
Phys 446-546 Problem Set 3

Tue, 1 Mar 2005, covers lectures 8–10 (Entropy and Information Uncertainty), due 10 Mar

(Note that this is a mix of lecture notes and problem sets in the sense that each problem

has a long preamble.)

Problem 1: Recall that the entropy is defined as S = kB lnΩ where Ω is the number

of states, and the Shannon information (or “information uncertainty”) is I = log2 Ω =

S/(kB ln 2). Consider a particle in a box of volume V divided into 212 = 4096 distinguish-

able subvolumes in which the particle can be detected (i.e., a cube of volume 163).

a) Suppose the particle is equally likely to be anywhere in the volume. What is the

entropy S? How many bits of information are needed to characterize the particle location?

b) Now suppose the box is divided into 8 octants. What is the entropy and how many

bits of info are needed to characterize the particle location if (i) the particle is known to be

confined to just one of the octants, (ii) to two of the octants, or (iii) to four of the octants?

c) What is the probability ps that the particle is on the surface? (Hint: the volume of

the interior is 143.) Suppose that the particle really has only two physical states, surface

or interior, with probabilities ps and 1 − ps. What then is the entropy and information

uncertainty?

d) Suppose again that all 163 individual volume elements are resolvable, but the

particle has some greater probability of “sticking” to the surface, so there is only an

overall probability of .1 that it will be found in the 143 interior volume. What is the

entropy in this situation? Suppose there is an ensemble of particles, half of which have

“sticking” property, and the other half are surface-insensitive as in part a). What is the

average entropy per particle and average information uncertainty per particle in this case?

Problem 2: The information uncertainty of an event in which there areM equal probabil-

ity possibilities (or states) i = 1, . . . ,M is given by I(M) = log2M . (This was determined

by demanding that the information uncertainty for a situation with M = M1 ·M2 possi-

bilities be given by I(M1M2) = I(M1) + I(M2), since the M1 and M2 possibilities could

be considered as sequential, e.g., rolling a die [M1 = 6] and flipping a coin [M2 = 2], and

so the uncertainty should be additive. The logarithm to the base 2 normalizes the result

to binary bits.) This formula is easily generalized to the case of possibilities with unequal

probabilities pi by mapping to a larger problem of N events, in which each of the possible

partitions of N with piN events in state i is equal probability, so the earlier formula applies.

The number of such partitions is N !/
∏M

i=1 (piN)!, so in the large N limit the information

uncertainty per original event becomes I = 1
N
log2

(

N !
∏

i
(piN)!

)

≈ −
∑M

i=1 pi log2 pi (using
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Stirling’s formula, N ! ∼ N lnN − N). For consistency, we note that this reduces to the

earlier I(M) = log2M when each of the possibilities is equal probability, pi = 1/M .∗

The information gained in going from some initial probability distribution to some

final distribution is the difference in the information uncertainties, ∆I = Iinitial − Ifinal.

a) Suppose as in the example given in class that one wakes up one morning knowing

that there were three possibilities for the election results the previous day: p1 = 1/2 that

it is still unresolved, and p2 = p3 = 1/4 that either candidate A or B has been declared

the winner.

(i) Suppose one sees only the latter part of the headline in the newspaper ”. . . declared

the winner”, so that p1 = 0 can be inferred, but the other two possibilities remain equal

probability. How many bits of information have been obtained?

(ii) Suppose the newspaper is now fully uncovered so that it is known that candidate A has

been declared the winner. How many bits of information have been gained in this step?

(iii) Suppose starting from the initial state the entire headline had been read in a single

step – how many bits of information would be obtained in this way?

(iv) Suppose the initial probabilities had instead been p1 = p2 = p3 = 1/3. How much

information would be gained first by learning that p1 = 0 and then that p2 = 1?

b) Note that information is not always gained when possibilities are eliminated. Con-

sider the initial case of 2n+1 possibilities, with probabilities p0 = 1/2 and pi = 1/2n+1 for

i = 1, . . . , 2n (note that
∑2n

i=0 pi = 1). Now suppose that case 0 is eliminated as a possibil-

ity, p0 = 0, so that the remaining 2n possibilities now have equal probability 1/2n. What

is ∆I = Iinitial − Ifinal? For what values of n is information gained or lost (information

uncertainty decreases or increases, respectively) by eliminating 0 as a possibility?

∗ Another way to interpret the formula I = −
∑M

i=1
pi log2

pi is to note that log2
M = − log

2
(1/M) =

− log
2
p measures the information uncertainty associated to the case of equal probability possibilities,

with p = 1/M . Hence − log
2
pi can be regarded as measuring the uncertainty (or “surprise”) associated to

possibility i, with probability pi. The formula for I then just measures the average information uncertainty
of the next symbol to be encountered, by summing − log

2
pi over all possibilities, weighted by their

associated probabilities pi.
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Problem 3: Genes in DNA consist of long strings of bases (A,C,G,T). When a gene is

turned on, an RNA copy is made. (RNA has only a single strand, uses ribose instead of

deoxyribose in the connecting backbone, and uses “U” instead of “T”.) Ribosomes start the

translation of the RNA into a protein at a pattern that has a cluster of G’s and A’s, then a

gap, and then usually a start codon AUG, but sometimes GUG or UUG. The figure below

shows ten examples of ribosome binding sites taken from E. Coli (running horizontally,

with coordinates in the top row), showing the G/A cluster in the region around -10, and

with the start codons aligned at position 0.

To quantify the information contained in these patterns, note that the “information un-

certainty” per site in the absence of further information is I = −
∑

α=A,C,G,T pα log2 pα =

4 · (− 1
4 ) log2

1
4 = 2 bits. Since position +1 above always has a U, the uncertainty at that

site is reduced to zero, and hence the information content there is 2 bits (as expected for

specifying a one of four choice). If a position has instead, say, only either A or G occurring

with equal probability, then I = −2 · 12 log2
1
2 = 1 bit, and the information uncertainty

decreases by 1 bit (as expected for specifying a two of four choice). In general, the infor-

mation content at site l can be regarded as the reduction in information uncertainty, in

this case equal to 2 − I(l), where I(l) = −
∑

α∈{A,C,G,T} pα(l) log2 pα(l) can be any real

number between 0 and 2 bits.∗

a) What is the information content at sites 0,1,2 in the above figure?

b) What is the information content at sites -11,-10,-9 in the above figure?

c) Find a site with extremely low (or lowest if possible) information content

∗ From the standpoint of the ribosome, before binding each of its “fingers” sees 4 indistinguishable
possibilities and is hence “uncertain” by 2 bits. After binding, the uncertainty at each finger is lower. If
only 1 base ever binds, then the final uncertainty is 0 bits. The decrease in uncertainty of 2 bits is thus a

measure of the sequence conservation or information at the binding site. If a finger accepts 2 bases with
equal probability, then the uncertainty remaining is 1 bit, and the information is 1 bit. When a “finger”
accepts all 4 bases with equal probability, it’s not really doing anything and requires 0 bits of information

in sequence conservation.
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(Note that the total information content in the regions depicted in the figure, i.e., I(l)

summed over sites, has to be at least greater than the number of bits required to specify

the location of the binding sites within the E.Coli genome — otherwise the ribosome would

never be able to find the binding sites in a dynamic process.)

Problem 4: Suppose a source emits a stream of binary digits (0’s and 1’s) with probabil-

ities p0 = x and p1 = 1− x.

(a) What is the information uncertainty as function of x?

(b) What is average number of bits per above binary digit for each of the four values

x = 1/2, 3/4,
√
2/2, 9/10. Recall that this also specifies the minimum number of bits

required to transmit the same information content.

(c) The result of (b) suggests that some compression scheme should be possible for

some values of x. Consider a simple scheme in which we encode two binary digits at a time

into a new binary symbol taking values α, β. For example, if 0 is most likely, we could

take 00 = α, 01 = βα, 10 = ββα, and 11 = βββ. (Note that it is possible to decode the

stream of α, β’s uniquely back to the original stream of 0,1’s.) (i) What is the probability

of α and β in the new scheme as a function of x, and what is the information uncertainty

per symbol in the new scheme? (ii) For each of the four values of x in (b), how does the

information per symbol in the new scheme compare to the theoretical minimum? (iii) How

could this scheme be modified to come even closer to the theoretical minimum?

Problem 5: Recall that the genomic code uses a sequence of three bases (each which can

take the four values A,C,G,T) to code for each of the 20 amino acids that are assembled

to make proteins.

(i) Suppose that there were some advantage for an organism to have a compressed

genome and to code for these proteins with the minimum number of bases. If the prob-

abilities of the amino acids in such an organism are p1 = p2 = p3 = p4 = 1/8 and

p5 = . . . = p20 = 1/32, what is the theoretical minimum average number of bases

(A,C,G,T) that could be used to code for these proteins. Find a scheme that comes

close to this theoretical minimum.

(ii) Repeat for the case p1 = p2 = 1/4, p3 = p4 = p5 = p6 = 1/16, p7 = . . . = p20 =

1/(4 · 14).
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