSib (rtop)>uy >q,. O

Corollary 1. If rtop = RTop(q4,q,) then q; € subhedge(rtop).

Proof. As rtop is in [q;, g,], rtop is also the rightmost node
among the topmost nodes in [q;,rtop]. If we assume that
q; ¢ subhedge (rtop), then Lemma 8 implies that rtop <rtop
which is a contradiction. O

Lemma 9. All function calls of TMATcH(d,q,,q,) in the
loop of HMatcH have the property that [q,,q,] is an interval
which includes subtree(qneqge + 1). All function calls of
HMATCH(d, q4,q,) in the loop of HMartcH have the property
that [q,,q5] is an interval which includes subtree(qee + 1)-

Proof. For the first statement, we have to show that
(1) qy<qsman» Where (g, is the smallest node in
SUbtree(Qhedge +1) and (11) qz >qhedge +1.

First, observe that the function calls of RTop on lines 9 and
12 results in a value of rtop that is at most gpeqge. If
I'tOP < (hedge then ItOP < (s, as, by Lemma 8, rtop = qpedge
when rtop is in [Gsmal> Ghedge)- Hence, rtop + 1< qgmay. If
ItOP = (heqge, We know that rtop is not a last sibling due to
the condition of the while loop on line 10. Hence, g, =
Gnedge + 1 =Trtop + 1 is a leaf (Observation 4). This proves

property (i).

Property (ii) is immediate as the condition of the while-
loop on line 10 requires that g, = lastSib(rtop) > qpegge + 1-

The proof of the second statement is analogous to the
proof of the first statement. [

Lemma 10. The loop on line 6, and the while loops on lines 10
and 18 perform at most a linear number of iterations.

Proof. Notice that we exit the loop on line 6 if
MaxX(Girees Ghedge) d0€S not increase. However, this value
cannot keep increasing indefinitely as it is bounded from
above by g, in the algorithm. Hence, the loop performs at
most a linear number of iterations.

The while loop on line 10 terminates after a linear number
of iterations, as the value of rtop increases with each
execution and the while loop only continues as long as rtop
is smaller than gpeqge, a value which remains unchanged. The
argument for the while loop on line 18 is analogous. O

Lemma 11. Let d be a data node and qy,, and qyn. be query
nodes. If TMATCH is correct for all data nodes of height up to
n, then HMATCH is correct for all data nodes of height up to n.
That is, given d, Qfom» and quni;, HMATCH returns the largest
node q in [qfom>quniil Such that subhedge (d) matches
[Grrom- q] if it exists; and nil otherwise.

Proof. Let k be such that d has k left siblings (including d
itself). We prove the lemma by induction on k.

If k =1 then the Lemma is immediate from the function
call on line 2 and the assumption that TMATCH is correct
for all data nodes of height up to n.

So, from now on, we assume that k> 1. We need to show
that the algorithm returns g,y — 1 if subhedge (d) does
not match gg,,. Otherwise, we show that we return a q in
[Gfrom» Guneitl if subhedge (d) matches [Gfom,q] and either

® ( = (yntil» OT
e neither subtree(d), nor subhedge (prevSib(d)) matches
subtree(q + 1).

In the remainder of the proof, we refer to the above
property with the label (). The correctness of property (t)
follows directly from our tree pattern query semantics if we
return ggom — 1 and from Observation 7 otherwise. Indeed,
from Observation 5 we know that [qfom» Quneit] 1S complete.
Furthermore, subhedge (d) does not match subtree(q + 1) if
and only if neither subtree(d) nor subhedge (prevSib(d))
match subtree(q + 1).

Notice that the loop on line 6 terminates by Lemma 10.
We now proceed with an induction over the number ¢ of
loop executions proving that the following invariants hold:

(I1): if qyee 1S DOt qgom — 1 then subhedge (d) matches

[qfroma qtree];
(12): if Gpedge 1S NOt Grom — 1 then subhedge (d) matches

[qfrom’ qhedge]:

(I3): Guee = Guntii  OF subtree(d)
subtree(qeee + 1); and,

(14): Gnedge = qunei OF subhedge (prevSib(d)) does not
match subtree(qpeqge + 1).

does not match
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At the same time, we show that, if the algorithm returns a
certain value g, the property () holds for q.

¢ = 0 (before the first loop execution): We computed Gpeqge.
which results from executing HMATCH on prevSib(d), Gsom,
and qu,q; and we computed e, Which results from
executing TMATCH on d, Gom, and e (See also Fig. 4(c)).
By induction on k, we have that gneqee is computed
correctly. Moreover, as we assume that TMAaTcH is correct
for all data nodes of height up to n, we also have that g, is
computed correctly. Properties (I1) and (I12) immediately
follow from the correctness of the recursive calls of TMarcH
and HMartcH. Moreover, Observation 7 implies that (I3) and
(I4) also hold. As the algorithm does not return anything up
to here, we do not have to show yet that (}) holds.

¢=>1 (subsequent loop executions): We consider three
cases.

(1) If ghedge = Gtree» WE TELUIN (peqge. This is correct, as in
this case, properties (I1)-(I14) immediately imply
property ().

(2) If qiree <Qhedge, NOtice that we do not change the value
Of Qpedge in this iteration of the loop. Hence, for the
induction, we only need to show that properties (I1)
and (I3) are preserved. We consider two cases.

If Ghedge = Guntit the while loop in line 10 is not executed
and we return q,,; in line 14. Here, it follows
immediately from (12) that (1) holds.

If Ghedge <quneil W consider two cases.

o If subtree(d) does not match subtree(qpegge + 1),
none of the function calls TMATCH(d, q;, q) in the
while loop yield a value greater than gneqge- This
follows from the correctness of TMarcH for data
nodes up to height n, and from Lemma 9, stating
that [qy,q,] always includes subtree(qpegge + 1)
Indeed, should such a function call TMATCH
(d.g1,qz) yield a greater value than gpeqg, then
we would have that subtree(d) matches subtree
(Ghedge + 1), which contradicts that we are investi-
gating the case that subtree(d) does not match
subtree(gheqge + 1). Hence, we return gpeqge in line
14. Correctness of the property(f) for gpeqge NOW
follows from the following facts:

°© qhedge>qm)mv aS (tree <qhedge»

© Qhedge<quntil;

o subhedge (d) matches [Gfrom, Ghedge)s DY (12);
subtree(d) does not match subtree (qpedge + 1);
and,
subhedge (prevSib(d)) does not match subtree
(Ghedge + 1) by (14).

o If subtree(d) matches subtree(qpeqge + 1) the proof is

more complicated. First, observe that the while loop
on line 10 terminates by Lemma 10.
For the remainder of this case, we will show that
tree > Gnedge after exiting the while loop in the i+
1th execution of the test on line 10. In particular,
this implies that the algorithm will not return any
value in iteration ¢ of the loop. So we only need to
show that, at the end of the current iteration,
properties (I1) and (I3) hold.

c

o

To show (I3), we will show that, if in the jth execution
of the while loop we obtain a value q for the variable
qiree fOr which it holds that q> gpeqge then we either
have that q = q, or that subtree(d) does not match
subtree(q + 1). Afterwards, we show (I1).

We start by showing that qee > qpeqge after exiting
the while loop:

Goal 1: Giree > qhedge after exiting the while loop
in the i+ 1th execution of the test on line 10.
So we execute the while body i times and then exit the
loop.

Let gl denote the value of gy, at the end of the ith
execution (i.e., after the assignment on line 11) and let
q%. be the value of gy before entering the while
loop. Furthermore, let rtop’ denote the value of rtop
at the end of the ith execution (i.e., after the
assignment on line 12). Let rtop® be the value of
rtop before entering the while loop.

(i=0): We will show that this case does not occur.
That is, the body of the while loop is always executed
at least once. Towards a contradiction, assume that
we do not execute the body of the while loop. We
consider two cases. If we exit the while loop one of
them must hold.

o Case 1: rtop® <oco and Qeqqe >1astSib(rtop?). Re-
call that rtop® = RTOP (g + 1, Gpedge)- Due to
Lemma 8, qheqge >lastSib(rtop®) implies that (i)
rtop? = lastSib(rtop®) = Gpeqqe and that (ii) g3 +
1 is in SUbhedge (qhedge)~ As Ghedge <Yuntil and
Ghedge 1S @ last sibling this means that q{.. + 1 is
in subtree(qpeqge + 1)- Moreover, as we are in the
case that ¢yree <Gnedge, We know by induction on ¢
(statement (I3) in particular) that subtree(d)
does not match subtree(q¥..+1). However,
as we have shown above that q%. +1 is in
subtree(gpedge + 1), this contradicts the fact that
we are in the case that subtree(d) matches
subtree(gpedge + 1)-

o Case 2: rtop? = co. By definition of RTop, this
means that qQ.. + 1> qpeqge. But we are currently
investigating in the case that g, <Gpegg- Con-
tradiction.

Hence, we showed that the while loop on line 10 is

executed at least once.

(i>0): Again, we consider the two possible settings

in which we exit the while loop. We show again that

the first of the two does not occur here.

> Case 1: rtop' <oo and gpeqge >lastSib(rtop’). Recall

that rtop' = RTOP (G}, + 1, Ghedge)- Due to Lem-
ma 8, (peqge >lastSib(rtop’) implies that (i)
rtop' = lastSib(rtop') = Gheqge and that (ii) Giee +
1 is in subhedge (qheqe). implying that
qltree +1 SQhedge' As Ghedge <Yuntil and .Qhedge is a
last sibling this means that ql..+1 is
in subtree(qpeqge + 1). Since we did not exit
the while loop in the ith test, we have
that Qpeqge <lastSib(rtop~!). Hence, we have
that gl .. + 1< qpeqge <lastSib(rtop'~1). Recall that
qiee = HMATCH(prevSib(d), rtop~! + 1,
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lastSib(rtopi~1)). By the correctness of TMATCH,
Observation 7, and the fact that [rtop’~!+
1,lastSib(rtopt=")] is a complete interval (Obser-
vation 5) we can conclude thatsubtree(d) does
not match subtree(gi,.. + 1) which, we argued
above, is a subtree of subtree(qpeqge + 1). Hence,
subtree(d) does not match subtree(gpedge + 1),
which contradicts the fact that we are in the case
that subtree(d) ‘matches subtree(gpedge + 1)-

Case 2: rtop' =oc. Hence, (iee+ 1>nedge-
We prove that it cannot be the case that
Qtree = Ghedge- HENCE, (iree>Ghedge and Goal 1
follows. To this end, assume, towards a con-
tradiction, that ql.. = Qpeqg. Recall that
Giee = TMATCH(d, rtop'~! + 1, lastSib(rtop)).
Moreover, lastSib(rtopH)>qhedgE since other-
wise we would have exited the while loop right
after test i. We conclude that @pegge +1 is a
node in [rtop~! + 1, lastSib(rtop'~1)]. However, as
subtree(d) matches subtree(qheqge + 1), this
would imply that subtree(d) also matches
[rtopFl +1, Qhedge + 1= [rtopii] +1, qiree +1]
which is in contradiction with the correctness of
TMATCH.

o

This concludes the proof of Goal 1.
Goal 2. If in the jth execution of the while loop we
obtain a value q for the variable q.. for which it holds
that q>qpedge and q + 1<qyne, then we have that
subtree(d) does not match subtree(q + 1).
Observe that we need at least one execution of the
body of the while, since before the first execution
we have that Gyee <Qpedge- Lt @} denote the value
of e at the end of the jth execution (i.e., after the
assignment on line 11) and let 2., be the value of
Qiree before entering the while loop. Furthermore let
rtop’ denote the value of rtop at the end of the jth
execution (i.e., after the assignment on line 12). Let
rtop? be the value of rtop before entering the while
loop. 4
Hence, for every j>1, ¢,.. is the result of a func-
tion call TMATCH(d, rtop/~! + 1, lastSib(rtop'~1)). If
Fhree > Gnedge We Will exit the while loop right after
the current iteration. We consider three cases.

o If ¢ ee <lastSib(rtop~!) we have that subtree(d)
does not match the subtree of ¢ .. + 1 due to the
correctness of TMATcH for data nodes up to
height n and Observation 7.

If G{ree = Guni the claim is trivial.

The remaining case is that g}... = lastSib(rtop/~")
< Qungit- In this case, ¢l + 1 is the parent of ¢,
due to Observation 4. We consider two cases.
j = 1: We want to prove that subtree(d) does not
match subtree(q%.. + 1) and that subtree(qd.. +
1) is a subtree of subtree(q}... + 1). Then we can
conclude that subtree(d) does not match
subtree(qlee + 1.

We start by proving that subtree(d) does not
match subtree(qd.. + 1). By induction on ¢ (and,
in particular, by (I3)) we know that ¢%.e = Gunil
or subtree(d) does not match subtree(q?.. + 1).

o

If 2. = Quniit We wouldn't be in the case that
@2 ce <Oneage- We can conclude that subtree(d)
does not match subtree(q%.. + 1).

It remains to be shown that subtree(q%.. + 1) is
a subtree of subtree(ql.. +1). Line 9 states
that rtop® = RTOP (gl + 1, peqge)- Corollary 1
implies that then ¢%..+1 is a node in
subhedge (rtop®). Now we take into considera-
tion that we are investigating in the case
that gl.. = lastSib(rtop®) which implies that
subhedge (rtop®) € subhedge (¢}..). Combining
this with the consequence of the Corollary it
follows that g%.. + 1 is a node in subhedge (g} ..)-
Recall that q}... + 1 is q}...’s parent. Hence, ¢%.. +
1 is a node in subtree(ql.+1) and
subtree(q¥.. + 1) is a subtree of subtree(q}.. + 1).
j>1: Analogously as in the j = 1 case, we prove
that subtree(d) does not match subtree(gh.. + 1)
and that subtree(q/.. +1) is a subtree of
subtree(q}e. + 1). Then we can conclude that
subtree(d) does not match subtree(q}.. + 1).

We start by proving that subtree(d) does not
match subtree(q} . + 1). We have that ¢ . =
TMaTcH(d, rtop’~2 + 1, lastSib(rtop’~2)).  Notice
that, if gl <lastSib(rtop’~2), we immediately
have by the correctness of TMATCH and Ob-
servation 7 that subtree(d) does not match
subtree(q/.. + 1). So, towards a contradiction,
let us assume that ¢l >lastSib(rtop'~2).

Notice that pegge <lastSib(rtop?) and that

rtop/ ! <(hedge» Otherwise we wouldn’t have
arrived in the jth iteration. Moreover,
rtop~2 <rtop/~'. As rtop/?<rtop/~!< lastSib
(rtop~2), we also have that lastSib(rtop~!)<
lastSib(rtop/~2). This implies that lastSib(rtop/~1)
<lastSib(rtop’ ?) < Gjree + 1<qhee» Which is in
contradiction with ¢}, = lastSib (rtop/~!), which
is the case we are investigating.

It remains to be shown that subtree(g}.. + 1) is a
subtree of subtree(q) .. + 1). Line 12 states that
rtop/ ! = RTOP (@ree + 1, Gpeage)- Corollary 1 im-
plies that then ¢i.+1 is a node in
subhedge (rtop/~!). Now we take into considera-
tion that we are investigating the case that ¢}, =
lastSib(rtop’~!) which implies that subhedge
(rtop’~!) < subhedge (q{ree), Combining this with
the consequence of the Corollary it follows that
@res + 1 is a node in subhedge (q/,..). Recall that
@ ree + 115 @}ee’s parent. Hence, ¢l + 1 is a node
in subtree(q} .. + 1) and subtree(qj.. + 1) is a

subtree of subtree(q .. + 1).
This concludes the proof of Goal 2.

It remains to show that (I1) holds at the end
of the ¢th iteration of the loop, that is, that
subhedge (d) matches [¢fom»Jiree]- Due to (12) we
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have that subhedge (d) matches [qfom, Ghedgel-
Recall that the number of while loop executions
is at least one. Hence, we have that Qe =
TMATcH(d, rtop + 1, lastSib(rtop)), where rtop<
Ghedge <Jtree <lastSib (rtop). The first inequality
follows from the fact that rtop<oo and the defini-
tion of RTop, the second one follows from Goal 1, and
the third one from the correctness of TMatcH. Hence,

we have that
o subhedge (d) F [qf;om. Itop] and

o subtree(d) & [rtop + 1, Grecl-
Moreover, the facts that rtop + 1 is a leaf (Observa-
tion 4) and qee<lastSib(rtop) imply that
SUbhedge (dF [Afrom> Gtreel-
This concludes the proof the case where subtree(d)
matches subtree(gpeqge + 1)-

This concludes the proof of the case where
Ghedge <Guntii» and also the proof of the case where
Gtree <Jhedge-

(3) If Ghedge <Giree the proof is dual to the proof of
case (2). O

The correctness of Lemma 5 now follows from Lemmas 6,
7, and 11.

We now argue how TMarch can be modified to a
procedure TMATcH-ALL, that computes all data nodes u such
that DE'Q. In order to compute all the matches, we add a
test to line 9 of TMartcH. That is, before returning qes, we
test whether g, is the root of Q, and we output d if it is.
Now we return @ — 1, as if the query root was not
matched. Furthermore, TMarcH-AlLL recursively calls TMATcH-
AL and HMartcH-AwL instead of TMarcH and HMarcH. Here
HMarcH-ALL is the same as HMarcH, except that it recursively
calls TMarcu-ALL and HMartcH-ALL instead of HMarch and
TMATCH.

The following theorem can now be proved:

Theorem 8. Let d be the root node of D and let gy, be the
smallest and q,,, be the largest node of Q, respectively.
TMatcH-ALL is correct, that is, TMATCH — ALL(d, Gfrom> Quntil)
outputs the data nodes u such that DE"Q.

Proof. It follows directly from our additional test and the
correctness of TMATcH that DE"Q for all the nodes u that
TMATCH — ALL outputs.

It remains to prove that, if DE“Q, then TMarcH-ALL outputs wu.
Towards a contradiction, assume that there is an u such that
DEQ, but u was not reported by TMATCH — ALL. By an easy
induction it can be shown that for every data node dy in D
there is a call TMaTcH — ALL for dg’s subtree and Q. In
particular, there was a call TMATCH — ALL(U, Qfom» Qroot)-
Since this call did not output u, it follows that u must have
children and that HMatcH-ALL(lastChild(4), GgomsGroot) <
Groot — 1, (because otherwise g, and u would have been
compared and u would have been written to the output). In
general, we have that HMATCH-ALL(d,q,,q,) = min
((HMATCH(d, 91,92), Qroor — 1))- 1t then follows that

HMatcH-ALL(lastChild(u), Ggom» Groor) = HMATCH (lastChild
(W), Qfrom> qroot)-

If we now call TMATCH(U, Ggom, Groor)s it calls
HMaTtcH(lastChild(u), Gfom, Groor)» Which yields again a
value less than g, — 1. Therefore, the return value of
TMATCH(U, Gfroms Groor) 1S €SS than gy But we assumed
that subtree(u) = Q, which contradicts the correctness of
TMATCH proved in Lemma 5. O

4.2. Time and space complexity

First, we need to show that our algorithm determines in
PTIME whether D F Q. Notice that the naive manner of
computing the running time of TMarcH gives rise to only an
exponential upper bound. Indeed, define (i) T(N) as the
running time of TMarcH on d, Ggom, and quuq, Where
subtree(d) and [¢fom»> Gundi] have N nodes in total, and (ii)
H(N) as the running time of HMAtcH on d, qgom, and Gypgirs
where subhedge (d) and [qfomsGunil] have N nodes in
total. Then, we have that T(2)<p(N) for a polynomial p,
TIN)Sp(N) + HIN — 1)+ T(N — 1), and H(N)<T(N) + X(N),
where X(N)>0. Hence, T(N)<2"~!, which is obviously not
sufficient.

We therefore employ a slightly more sophisticated
approach in the following Lemma.

Lemma 12. Given the root node of a data tree D, and the
smallest and largest query nodes and of a query tree Q,
respectively, TMATCH runs in time (@(|D|-|Q] - depth (Q)).
Moreover, TMatch makes ((|D| - |Q|) comparisons between a
data node and a query node.

Proof. Let |D| and |Q| be the number of nodes in the
data and query tree, respectively. We first show by
induction on the height n of the data node d that the
number of calls to the function TMarcH in the computation
tree is at most |D||Q|. To this end, we prove three
intermediate goals.

Goal 1: Let d be a leaf data node. A computation of
TMATCH(A, Gfrom, Guncit)  Yielding result q makes at most
[from- g + 1]1 calls to TMATCH.

By induction on the size of the query tree interval
[9from> Guntill- If d is a leaf and Afrom = Guntils then TMarcH
does not call HMarcH recursively and the test on line 7
fails. Therefore, there is only 1 call to TMarcH and the
induction hypothesis holds. If g0 <qunii, and TMATCH is
not called recursively, then the minimal value we return is
Gsom — 1. Again, there is only 1 call to TMarcH and the
induction hypothesis holds. Otherwise, we call TMarcH on
line 8, yielding result g. By induction, the total number of
calls to TMATcH is at most 1+ |[Gfom + 1,9+ 1]]. As
Gtrom-q + 111 = 1 + [[Ggom + 1,9 + 1]1, the induction holds.
This concludes the proof of Goal 1.

Goal 2: Let d be a data node with height n>1. If the
computation of HMAatcH(lastChild(d), @som»> Quniit), Yielding
the result q9,.,, performs at most |subhedge (lastChild(d))| -
[Gfrom> s + 111 calls to TMATCH, then the computation
of TMATCH(d, Gfrom» Quntil), Yielding result q, makes at most
|subtree(d)| - [[Gfom» g + 1]| calls to TMATcH.
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We prove Goal 2 by induction on the size of the
query tree interval [Gfom»Quniil- TMATcH starts by calling
HMaTcH(lastChild(d), qgom, Gungt)  Vielding  qP..,. Hence,
Isubhedge (lastChild(d))| - I[qfom. Gles + 111 calls to TMarch
are performed by this subroutine.

If gfrom = Quneii» then we either return g2, on line 11 or
q., +1 on line 9. In both cases, the number of calls to
TMarct is at most |subhedge (lastChild(d))! - |[from- G0es; +
1]/ + 1 which is at most |subtree(d)| - |[Gsoms Ghese + 11I-

If Gfrom < Guneil» and TMATCH is not called recursively, then
the minimal value we return is q2..,. Again, the number of
calls to TMatcu is at most 1+ [subhedge (lastChild(d))] -
[9srom-> @2 + 111 and the induction hypothesis holds.
Otherwise, we call TMatcH on line 8, yielding result g. By
induction, the total number of calls to TMATCH is at most
1 + |subhedge (lastChild(d))| - I[@fom» GOes; + 111 +
Isubtree(d)| - I[¢%, + 2. +1]]  which is at most
|subtree(d)| - 1[qfom»>q + 11I. This concludes the proof of
Goal 2.

Goal 3: Let d be a data node. If the computation of
TMATCH(, q4,q5), yielding q .. makes at most |subtree(d)| -
I[91, Giree + 111 calls to TMaTtcH, then the computation of
HMATCH(, Gfoms Qunit),  Yielding q makes at most
|subhedge (d)| - 1[qfom>q + 11| calls to TMATCH.

Let k be such that d has k left siblings (including d itself).
We prove the lemma by induction on k. If k = 1, Goal 3 is an
immediate consequence from the assumption of Goal 3 and
the recursive call of TMarcH on line 2. If k> 1, then we start
by calling HMATCH(prevSib(d), Ggrom. Gunci)» Yielding i,
and calling TMATCH(d, Ggom, Guneir)» Yielding g.2.. By induc-
tion on k, we have that the call of HMarcu induces
|subhedge (prevSib(d))! - |[dtroms dpange + 111 calls to TMatch.
Moreover, by the statement of Goal 3, we have that the
recursive call of TMarcH induces |subtree(d)| - |[qum,q§;§’e +
1] calls to TMarcH in total.

According to Lemma 10, the loops on lines 6, 10, and 18
perform at most a linear number of iterations. Hence,
TMatci and HMarcH are called (directly) at most a quadratic

number of times in the loop.

By g¢lee, We denote the value of the variable g, in the ith
iteration of the loop and at the end of the jth iteration of the
while loop in line 10. Moreover, let ¢ denote the number
of loop executions and let max; denote the number
of executions of the while loop on line 10 in the ith
loop execution. Then, we have that every computation
of TMATCH(d, q;,q;) in the while loop performs at most
subtree(d)] - I[qle + 2,qie. + 11| calls to TMaTcH when
j>1 and at most [subtree(d)| - [ 4 2,g5L, + 1|
calls otherwise. Notice that qi2 <qlil.<.. < il <
qxl.< ... <qim <q, where q is the value we return.
Hence, the sum of the calls to TMarcH made by the
computations of TMarci on line 11 is at most
|subtree(d)| - [y + 2.9 + 11I.

Analogously, we obtain that the sum of the calls to
TMarcH by the computations of HMATCH on line 19 is at

most |subhedge (prevSib(d))| - I[gi2 + 2.q + 1]I.

In total, this means that the number of calls to TMarcH is
at most

|subhedge (prevSib(d))| - [[Gf:om> qﬁfdge + 1
+ |subhedge (prevSib(d))| - |[qjmge + 2.4 + 11I
+ [subtree(d)| - |[Gfrom. dioe + 11|
+ [subtree(d)| - I[q{soe + 2.9 + 1|

which is at most |subhedge (d)| - [[Gfom-q + 1]I. Hence, Goal
3 follows.

As a consequence of Goals 1, 2, and 3, the total number of
calls to TMarcH performed by the algorithm is |D||Q|. As the
only data versus query node comparison in the algorithm
occurs in line 5 of TMarcH, and as each call of TMartcH
performs at most one data versus query node comparison
(excluding comparisons in recursive calls), the total algo-
rithm also performs at most |D||Q| data versus query node
comparisons.

We now argue how this leads us to showing that the
overall algorithm has polynomial running time. Consider
the entire tree of the calls to TMarci and HMarcH in the
algorithm, where the children of a node are the functions it
calls directly. This computation tree contains at most |D||Q|
calls of TMatcH. Moreover, every call of HMatcH performs at
least one direct recursive call to TMarcH, so the computation
tree also contains at most |D||Q| calls of HMarcH. Analo-
gously, the entire computation tree contains at most |D||Q|
calls to rtop. As rtop can be implemented to run in time
O(depth (Q)), the total algorithm runs in time
O(D|Q|depth (Q)). O

The depth (Q) factor in the complexity of TMaTcH is due to
the calls to rtop in HMarcH, and the computation of the
successors of query nodes.

From the complexity of TMarch and the definition of
TMaTtcH-ALL, we can immediately infer the following com-
plexity results about TMATcH-ALL.

Theorem 9. TMaTtcH — ALL(D,Q) runs in time (D|-
|Q| - depth (Q)). Moreover, TMatcH-AL. makes O(|D| - |Q])
comparisons between a data node and a query node.

Currently, the maximum recursion depth of TMATCH —
ALL is O(depth (D) x branch(D)), where branch(D) is the
maximum number of children a node in D has. We have
the branch(D) factor because HMATCH(, qf;oms> Quntil) €alls
HMaTtcH(prevSib(d), ¢som-> Quntil)- However, this bound can
be improved using a simple preprocessing step: we can
turn D into a binary tree Dy, by inserting intermediate
levels of special nodes between each data node and its
children. By doing so, D only grows linearly in size and the
depth only grows by a factor of log(branch(D)).

As Q only uses descendant axes, we have that DF!Q if
and only if Dp,F'Q.* When this preprocessing step is
carried out, our algorithm still has @(|D||Q|depth (Q)) time

4 Under the assumption that the new dummy nodes do not match s,
which can be trivially incorporated in the algorithm.
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complexity, but the recursion/stack depth is improved to
O(depth (D) log(branch(D))).

5. Conclusions and final thoughts

As our main results we have exhibited a complexity
result, showing that tree pattern matching with only
descendant axes is LOGSPACE-complete; and a time- and
space-efficient bottom-up algorithm for computing all
possible exact matches of such a tree pattern in a tree.

From a theory point of view, this is still only a small step
in finding the exact complexity of positive conjunctive Core
XPath with only child and descendant axes (or, alterna-
tively, tree pattern queries with child and descendant axes),
which is probably the most widely used fragment of XPath
in practice. Hence, it is quite surprising that the exact
complexity of this fragment is still unknown.

From a practical point of view, our bottom-up algorithm
gives a good space and time bound on the processing of
such descendant-only tree pattern queries. A minor
annoyance we still feel for the algorithm is the depth (Q)
factor in the time complexity. However, we need to stress
that, in practical applications, depth (Q) will indeed be very
small. In our algorithm, this depth (Q) factor arises from
computing the RTOP (qree, Gheage)-Values in each call of
HMarcH in the algorithm. It may be possible that this factor
can be avoided when integrating the computation of these
values in the recursion of the algorithm. For a practical
application, one can also avoid the depth (Q) factor in run-
time evaluation by a pre-processing step that computes all
the values of RTOP (Girees Ghedge) N advance on the query.
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