
The 2d Ising model on a square lattice consists of spins σ~n = ±1 at the sites of

the lattice, an energy E = −(J/kBT )
∑

n.n. σσ′, where the sum is over nearest neigh-

bor couplings (
∑

n.n. σσ′ ≡
∑

~n,k̂=x̂,ŷ σ~nσ~n+k̂), and the sign of the coupling is such that

neighboring spins tend to align (ferromagnet). In terms of the dimensionless coupling

L ≡ J/kBT , the partition function is written

Z(L) =
∑

{σ~n=±1}

eL
∑

n.n.
σσ′

(a) (b)

The zero temperature ground state is doubly degenerate, with either all spins + or

all −. The total energy is −N`L, where N` is the number of the links on the lattice (finite

before taking the infinite lattice thermodynamic limit). At low temperatures, L is large so

the typical configurations can be enumerated as small fluctuations from the ground state,

with a few spins flipped to the opposite sign. A typical configuration is shown in part (a)

of the figure. Note the energy for this state receives a contribution of +2L from each link

that connects a + to − spin. In the figure, these are the 8 links crossed by the dotted line

enclosing the island of − spins in the sea of +’s. The “low temperature expansion” for the

above partition function can thus be written

Z(L) = 2eN`L
∑

paths P ′

e−2LL(P ′) , (1)

where the sum is over all possible (connected and disconnected) closed paths P ′ on the

dual lattice, and L(P ′) is the length of the path. (The factor of 2 is due to the overall +/−
symmetry.) The above summation can be evaluated, though that will not be necessary to

locate the phase transition point of the model.

Now consider the “high temperature expansion”, an expansion in small K ≡ J/kBT .

We use the identity eKσ = cosh K + σ sinhK (true for σ = ±1), to write

Z(K) =
∑

{σ~n=±1}

eK
∑

n.n.
σσ′

=
∑

{σ~n=±1}

∏

n.n.

eKσσ′

= (cosh K)N`

∑

{σ~n=±1}

∏

n.n.

(1 + σσ′ tanhK)
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The product in the last expression is over links in the lattice, and expanded out results in

either a 1 or a factor of σσ′ tanhK for each link. But terms in the expansion with an odd

number of any given σ~n will automatically cancel in the overall summation over σ~n = ±1.

This means that the only contributing terms in the expansion correspond to closed loops

of links, for which any given σ appears an even number of times (σ2m = 1 for σ = ±1).The

“high temperature expansion” for the above partition function can thus be written

Z(K) = 2Ns(cosh K)N`

∑

paths P

(tanhK)L(P ) (2)

where the sum is over all possible (connected and disconnected) closed paths P on the

lattice, L(P ) is the length of the path (and the factor of 2Ns comes from the summation

over σ~n = ±1 at each of the Ns sites).

Comparing equations (1) and (2), we see that the summations over paths are identical

under the identification of couplings

e−2L = tanhK .

This is a remarkable relation, since it relates large L to small K, and vice-versa. Al-

though the low termperature (ordered) phase and high temperature (disordered) phase

have completely different associated physics, their thermodynamic behaviors as a function

of the coupling are directly related, and are thus said to be dual . (Note the prefactors in

equations (1) and (2) are perfectly regular and do not affect the critical behavior in the

thermodynamic limit.) By simple algebraic manipulation,

e2L =
cosh K

sinhK
=

e2K + 1

e2K − 1
= 1 +

2

e2K − 1
,

the above duality relation can be written in the more symmetric form:

(e2L − 1)(e2K − 1) = 2 . (3)

The identification of the phase transition point requires one additional piece of physical

input: that there is only one such point. This is based on the physical picture of a non-zero

spontaneous magnetization at low temperature (ordered phase), and a zero magnetization

at high temperature (disordered phase), with only a single critical point separating the

two. But eq. (3) relates every temperature but one to a different temperature. Only the

temperature L∗, satisfying (e2L∗ − 1)2 = 2, is reflected back onto itself under the duality

relation. If there is only a single transition, then it must thus occur at this “self-dual”

point,

L∗ =
1

2
ln(

√
2 + 1) .
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Additional Comments:

The location and other properties of the phase transition in the 2d Ising model are

verified by the exact solution by Onsager (1944) (for a more modern treatment, see Schultz,

Mattis, and Lieb (1964)).

The expectation value of the average magnetization per site, 〈m〉 = 〈
∑

~n σ~n〉/Ns, can

be calculated by coupling to an external magnetic field h:

〈m〉 = − 1

Ns

∂

∂h
F

∣

∣

∣

h=0

where

e−F/kBT = Z =
∑

{σ~n=±1}

e

(

J
∑

n.n.
σσ′+h

∑

~n
σ~n

)

/kBT .

It is found to be non-zero for temperatures below the critical point, and vanishes for

temperatures at or above that point.

Note also that the duality relation of the previous page carries over to all multi-spin

correlation functions of the model, not just the partition function.

For a historical overview of the exact solution to the 2d Ising model and its implica-

tions for the development of statistical mechanics, see http://arxiv.org/cond-mat/9511003

(Bhattacharjee and Khare, Fifty Years of the Exact Solution of the Two-Dimensional Ising

Model by Onsager), written on the 50th anniversary of Onsager’s solution.
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