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ABSTRACT
More and more data is accumulated inside social networks.
Keyword search provides a simple interface for exploring this
content. However, a lot of the content is private, and a
search system must enforce the privacy settings of the so-
cial network. In this paper, we present a workload-aware
keyword search system with access control based on a social
network. We make two technical contributions: (1) Hea-
pUnion, a novel union operator that improves processing of
search queries with access control by up to a factor of two
compared to the best previous solution; and (2) highly ac-
curate cost models that vary in sophistication and accuracy;
these cost models provide input to an optimization algo-
rithm that selects the most efficient organization of access
control meta-data for a given workload. Our experimental
results with real and synthetic data show that our approach
outperforms previous work by up to a factor of three.

General Terms
Performance, Security

1. INTRODUCTION
More and more data is accumulated inside social networks

where users tweet, update their status, chat, post photos,
comment on each other’s lives, get updates through news
feeds, and search for information. Examples of such social
interaction platforms include Facebook, Twitter, LinkedIn,
YouTube and Flickr. From a user’s perspective, some of
her content may be private and should only be accessible
to a selected set of users in the network. To limit arbitrary
information flow, social networks enable users to adjust their
privacy settings at a fine granularity; e.g., to ensure that
only friends can see the content they have posted. Thus any
component that enables access to data in the social network
must adhere to the privacy settings in place.

Search over collections of documents is a well-studied prob-
lem [37]. However, when supporting search over content in
a social network, new opportunities and challenges arise. A
document in a social network may be considered as con-
sisting of two types of properties: document-centric proper-

ties and network-centric properties. The document-centric
properties consist of the document and its metadata, for
example the time when it was posted, the terms in the doc-
ument, or properties of the user who posted the document.
The network-centric properties consist of additional infor-
mation added by other users, such as comments, tags, or
ratings. The ranking of a document for a given search query

could thus be based on both the document-centric and the
network-centric part, where properties such as the relation-
ship between the user who tagged a document and the user
who submitted the query can be taken into account [1, 29].

When searching in social networks we need to enforce the
access restrictions determined by the network structure, and
we focus on the case where a user only has access to her
friends’ documents. This is a hard problem since as a result
nearly every user has access to a unique subset of the docu-
ments and the resulting solution needs to scale not only with
the number of documents but also the number of users.

In this paper, we propose to materialize special-purpose
metadata called author lists, which are lists of identifiers for
all documents authored by a set of users. When a user asks
a search query, we use the author lists to filter the results of
the query. This approach brings about two challenges. First,
there is a large space of possible author lists, and we need to
select which author lists to materialize to process a workload
efficiently. Accurate cost models are required to identify a
good set of lists. However, accurate cost models for query
costs have received very limited attention in the literature as
compared, for example, to cost models in database systems,
probably because the space of possible query plans for a
keyword search query is usually small compared to the space
of possible query plans for an SQL query. To the best of
our knowledge, this is the first paper that introduces highly
accurate cost models for the operators in a search system.
The second challenge is that a query may now need to access
a very large number of author lists in order to determine
the set of documents that a user has access to. Efficiently
processing search queries with many author lists is essential
for an efficient solution.

We focus on ranking functions based on simple document-
centric properties in this paper, such as the time when the
document was posted or the user who posted the document.
This provides an important step towards full support for
search in social networks with access control for two reasons:
First, there are situations where it is natural to rank doc-
uments only on simple properties and thus the techniques
proposed in this paper solve the whole problem. An example
is the search for tweets on Twitter where recency is a well-
understood and reasonable ranking function. Second, the
technical contributions of this paper can be used as building
blocks in a solution that uses more general ranking functions.
All solutions need to enforce access control, and query pro-
cessing operators and data structures that efficiently enforce
access control are therefore important building blocks.

We make the following technical contributions:



• We introduce a new operator called HeapUnion which
efficiently allows us to process a large number of author
lists while skipping over irrelevant documents. Com-
pared to previous approaches, HeapUnion improves
query processing time of queries with access control
by up to a factor of two. (Section 3)

• We provide highly accurate cost models of the query
operators in a keyword search system. We also de-
scribe how our cost models interact with the solution
space of the problem of selecting a good author list
design for a particular workload. (Section 4)

• In a thorough experimental analysis, we evaluate the
efficiency of our novel HeapUnion operator, validate
the accuracy of our cost models, and test the optimized
access designs. (Section 5)

We discuss related work in Section 6 and conclude in Section
7. We now continue with a more formal description of the
problem we address in Section 2.

2. PROBLEM DEFINITION
In this section, we will introduce some notation which is

used to define the problem addressed in this paper.

2.1 Data and Query Model
We view a social network as a directed graph 〈V,E〉, where

each node u ∈ V represents a user. There is an edge 〈u, v〉 ∈
E if user v is a friend of user u, denoted v ∈ Fu, or alter-
natively that u is one of v’s followers, denoted u ∈ Ov . We
always have u ∈ Fu and u ∈ Ou.

We consider workloads that consist of two different oper-
ations: posting new documents and issuing queries. A new
document, which we also refer to as an update, consists of a
set of terms. We will call the user who posted document d

the author of d, and we will also say that the user authored
d. The new document gets assigned a unique document ID;
more recently posted documents have higher IDs. Let nu

denote the number of documents authored by user u, and
let N =

∑

u
nu denote the total number of documents.

A query submitted by a user u consists of a set of key-
words. As mentioned in the previous section, we assume that
only documents authored by users in Fu are accessible to u.
For the remainder of this paper, we will also assume that the
ranking is based on recency, with newer documents ranked
higher than older documents. Thus the results of a keyword
query are the k documents that (1) contain the query key-
words, (2) are authored by a user in Fu, and (3) have the k

highest document IDs among the documents that satisfy (1)
and (2). Facebook currently supports these queries (with an
artificial limit to posts of the last 30 days).1 However, the
technical details are proprietary.

Figure 1(a) shows an example of a social network with
four users. User 4 is friends with Users 1 and 3, and User 2
is friends with Users 1 and 4. The users’ posted documents
are shown as well with their ID in the top right corner. User
3 has posted Documents 2 and 5, and in our model she can
search through Documents 2, 5, and 7.

2.2 User and Friends Designs
In previous work we developed a conceptual framework

of solutions to this problem based on two axes; the index
axis and the access axis [12]. The index axis captures the

1
http://blog.facebook.com/blog.php?post=115469877130

User 1 User 2

User 3 User 4

social

network

1

access

control

4

keyword

search

6

keyword

access

3

social

control

7

network

access

2

social

search

5

(a) Example social network
with posted documents
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(b) User Design
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User 3: 7 5 2

User 4: 7 6 5 4 2 1

(c) Friends Design

Figure 1: Social Network and Basic Designs

idea that instead of creating one single inverted index over
all the content in the social network, it is possible to create
several inverted indexes, each containing a subset of the con-
tent. A set of inverted indexes and their content is called an
index design. The access axis mirrors the index axis and de-
scribes the meta-data used to filter out inaccessible results;
the meta-data is organized into author lists. As described in
the introduction, an author list contains the IDs of all docu-
ments authored by a set of users. An access design describes
a set of author lists.

Our experiments with some basic points in the solution
space showed that two of the most promising solutions both
use an index design with a single index containing all users’
documents, while the access design in the two approaches
differ. The first approach is called user design and has
one author list per user that contains the document IDs
posted by that particular user. The second approach is
called friends design; it also has one author list per user,
but this author list contains the documents posted by the
user and all of her friends. The author lists for the user and
friends designs for our example from Figure 1(a) are shown
in Figures 1(b) and 1(c), respectively. In both of these de-
signs, a keyword query from a user is processed in the single
inverted index. To enforce access control, the results from
the index are intersected with a set of author lists contain-
ing all friends of the user. In the friends design, all friends
of the user are represented in the author list for the user,
whereas in the user design, we need to calculate the union
of the author lists for all friends.

Note that in the user design, updates are efficient because
only u’s author list is updated when u posts a document;
queries, however, need to access the author lists of all users
in Fu. In the friends design, queries are more efficient be-
cause only the author list of u is accessed. Updates, however,
need to change the author lists of all users in Ou.

2.3 Beyond User and Friends Designs
The relative merits of the user and friends designs moti-

vate the work in this paper. In our new hybrid approach, we
start out with the user design. In addition, we add one ad-
ditional author list lu for each user u; lu contains the IDs of
all documents authored by a selected set of users Lu ⊆ Fu.
When user u submits a query, there is no need to access
specific author lists for users in Lu, and queries therefore



become more efficient as more users are represented in Lu.
On the other hand, representing more users in Lu also leads
to higher update costs. We therefore determine the contents
of Lu (and thus lu) based on the workload characteristics.

2.4 System Model
A system implementing the strategy we propose in this

paper contains both posting lists and author lists. Both
of these types of lists are lists of document IDs, and the
resulting index is thus a standard inverted index including
author lists that are identical to posting lists in structure.

An updatable keyword search system is usually imple-
mented with a hierarchy of indexes [24, 14, 21, 26]. New
data is accumulated in a small updatable structure that also
supports concurrent queries, while the main part of the hi-
erarchy consists of a set of read-only indexes. The read-only
indexes are formed by merging a set of smaller read-only
indexes. During a merge, queries are still processed in the
old indexes, and an atomic switch to the new indexes is per-
formed once the merge is finished. Then, after all searches in
the old indexes are finished, the old indexes can be deleted.
Thus documents will be merged into larger and larger in-
dexes over time, and the largest read-only indexes will con-
tain the least recent documents. Such an index hierarchy
is well suited for search in social networks, especially when
used in combination with an access design that adapts to the
workload. The time at which indexes are merged represents
an opportunity to modify the access design and adapt it to
the current workload, so that different indexes in the hierar-
chy potentially have different access designs. When ranking
documents based on recency as we do in this paper, the
largest indexes in the hierarchy (with the oldest documents)
will probably be accessed less frequently than smaller in-
dexes, and using different access designs among the indexes
in a hierarchy might be beneficial in such settings.

All individual indexes in the hierarchy except the small
updatable part process stratified workloads because the in-
dex is constructed before it is used to answer queries. Be-
cause the stratified workloads therefore dominate in the in-
dex system, we focus on such workloads in this paper. We
have implemented a system that constructs an index for a
set of documents, and then processes search queries with
the index. Our system is main-memory based and accu-
mulates an index for a batch of documents at a time in a
structure where the lists are compressed using VByte [30].
The batches are combined in the end to form the complete
index, where the lists are compressed using PForDelta [38,
36]. Next, we describe how queries are processed.

3. THE HEAPUNION OPERATOR
In this section, we describe how our solution supports

efficient query processing that scales to a large number of
author lists. Without loss of generality, our explanation as-
sumes single-term queries to simplify the presentation; ex-
tensions to multi-term queries are straightforward and our
implementation supports the general case.

3.1 Query Processing
Our search system answers queries by computing the in-

tersection of a posting list pt for a term t with a union of
author lists a1 ∪ · · · ∪ am.2 A template for the query plan

2
Similar types of queries occur in several scenarios, e.g., in star joins

⋂

pt
⋃

a1 a2 . . . an

Figure 2: Query Template

is shown in Figure 2. It uses three operators (intersection,
union, and list iterator) that all support the following inter-
face:

• Init(): Initialize the operator;

• Current(): Retrieve the current result;

• Next(): Forward to the next result and retrieve it;

• SkipTo(val): Forward to the next result ≤ val .

All results are returned in sorted order based on descend-
ing document IDs to facilitate efficient ranking on recency,
and the query plan follows a document-at-a-time processing
strategy [34]. The top-k ranked results are therefore found
by calling Next() on the intersection operator k times. We
use a standard intersection operator that alternates between
the inputs and skips forward to find a value that occurs in
both [20]. With this solution, the SkipTo(val) operation
in the union operator will be called repeatedly, and thus
its implementation is essential to the overall processing ef-
ficiency. We will therefore focus on the union operator in
the remainder of this section. We use standard techniques
to implement the other operators [19, 38, 9, 20].

There exist two basic algorithms for the union operator,
Eager Merge and No Merge [28]. Eager Merge merges all
inputs to the union first, and then supports skipping in the
intermediate merged list. The initial merge is the domi-
nating cost when using Eager Merge. Assuming a standard
multi-way merge strategy and R entries in total in all m

input lists, the worst-case total merge cost of Eager Merge
is Θ(R logm). No Merge, on the other hand, processes a
skip operation on the union by performing a SkipTo(val) in
each input and returning the maximum result. Eager Merge
and No Merge are thus preferable in different situations: If
there are many skip operations compared to the total num-
ber of entries in the inputs, Eager Merge is preferable. On
the other hand, No Merge is preferable when the number of
skip operations is small compared to the input sizes.

Raman et al. have introduced a union operator called Lazy
Merge, which is based on the idea that if the number of skip
operations in the union is large compared to the length of an
input, it would have been ideal to pre-merge this input into
a set of intermediate results. Lazy Merge adaptively merges
an input into the intermediate results when the number of
skip operations exceeds the length of the input times a con-
stant α. Raman et al. show that Lazy Merge never uses more
than twice the processing time of a solution that pre-merges
the optimal set of inputs [28]. However, the approach has
three drawbacks. First, although the analysis by Raman et
al. argues that Lazy Merge adapts gracefully to all kinds
of inputs, the analysis is, as the authors note, based on a
simplifying approximation of the cost of merges. This ap-
proximation becomes increasingly inaccurate as the number
of inputs and their sizes grow, and consequently, Lazy Merge
does not scale well in practice. Second, the value of α has

in data warehouses [28].



Algorithm 1 HeapUnion Operator

1: function Init():
2: Allocate heap

3: function Next():
4: heap[0].Next()
5: heapify(0)
6: return Current()

7: function SkipTo(int val):
8: Perform a breadth-first search in the heap from the root
9: while BFS queue is not empty:
10: if Current iterator is forwarded in SkipTo(val):
11: Add to LIFO-list of entries for heap reorganization
12: Add children to BFS queue

13: Call heapify() for forwarded inputs in LIFO-list
14: return Current()

15: function Current():
16: if size(heap) == 0:
17: return Eof

18: else:
19: return heap[0].Current()

significant impact on performance, but it is non-obvious how
to select the “right” value for this parameter. Third,
we process top-k queries and therefore only need the first k
results from the intersection during query processing. Thus
any method that pre-merges complete inputs, such as Lazy
Merge, will have poor performance in our setting.

3.2 The HeapUnion Operator
HeapUnion, our novel union operator, is designed (1) to

scale gracefully to a very large number of inputs regardless
of the characteristics of the skip operations; (2) not to have
any parameters whose values may be difficult to determine,
and (3) to be efficient regardless of whether all or only a
fraction of the results are actually needed. HeapUnion is
based on a binary heap which contains one entry for each
input operator and is ordered based on the value obtained
from calling Current() on each input operator (referred to
as the current value for the input operator), just as in a
standard multi-way merge strategy.

We support the standard operator interface by always hav-
ing the input with the highest current value at the top of
the heap, so that this value is also the current value for
HeapUnion. The heap is initialized the first time Next()
or SkipTo(val) is called. When the first call is a Next()
(SkipTo(val) resp.), HeapUnion calls Next() (SkipTo(val))
on all inputs, and the heap is constructed using Floyd’s
Algorithm [18]. Floyd’s Algorithm calls a recursive sub-
procedure called heapify() which constructs a legal heap
from an entry with two legal sub-heaps as children. The
heapify() operation has logarithmic worst-case complexity
in the size of the heap, and Floyd’s Algorithm runs in linear
time [18]. We will also use heapify() for heap maintenance.

After initialization, HeapUnion works as shown in the
pseudo code in Algorithm 1. The Current() operation either
returns the current value from the input operator at the top
of the heap, or it indicates that there are no more results if
the heap is empty. The Next() operation forwards the input
with the current value, and calls heapify() to ensure that the
input with the new highest current value is at the top of the
heap. The worst-case complexity of this operation is thus
logarithmic in the number of input operators.

The most novel aspect of HeapUnion, however, is the very

efficient SkipTo(val) operation that is based on a breadth-
first search (BFS) in the heap. When forwarding to a value
val , only the inputs with a current value > val actually need
to be forwarded. Because the heap is organized according
to the current value for all inputs, we know that if a given
input has a current value ≤ val , the same is true for all of its
descendants. If we determine that no skip is necessary in a
given input, we thus also know that no skip is required in any
of its children in the heap, and there is no need to process
the children in the BFS. Furthermore, if an input is not
forwarded, we know that its position in the heap relative to
its children will not change. We also take advantage of this
observation by calling heapify() only for the inputs where
an actual skip occurred, and use a complete run of Floyd’s
algorithm only in the worst-case.

To illustrate how skipping in HeapUnion performs com-
pared to both Lazy Merge and the basic union implemen-
tations described above, we will now present an example
where HeapUnion outperforms all of them. Throughout
the example, we assume that when merging a set of inputs,
a standard multi-way merge is used. Furthermore, both the
inputs and the pre-merged values are assumed to be rep-
resented as lists that support skipping forward with a cost
logarithmic in the number of skipped entries. These assump-
tions agree with the implementations used in Section 5.

Example 1. Consider a union operator with k+1 inputs.

The highest value in any input list is (k + α) · l, where α

denotes the same constant that is used in Lazy Merge and l

is a chosen constant. The first input contains the first α · l
values starting from the highest value. The rest of the values

are partitioned equally among the rest of the inputs such that

input i has the values {i− 1 + k · j|0 ≤ j < l}.
We will now evaluate the cost of a set of skip operations

that can be partitioned into two phases: In the first phase, we

skip to each of the αl highest values in descending order. All

these values are found in the first input. In the next phase,

we perform a single skip to the value 1. We will evaluate the

cost of both phases for both Eager Merge, No Merge, Lazy

Merge and HeapUnion.

Eager Merge: For Eager Merge, we will analyze the cost

of the merges for the two phases separately. The merge of

Phase 1 will only involve accessing one input list, and thus

have a constant cost per entry. In Phase 2, each input will

move to a leaf in the heap once a value has been extracted

in the merge, and the cost is therefore Θ(k · l · log(k)). The

costs of the actual skip operations in this example are Θ(α · l)
for the α · l skips of length 1 in Phase 1, and Θ(log (k · l))
for the single skip in Phase 2.
No Merge: In Phase 1, each skip operation with No Merge

will result in a skip of length 1 in input 1, and an attempt

at skipping in all other input lists, with total cost Θ(kαl).
Phase 2 has cost in Θ(k log l) due to k skips of length l.

Lazy Merge: Because the α in the example is the one

used to configure Lazy Merge, this method will behave as

No Merge in Phase 1. The remaining k inputs are merged

before Phase 2, resulting in the same cost as Eager Merge

in this phase.

HeapUnion: HeapUnion will behave like a standard multi-

way merge in Phase 1, and thus have the same cost as Eager

Merge. In Phase 2 on the other hand, its costs are similar

to with No Merge because the same skips are performed in

each list, and the heap maintenance costs are in O(k).
In this example, Eager Merge is clearly preferable in Phase 1



as compared to No Merge with a speed-up factor of k. In

Phase 2 on the other hand, No Merge is clearly preferable

with a speed-up factor
l log(k)
log(l)

compared to Eager Merge. Lazy

Merge actually achieves the worst of both worlds in the two

phases. HeapUnion, however, outperforms Lazy and No Merge

by a factor k in Phase 1, and it outperforms Lazy and Eaper

Merge by a factor
l log(k)
log(l)

in Phase 2. HeapUnion thus scales

much better than the other methods with increasing l and k.

We will now compare the worst-case performance of Hea-
pUnion with the worst-case of Eager Merge and No Merge.
First, we provide a bound on the combined complexity of all
skip operations in one HeapUnion:

Lemma 1. Assuming that the cost of skipping forward s
entries in an input is in O(s) and that each skip operation

on HeapUnion forwards at least one input, the total cost of

all skip operations for a HeapUnion is in O(R logm).

We omit the proof due to space constrains. As a conse-
quence of Lemma 1, the worst-case cost for all skip opera-
tions in HeapUnion is no worse than the worst-case cost of
all skips in Eager Merge because the initial merge in Eager
Merge has worst-case complexity Θ(R logm).

Furthermore, the following lemma follows immediately from
the fact that the heap maintenance reduces to Floyd’s algo-
rithm in the worst-case and that Floyd’s algorithm is O(m)
for m heap entries.

Lemma 2. The heap maintenance cost in one skip oper-

ation in HeapUnion is O(m).

As a consequence of Lemma 2, the cost of a specific skip
operation with HeapUnion is comparable to the cost of the
same skip operation with No Merge: In both methods, the
same skips will occur on the inputs, and No Merge may po-
tentially try to skip on more inputs that are not forwarded
compared to HeapUnion (due to the BFS). Furthermore,
the cost of finding the largest return value with No Merge
is Θ(m), and the cost of heap maintenance in HeapUnion
is O(m). The worst-case cost of one skip operation in Hea-
pUnion is therefore not worse than with No Merge.

HeapUnion will thus achieve the best of both worlds: When
there are only a few skip operations compared to the lengths
of the inputs, it is an advantage that its worst-case perfor-
mance for each operation is as good as with No Merge. And,
when there are many skip operations, it is an advantage that
its worst-case performance is as good as with Eager Merge.
In addition, HeapUnion does not pre-merge any inputs, and
retrieving only a fraction of the results is therefore supported
efficiently. Compared to Lazy Merge it also has the advan-
tage that no configuration parameters are required. An ex-
perimental validation of the efficiency of HeapUnion is pre-
sented in Section 5.2.

4. COST MODELS AND OPTIMIZATION
The efficiency of our system for a particular workload de-

pends on the contents of the additional author lists, and
selecting a good set of lists is therefore essential. For each
user u, any subset of Fu can be included in Lu, which leads
to 2

∑
u∈V |Fu| = 2|E| possible designs. We use cost models

to explore this large space. In information retrieval, cost
models have traditionally been used to explain and compare
the relative merits of different algorithms [35, 34, 14, 16]. In
this paper, however, the cost models are used in optimiza-
tion algorithms to select between different access designs for
a stratified workload of updates and queries.

Update Cost (|lu| = n)

Monotonic cupdaten

Non-monotonic











c1b ∗ n if N

n
< b1

c2b ∗ n if b1 ≤ N

n
< b2

c3b ∗ n otherwise

Figure 3: Overview of Update Cost Estimates

It turns out that accurate cost models are required in or-
der to find close-to-optimal access designs, and as we will
show in Section 5, adaptations of cost models used in related
work are not accurate enough for our purposes. However,
accuracy is not the only factor when choosing a cost model,
because an advantage of simpler models is that they can al-
low analytically reducing the number of potentially optimal
solutions, i.e., the search space of an optimization algorithm.

In the following subsections, we will introduce two accu-
rate cost models. With the first model, Monotonic, we try
to achieve the best possible accuracy while ensuring that the
search space of the optimization algorithm is limited. Non-

monotonic increases the accuracy further at the expense of
an increase in the size of the search space. Both Monotonic

and Non-monotonic model the processing time of the indi-
vidual query operators, and they can therefore be employed
in other applications that attempt to estimate the processing
time of different query plans.

4.1 Monotonic
Monotonic is designed to be an accurate yet tractable cost

model, where only a small number of access designs must be
checked in the optimization algorithm to find a globally op-
timal solution. The model for updates in Monotonic simply
assumes that the cost of constructing a list is linear in the
number of document IDs in the list. For modelling query
costs, Monotonic has one cost model for each operator and
the total query costs are estimated by combining the models
for all operators in the query. The cost model for an operator
describes the cost of each method supported by the opera-
tor. For operators that have other operators as inputs, like
HeapUnion and Intersection, the cost is calculated by com-
bining the cost of operations within the operator with the
cost of method calls on the inputs. To find the cost of the
queries we use in this paper, we combine the operators ac-
cording to the template in Figure 2, and calculate the cost
of k Next() calls for the Intersection to retrieve the top-k
results (assuming there are at least k).

Monotonic is described in Figures 3 and 4. Skip(s) is a
model for SkipTo(val). If SkipTo(val) forwards the current
value of an operator with ∆v document IDs, we model the
cost of the operation by Skip( r∆v

N
), where r is the num-

ber of results of the operator. The number of results for
an operator is the number of times we can call Next() and
retrieve a new result. Monotonic and Non-monotonic use
the same models for List Iterator and Intersection, but they
have different models for HeapUnion. We will now explain
Monotonic’s model for HeapUnion; models for the other op-
erators are explained in the full version of this paper along
with the microbenchmarks used to determine the constants
in the model [11].
HeapUnion. Let us assume that HeapUnion has m inputs
k1, . . . , km. We use ri to denote the number of results from
input i, and define R =

∑m

i=1 ri. We assume that the cost
of initialization within the HeapUnion operator itself is neg-



Init() Next() Skip(s)

List Iterator

{

ceinit empty list

cinit otherwise
cnext

{

cc +
s

b
cd + scan(s)csc if s ≤ b

Skip(b) + cg log
(

s

b

)

otherwise

Intersection k1.Init() + k2.Init()
k1.Next() + (t− 1)k1.Skip(1 +

r1
r2
)

+t · k2.Skip(
t−1
t
(1 + r2

r1
) + r2

r1t
)

not used

Monotonic
HeapUnion

∑m

i=1 ki.Init()

{

∑m

i=1 ki.Next() + (γ + 1
2
) ·m · ch first call

∑m

i=1
ri
R
ki.Next() + (γ + 1) · ch otherwise
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Figure 4: Overview of Query Cost Estimates

ligible, and therefore model the cost of initialization as the
sum of the initialization costs for all inputs.

Recall from Section 3.2 that the first call to either Next()
or SkipTo(val) will involve construction of the heap; we
therefore have two different cases in the model for Next()
and SkipTo(val), depending on whether it is the first or a
subsequent call. The cost of the first call to Next() includes
the cost of calling Next() on all m inputs, and the cost of
the heap construction using Floyd’s Algorithm. For heap
construction, we model the cost of each call to heapify()
as being constant, ch. With Floyd’s algorithm, heapify() is
called for half the heap entries, and then recursively every
time there is a reorganization. The average case complex-
ity of Floyd’s algorithm is well known, and the number of
relocations in the heap is approximately γm = 0.744m [33].
Thus we model the cost of heap construction as (γ+ 1

2
)·m·ch.

A first call to SkipTo(val) involves skipping in all inputs,
in addition to heap construction. Given that s results are
skipped in this operation, we simply assume that the number
of entries skipped in input i is proportional to its length, i.e.
it is ris

R
, resulting in a cost of

∑m

i=1 ki.Skip(
ris

R
). The cost of

heap construction is modeled as explained for Next() above.
Subsequent calls to Next() involve a call to Next() for the

input at the top of the heap and heap reorganization. We
estimate the cost of the call to Next() for the input at the
top as a weighted average over the inputs. The model for the
cost of heap maintenance is simple. We assume that there
will be γ relocations when a single operator is forwarded,
leading to γ + 1 calls to heapify().

Subsequent calls to SkipTo(val) will potentially forward
all inputs, and then reorganize the heap according to the
new current values of the inputs. On average, each input
will be forwarded past ris

R
entries. However, HeapUnion

will ensure not to call SkipTo(val) for inputs that will not be
forwarded. Therefore, when the average skip length for an
input is less than 1, we model the cost as ris

R
calls that skip

1 entry. To find the cost of heap maintenance we estimate
the number of forwarded inputs as: ms =

∑m

i=1 min( sri
R

, 1).
Assuming that there will be as many relocations in the heap
as when constructing a heap with ms entries, the cost of
heap maintenance is modeled as (γ + 1) ·ms · ch.
Optimization Algorithm. We will now show in two steps
that an optimization algorithm that uses Monotonic as the
cost model only has to test |E| different access designs in
order to find the optimal solution. First, we show in the
following lemma that we can find a globally optimal solution
by choosing the contents of the additional author list for each

user individually; it follows directly from the definitions in
Figures 3 and 4.

Lemma 3. When using Monotonic as a cost model, the

cost of including a user v1 in Lu1
is independent of the cost

of including a user v2 in Lu2
for u1 6= u2.

Lemma 3 reduces the number of access designs to test in
the optimization algorithm from 2

∑
u∈V |Fu| to

∑

u∈V 2|Fu|.
The following theorem shows that we can reduce the size of
the search space further under certain conditions.

Theorem 4. If Monotonic estimates that for a user u

and a given workload, the performance is improved if v ∈ Fu

is included in Lu, then Monotonic will predict that it leads

to a performance improvement to also include user w in Lu

if w ∈ Fu, 0 < nw < nv, and cd − csc
2b

≥
cg

ln 2
.

The proof of Theorem 4 is found in the full version of this
paper [11]. We notice that in our case, cd − csc

2b
≥

cg

ln 2
translates to 0.331 ≥ 0.114, which holds with a significant
margin. Theorem 4 implies that if we sort all friends of u
based on the number of documents they post, the optimal
contents of Lu is a prefix of this sorted list. We thus need to
check only |E| designs in total in order to find the optimal
solution. Furthermore, notice that there is no cost associ-
ated with including users who do not post documents in the
additional author lists, and it is therefore always beneficial
to do so.

4.2 Non-monotonic
Non-monotonic is designed to be more accurate thanMono-

tonic; however, it sacrifices the nice property that only a
small number of designs must be checked to find the glob-
ally optimal access design. To achieve better accuracy, we
improve the model for heap maintenance costs, and we use a
slightly more advanced update model. The formal descrip-
tion of Non-monotonic is found in Figures 3 and 4.

The update model from Monotonic is extended by taking
list compression into account. During accumulation, the lists
are compressed using VByte, which implies that lists with
few entries result in long deltas that use more space. The
model assumes that the cost of updating a list depends on
the number of bytes used by VByte to represent the average
delta length.

The models for heap maintenance in subsequent calls to
Next() and SkipTo(val) reflect that the cost of heap main-
tenance often depends on the total number of inputs as well
as on the number of forwarded inputs. Given that input i



is at the top of the heap when Next() is called, let pi de-
note the number of inputs that will have Current() values
larger than input i after the call to Next(). We estimate
pi as

∑m

k=1 min( rk
ri
, 1). 3 We replace the rough heap main-

tenance cost estimate of (γ + 1)ch with log(1 + pi)ch when
input i is at the top of the heap. By calculating a weighted
average over all inputs, we end up with an average cost of
heap maintenance for a Next() as shown in Figure 4.

The model for heap maintenance in SkipTo(val) is slightly
more complex, and the maximum of two different estimates
is used: (1) The first alternative is similar to the estimate
in Monotonic, but incorporates that Floyd’s algorithm will
never call heapify() for more than half the inputs, which
yields the following estimate: (γms+min(ms,

m

2
))ch. (2) The

other alternative reflects that the cost can be logarithmic in
the number of inputs when the number of forwarded inputs
is low. We have already estimated the average number of
calls to heapify() when only one input is forwarded in the
model for Next(), denoted hnext in the following. We now
assume that all forwarded inputs will lead to hnext heapify()
operations, but compensate for the fact that many of the in-
puts are not at the top of the heap when heapify() is called.
The compensation is achieved with the function h(ms) in
Figure 4, which returns the minimum possible total distance
from the root to ms entries in the heap.
Optimization Algorithm. Lemma 3 also holds for Non-
monotonic. However, the proof of Theorem 4 does not hold
due to the extensions in Non-monotonic. As a result, an
optimization algorithm that uses Non-monotonic must test
∑

u∈V
2|Fu| access designs to find the optimal approach. In

social networks, users have hundreds of friends, and it is
therefore not feasible to test such a large space of access
designs. We thus choose to limit the space to the same space
that the optimization algorithm explores for Monotonic. If
Non-monotonic is actually more accurate than Monotonic,
the resulting design should be at least as efficient.

5. EXPERIMENTS
We will now present experiments evaluating the efficiency

of our novel HeapUnion operator, validate the accuracy of
our cost models, and test the optimized access designs.

5.1 Experimental Setup
Workloads. In our experiments we are using a set of

workloads that are based on a crawl of a subset of Twit-
ter from February 2010. The first workload is based on
the actual crawled Twitter network and is denoted Work-
load Real. The workload consists of 417,156 users with
74,326,889 unique friendships, and their 2,500,000 most re-
cently posted documents. Due to a restriction in the Twitter
API, none of the users have more than 200 posted documents
in this workload. We have also generated two workloads with
synthetic networks, Workload 1 and Workload 2, to enable
to test our solutions with varying social network character-
istics. Workload 1 has 10,000 users and Workload 2 has
100,000. In both networks, users have 100 friends each and
the friendships are generated with the widely used prefer-
ential attachment model [6]. Documents in both workloads
were obtained from the Twitter crawl. In both workloads,

3 rk
ri

is the average number of Next() calls in input k for each Next()

call in input i. If both inputs each had values at equal distances this
estimation would be exact.

each user is assigned a posting frequency from a Twitter
user, and the documents are assigned to users according to
the resulting distribution. In Workload 1, we pick the post-
ing frequency for a user dependent on the user’s number
of followers, which creates a strong correlation between the
number of followers and the number of posted documents.
We assign 1,500,000 documents accordingly. In Workload 2
we pick a frequency for a user independent of the number of
followers and assign 2,500,000 documents accordingly.

The workloads also involve search queries. As we do not
have access to actual search logs for the crawled data, we
generated the search queries based on the actual document
collection. The query terms were selected by removing all
the stop words in the collection, and then choose a random
remaining term. We thus select query terms based on term
frequency except for stop words. We use two different strate-
gies for selecting the user who submits the search query. We
either use a uniform distribution such that each user is se-
lected with equal probability, or a Zipfian distribution with
exponent 1.5 such that a few users are selected much more
frequently than others. In our plots, the workloads using the
Zipfian distribution have ”Z” as a suffix. Different complete
workloads are generated by combining the 3 basic workloads
above with 100,000 subsequent queries (with the exception
of the last experiment). We return the top-100 results for
all queries unless explicitly stated otherwise.

Hardware. All experiments were run on a computer with
an Intel Xeon 3.2GHz CPU with 6MB cache and 16GB
main memory running RedHat Enterprise 5.3; our system is
implemented in Java, and we ran Java 1.6.

5.2 Performance of HeapUnion Operator
We compare the relative efficiency of HeapUnion and Lazy

Merge [28] by exchanging the HeapUnion operator in our
query template with Lazy Merge. Our implementation of
Lazy Merge stores the intermediate results in an uncom-
pressed list where skips are implemented with a galloping
search [9]. The parameter α describes how eager Lazy Merge
is at merging inputs into the intermediate results. When set-
ting α to 0, Lazy Merge behaves as Eager Merge, and with
α = ∞, Lazy Merge behaves as No Merge.

In the experiments with HeapUnion, we limit the access
design to the user design because it provides a real test of
any solutions’ ability to process queries with many author
lists efficiently. We report the query processing time for
each of the workloads, and vary α between 0 and ∞. We
have argued that one of the reasons why Lazy Merge is not
ideal for our workloads is that we typically process top-k
queries. To isolate this effect, we experiment both with only
returning the top-100 results and with returning all results.

The results from the experiments are shown in Figure 5.
Notice that HeapUnion does not depend on α, and its cost is
therefore constant. When using Lazy Merge, the difference
between the cost of top-100 queries and retrieving all results
increases with the size of α. This reflects the inadequacy of
approaches that pre-merge when processing top-k queries.
The processing time of HeapUnion is clearly dependent on
the number of retrieved results, and HeapUnion is therefore
an attractive solution for top-k queries as expected.

We observe that Workload 1 incurs the slowest perfor-
mances across workloads. In Workload 1 users have access
to more posts on average. This is particularly challenging
to LazyMerge as it merges some of these longer lists. Lazy
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Figure 5: HeapUnion vs. Lazy Merge varying α.

Merge performs best with α set to extreme values. Poor
performance otherwise is often caused by the large number
of merges resulting from many inputs with different lengths.
In what end of the scale the best α value is found for a par-
ticular workload depends on the average length of the author
lists compared to the posting list. HeapUnion outperforms
the best configurations of Lazy Merge in all workloads with a
speed-up between 1.12 and 2.36, reflecting that HeapUnion
is efficient regardless of workload characteristics.

5.3 Validation of Cost Models
To test the accuracy of our cost models, we compare their

predictions to the actual running times in our system for
Workloads 1 and 2. We also need to define a set of access
designs to test so that the results will be indicative of to
which extent using the different cost models in an optimiza-
tion algorithm will lead to efficient access designs. Here we
make the observation that the optimization algorithms as-
sociated with all our cost models will select a limit for each
user, u, such that all friends of u who post fewer documents
than this limit will be included in Lu. For testing purposes,
we choose a single limit per access design, such that all users
will include a friend v in their Lu if the number of documents
nv posted by user v satisfies nv < limit. By choosing a set of
different values for limit, we obtain a set of designs ranging
from empty Lus to Lus that include all friends.

As a basis for comparison in our experiments, we use a
straight-forward cost model based on the one introduced by
Silberstein et al. for the problem of finding the most recent
posts to compose user event feeds in social networks [31].
We refer to this model as Simple; it assumes that the cost of
processing a query is linear in the number of accessed author
lists, and that the cost of constructing a list is linear in the
number of document IDs in the list.

Figure 6 compares the actual running times of our system
to predictions from both Monotonic and Non-monotonic as
well as for Simple. As we can see, the query cost estimates
with Monotonic are much more accurate than the estimates
with Simple, but there is still room for improvement when
limit is close to 0 in Workload 2. Inaccurate modeling of the
cost of heap maintenance is one factor that contributes to
this error, and the accuracy of Non-monotonic is therefore

higher. The extended update model in Non-monotonic also
leads to a slight improvement in terms of accuracy.

5.4 Workload-Aware Designs
We have tested the accuracy of the different cost mod-

els above, but the key success factor for a cost model is
whether using it in an optimization algorithm leads to effi-
cient designs. We therefore conducted a set of experiments
to compare the access designs suggested by the different cost
models and associated optimization algorithms. To do so,
we use the basic workloads in Section 5.1, and combine them
with different numbers of queries to vary the ratio of queries
to updates in the workload. We compare the performance of
the designs based on Simple, Monotonic and Non-Monotonic
to the user design and the friends design.

The results of our experiments are shown in Figure 7,
where the first three columns in the first line show the results
for workloads where the queries are uniformly distributed
among the users. To get a better view of the relative dif-
ferences between the methods, the second line shows the
performance of the approaches relative to the best of the
user design and the friends design.

For the workloads with uniformly distributed queries, Sim-
ple often leads to designs that are slower than choosing the
best of the user design and the friends design due to the
prediction inaccuracies. Compared to Monotonic and Non-
monotonic, the designs from Simple are up to 67% slower,
a difference that occurs in Workload Real. Monotonic and
Non-monotonic generally lead to reasonable designs that are
comparable to or faster than the basic approaches. However,
for Workload 2, both approaches lead to sub-optimal designs
when queries are frequent relative to updates. This reflects
the inaccuracies in the estimates for low limits for Work-
load 2 in Figure 6. However, Non-monotonic clearly results
in better designs than Monotonic in this case; the designs
from Monotonic are up to 12% slower, so the additional
complexity pays off.

The results from Workload 2 with Zipfian queries are
shown in the last column in Figure 7, denoted Workload 2Z.
We have omitted the results for other workloads with Zip-
fian queries because the same patterns are observed. The
results show that our overall solution performs much better
compared to the basic designs when there is skew, with a
speed-up of up to 3.4. With skew, the optimization problem
is simple because a few users submit almost all queries, and
all cost models are able to reflect that these users should
have additional author lists with nearly all their friends rep-
resented. Non-monotonic is still slightly better than the
others, but the difference is small.

In summary, these experiments confirm the benefits of
using our more accurate cost models and associated opti-
mization algorithms; we are able to find access designs that
result in significantly better performance than the basic ap-
proaches from previous work.

6. RELATED WORK
Due to its clear commercial value there has recently been

significant interest in search in social networks, and Bing
for example supports real-time search over public Twitter
posts. Unlike Google+, Facebook allows users to search
their friends’ posts. However, the details of these commer-
cial solutions have not been published.

Several recent papers also address search in social net-
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Figure 7: Performance for workloads with different fractions of documents vs. queries

works [29, 2, 12, 22, 5, 1]. Some of these papers address the
design and evaluation of new ranking functions that incorpo-
rate different network-centric properties of social networks
(see for example [22, 5]). Others are concerned with efficient
processing techniques for top-k queries with a focus on so-
cial tagging sites [2, 29]. However, none of these methods
enforce access control because they may return any docu-
ment tagged by users connected to the user who submitted
the query, and this may include inaccessible documents.

Another related problem studied by Silberstein et al. [31]
is that of computing event feeds containing the most recent
posts of friends in a social network. Our work and the work
of [31, 2] took a workload-aware approach to find a design in
a large design space. Despite the fact that each work seeks to
compute a different function (event feeds, vs. query results
based on tags by friends vs. query results based on post
content and access rights) there is a nice parallel between
our design space and that of Silberstein et al. However, as
we saw in the experimental section, adapting the cost model
of Silberstein et al. produces poor results in our setting and
we therefore developed our own cost models that perform
much better.

The problem we address is related to access control in both
information retrieval [13, 32] and for structured data [10].

Cost models have been used to estimate the efficiency
of processing strategies in both information retrieval and
databases [35, 14, 16, 25]. There exist advanced cost models
to evaluate different index construction and update strate-
gies [14, 35]. For search queries, however, simple models are
most commonly used, sometimes without verification on an
actual system [16]. Unlike previous models that estimate an

abstract notion of cost (such as memory accesses [25]), we
developed models to estimate the exact running time of a
workload. This is more challenging and advanced models
are required to predict query processing costs accurately as
shown in our experimental evaluation.

The problems of calculating unions and particularly in-
tersections of lists have attracted a lot of attention, both
through the introduction of new algorithms with theoretical
analyses [23, 20, 3, 7], and experimental investigations [8,
4]. The algorithms for single operators are also combined
into full query plans [28, 17]. Our implementation com-
putes intersections and unions over compressed lists with
synchronization points for skipping following [19, 27]. Our
intersection operator is based on the ideas from Demaine et
al. [20]. For the union operators we also could have employed
the practical implementations of Raman et al. [28], but we
instead developed HeapUnion and demonstrated its superi-
ority experimentally. Other implementations seem less suit-
able because [20] does not support skipping and would thus
be inefficient in our setting, and [17] has a theoretical focus.
HeapUnion saves work in the heap maintenance compared
to a multi-way merge by carefully analyzing what parts of
the heap need to be examined and rebuilt. The idea of op-
timized heap maintenance has been used in the context of
tf-idf-based ranking [15]. Our techniques are different and
can be used to improve previous work in case many docu-
ments contain only a subset of the queried terms.

7. CONCLUSIONS
In this paper we have presented an efficient system for key-

word search in social networks with access control. Through



the introduction of accurate cost models and associated work-
load-aware optimization algorithms, we are able to find de-
signs of access control meta-data that speed up performance
by a factor of up to 3.4 over previous work. We also intro-
duced HeapUnion, a novel query processing operator that
efficiently supports skipping over unions of sorted inputs.
HeapUnion improves query processing efficiency with a fac-
tor between 1.12 and 2.36 in our system.

With this foundation in place, we have the basis for ex-
tensions to more advanced ranking functions such as ranking
based on network-centric properties in social networks [29,
2] while enforcing access control. We may also be able to
apply the techniques in this paper in other areas, such as in
star joins in data warehouses [28], where HeapUnion might
be an interesting query processing operator.
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[12] T. A. Bjørklund, M. Götz, and J. Gehrke. Search in social
networks with access control. In Proc. KEYS, 2010.
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