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1 I n t r o d u c t i o n  

It  is typical of most complex systems that  the only quantitative statements that  can 
be made analytically are those relating to their scaling properties which are usually non- 
trivial. Life, and, in particular, its amazing diversity spanning more than 21 orders of 
magnitude in size, is the most complex physical system in the universe. In spite of this, 
biological systems obey a host of remarkably simple and systematic empirical scaling laws 
which relate how organismal features change with size over many orders of magnitude[i].  
These include fundamental  quantities like metabolic rate (the rate at which energy must 
be supplied in order to sustain an organism), t ime scales (such as lifespan and heart rate) 
and sizes (such as length of the aorta  or height of a tree trunk). It  is a remarkable fact 
that  all of these can be expressed as power law relationships with exponents that  are 
simple multiples of 1 (e.g. ~, 3, 3). They appear  to be valid for almost all forms of life, 
whether it be mammalian,  avian, reptilian, unicellular or plant-like. Clearly the universal 
character of these "laws" is telling us something important  about  the way life is organized 
and the constraints under which it has evolved. The origin of these so-called allometric 
scaling relationships (a term coined by Huxley) and, in particular, why the exponents are 
always simple multiples of 1, have been longstanding fundamental problems in biology. 

These relationships are usually expressed as power laws: Y = YoM b, where Y is some 
biological observable, Y0 a normalization, M the mass of the organism and b a scaling 
exponent. Some specific examples are heart-rate (b = ¼), lifespan (b = -¼),  and the 
radius (b = ~) and length (b = ¼) of both aortae and tree trunks. One of the best-known 
and fundamental  of these, first detailed by Kleiber in 1932, is for basal metabolic rate. For 
warm-blooded organisms spanning six orders of magnitude in mass, b = 0.75 + 0.1. When 
extended to cold-blooded and unicellular organisms and even to plants, the same ~-power 
dependence is manifested though the normalization may vary. As illustrated in Fig. 1 
this has recently been extended down to the intra-cellular and molecular levels within 
mitochondria[3]. Thus the 3/4-power law extends over almost 27 orders of magnitude 
ranging from the largest mammal  down to the molecular complex catalyzing metabolism 
at the most fundamental level! 
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Fig. 1. Metabolic rate (in watts) as a function of mass (in Kg); the scale is logarithmic (base 
10) and exemplifies the 3/4-power scaling law discovered by Kleiber. The straight line is the 
best fit to the metabolic rate of 289 mammals shown as a function of their mass covering 
6 orders of magnitude; it has a slope of 0.76 ± 0.01. When extrapolated back a further 20 
orders of magnitude it agrees well with data on a single isolated mammalian cell, its isolated 
mitochondrian, respiratory complex and eytochrome oxidase molecule. 

Kleiber's law implies that  the power required to sustain unit mass of an organism, 
decreases with size. Thus, to support one gram of a mouse requires three times the power 
needed for a dog and nine times that  for an elephant! In this sense it is clearly more efficient 
to be large. It is instructive to compare this with mechanical engines, which do indeed 
scale isometrically. For example, over nearly six orders of magnitude the power output of 
internal combustion engines scales linearly with mass (b = l) while their revolution rate 
scales as M}. The reason why b = 3 for biological systems rather than b = 1, reflecting 
the fact that  mammals are built from essentially the same "fundamental" cellular building 
blocks, or a naive surface-to-volume relationship, b = ~, ha~s been sought for decades. 

One of the most intriguing consequences of these scaling laws is the emergence of 
invariant quantities governing longevity[l]. For many organisms lifespan increases like 
M¼ whereas heart-rate decreases like M-¼, so, for example, the number of heart-beats 
in a life-time is the same for all mammals (about 1.5 × 109). At the molecular level 
this implies that  the number of turnovers of the molecular respiratory complex per cell 
during a typical lifetime is invariant (~ 10~)[3]. Similarly, since specific metabolic rate 
also decreases like M-¼, the total energy needed to support a given mass of an organism 
during its life-time is also the same for all mammals (about 300KCals/gm). So, large 
organisms live slower and longer. Understanding these scaling laws and, in particular, the 
magnitude of the invariant quantities would provide significant insight into the origin of 
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aging and mortality. As a first step, however, one needs to understand the scaling laws of 
metabolism and the sustenance of life. 

To summarize: Allometric scaling laws are special because they express a systematic 
universal simplicity in the most complex of all complex systems; furthermore, they exhibit 
one of the rare examples of quantitative laws in biology. Their origin and universality 
present a major challenge and are suggestive of a set of fundamental principles at work. 

Recently, we have proposed a general model for the origin of these universal quarter- 
power scaling laws[4]. It is based on the observation that complex structures are con- 
strained, and ultimately limited, by the rate at which essential resources that sustain 
them can be supplied. The model accounts, in a well-defined quantitative testable fash- 
ion, for the fact that the scaling exponent for almost all biological phenomena is a simple 

1 and, in particular, accounts for the a-scaling exponent for metabolic rate. multiple of 
It is based on the idea that, to supply the huge number of local fundamental units of an 
organism (in most cases, the cells), a linear, branching hierarchical transport network is 
required as manifested, for example, in the circulatory and respiratory systems of mam- 
mals or the vascular system of plants and trees. Although designed with these systems 
in mind, we anticipate that the model should also apply to less well-understood systems 
such as the intracellular transport system. Indeed, the fact that scaling persists down to 
the molecular level strongly suggests that the same mechanism and principles that gov- 
ern organismal scaling are at work inside the cell. It is important, therefore, that such 
principles are sufficiently general that they are not sensitive to details of specific taxa. We 
propose the following three basic general principles for the design of network transport 
systems: 
i) In order for the network to supply the entire volume of the organism, a space-filling 

hierarchical branching pattern is required; 
ii) the final branch of the network, where nutrients are exchanged (e.g. the capillary of the 

circulatory system or the petiole of a tree), is a size-invariant unit; and 
iii) organisms have evolved so that the energy required to sustain them is minimized. 

Scaling laws arise from the interplay between the physical and geometric constraints 
implicit in these three principles. Below we show that they imply that these networks 
must typically be fractal-like structures with self-similar properties dominated by area- 
preserving branching. Quarter-power scaling then follows even though the various trans- 
port systems considered, and the pumps that drive them, have quite different characteris- 
tics. A particularly salient feature of these networks is that their hydrodynamic resistance 

decreases with size, typically like M -a/a. This explains why less power is required to sus- 
tain a unit mass of a larger animal. Our model leads to a plethora of scaling laws not only 
between organisms (allometry) but also within a given organism itself (e.g. it successfully 
predicts the length of, and speed of blood flow in the aorta relative to that of a capillary). 
In addition, the model puts potentially severe physical constraints on the structural design 
of organisms. 
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Fig. 2. (a) Topological representation of such networks, where k specifies the order of the level, 
beginning with the aorta (k = 0) and ending with the capillary (k = N); (b) Parameters of a 
typical tube at the kth level. 

2 T h e  Mode l  

2.1 General Descr ip t ion  and Terminology 

The model should be viewed as an idealized representation of typical biological network 
systems in that we assume, for example, that all vessels have cylindrical symmetry and 
that turbulence and non-linear effects at junctions do not play a crucial role in the fluid 
flow. Otherwise, the model is quite realistic, incorporating all important aspects of these 
systems; it can be used as a point of departure for more detailed analyses and refined 
versions. 

All systems can be described by a branching network in which the sizes of tubes regu- 
larly decrease (Fig. 2). A familiar example is exhibited by the vertebrate circulatory and 
respiratory systems. Although all of the systems considered and the fluids in them are 
physically quite different, we shall show that they give rise to essentially the same scal- 
ing laws. To be specific we shall concentrate on the cardiovascular system, later briefly 
discussing the extension to other specific systems. 

The network is composed of N branchings arranged hierarchically beginning with the 
aorta (level 0) and ending with the capillaries (level N). The length of a kth level branch 
will be denoted by Ik, its radius by rk, and the pressure drop across it by Apk. The volume 
rate of flow is (~k = ?rr2uk where Uk is the velocity averaged over the cross-section and, if 
necessary, over time. Since fluid is conserved as it flows through the network 

Qo = Nk(~k = NkTrr~tk = NN~r2N~N (1) 

which holds for any k. Since oxygen and/or nutrients are transported by the fluid for 
metabolism, Q0 o( B. Now, from (ii) above, the terminal units (cap.illaries) are invariant, 
i.e. rN, IN, and fiN are independent of M. Thus, if Bcx M a then Q0 (x M a. Eq. (1) then 
predicts NN (x M a. Thus, if a -- 3/4, this implies that the number of cells serviced by a 
single capillary increases with M indicative of the increased efficiency of larger systems. 

In order to describe the network we need to determine how the branching ratios and radii 
and lengths of the tubes change throughout the network. To do so introduce scale factors 
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i k  -- rk+l/rk,  7k =- lk+l/Ik and nk = Nk+l /Nk.  Below we show that space-filling (our first 
principle) requires % = 7, independent of k, and that minimization of energy (our third 
principle) leads to both ik = fl and nk = n, independent of k. An important exception 
to the latter is a crucial modification for pulsatile systems, which will be discussed below. 
If ik, 7k, and nk are all independent of k, then the network is a conventional self-similar 
fractal. Before proving these it is worth noting that, with nk = n, the number of branches 
increases geometrically from level 0 to level N ,  (Nk = nk). Furthermore, since NN = n N, 
N c¢ In M. Thus, in going from a mouse to a whale, an increase in mass by a factor of 
107, the number of branchings from aorta to capillary increases by only about 70%. 

2.2 Space-filling and Volume-preserving Branching 

Our first postulate expresses the notion that a space-filling network is a natural structure 
for ensuring that all cells are serviced by capillaries. The organism is composed of many 
groups of cells, "service volumes", VN, which are supplied by a single capillary. The network 
must branch so as to reach all such service volumes. The total volume to be filled, or 
serviced, is given by V = NNVN. For a network with a large number of branchings, 
N, complete space-filling implies that this same volume is filled by analogous volumes 
throughout the network, Vk, defined by branches at any level k. Since rk << Ik, Vk ~ l~, 
SO space-filling constrains only branch lengths, lk. Complete space-filling implies that the 
volume filled, or serviced, does not depend on the level used to estimate it. Thus, V 
Nkvk c( Nkl~, independent of k. We assume its validity throughout the network although 
it becomes less realistic for small values of k (or N). This leads to 73 -- (lk+l/lk) 3 
N j N k + I  = l /n,  so that % ~ n -1/3 =- 7, independent of k. Note that this can be 
straightforwardly generalized to d-dimensions giving 7 ~ n-1/d. This result will be taken 
to be a general property of all systems that we consider. 

2.3 Area-preserving Branching and Self-similar Fractals 

Below we shall show how an analogous result for !k can be derived from dynamical con- 
siderations based on the energy minimization principle. For many systems this leads to 
area-preserving branching, meaning that the sum of the cross-sectional areas of the daugh- 
ter branches is equal to that of the parent: 7rr~ : nTrr2+i . Thus, ! k  ~ rk+l/rk : n-1/2 :-- i ,  
independent of k. Proving this is somewhat technical, especially for the circulatory sys- 
tem, so before doing so we shall first explore its consequences and show how it is a key 
ingredient in deriving ¼-power scaling. Once we show that ilk, 7k, and nk are all inde- 
pendent of k, then we have proven that the network is a conventional self-similar fractal. 
This has been tested empirically for plant systems using variants of the "box-counting" 
method by measuring the length of the boundary of their images at different resolutions. 
This should be related by a power relationship whose exponent defines the fractal dimen- 
sion. Although there is some variation in the data depending on details of age and growth 
conditions, the observations do indeed support a self-similar fractal structure. 
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~.4 Derivation of the 3/4-Power Exponent 

To derive allometric relations we need to relate the scaling of vessel size within an organ- 
ism to its total mass. A natural vehicle for this is the total volume of fluid in the network, 
Vb. Below we shall show that  the network that minimizes energy (our third principle) 
not only has area-preserving branching but also requires Vb (x M. It is straightforward to 
derive Vb ~ VN(7/32)-N/(1 -- n7~2). Since VN cx M °, this gives (7/32) -N ~ M. Now recall 
that, if B cc M a, then the number of capillaries, NN o( M a leading to 

lnn 
a - ( 2 )  

ln(7/~ 2) 

When area-preserving, ~ = n -1/2, is combined with space-filling, 7 = n-l~3, this gives 
a = 3/4 (independent of the value of the branching ratio, n). Consequently, B c( M 3/4. 

Many other scaling laws follow. For example, for the aorta, r0 = fl-NrN = N~/2rm and 
lo = 7 Nru = N1/31N, yielding ro c( M 3/s and lo (x M 1/4. Notice that  7 and fl play a dual 
scaling role: they not only determine how quantities scale from the aorta to the capillary 
within an organism, but also how they scale between organisms. Although these allometric 
scaling results are in good agreement with data there are some problems. The first is that, 
for humans where NN ~ 101°[7], the above gives ro/rN ~ 105, in disagreement with the 
observed value of 104 . The second is more serious: area-preserving branching implies that  
the fluid velocity remains constant throughout the network, i.e. uo -- uk = UN. This may 
not be serious for plants but would be disastrous (and obviously wrong!) for mammals. 
Indeed, for the efficient transfer of oxygen and nutrients across the walls of capillaries and 
into cells, blood, which leaves the heart at over lOOcm/sec, must slow down to less than 
l cm/sec  by the time it reaches the capillaries. These, and other problems, are solved by 
considering the dynamics of these systems utilizing the energy minimization principle to 
which we now turn. 

3 Minimization; Energy Loss and Impedance 

We now examine the dynamics of these systems and, in particular, the consequences 
of the assumption that biological networks have evolved to minimize energy dissipation. 
First consider the simpler problem of non-pulsatile flow. For steady laminar flow of a 
Newtonian fluid, the resistance of a single tube is given by the well-known Poiseuille 
formula: Rk = 8#lk/Trr 4, where # is the viscosity of the fluid. Ignoring effects such as 
turbulence and non-linearities at junctions, which are expected to be small, gives for the 
total resistance of the network, Z = ~v=0 Rk/Nk,  from which it follows that Z c( NN 1 o( 
M -a so the total resistance decreases with size. It is in this sense that  a larger org.anism is 
more efficient. This leads to two important scaling laws: blood pressure, Ap = QoZ, and 
aortic blood velocity must both be independent of body size, in agreement with data[I,7]. 
Neither of these depends on detailed knowledge of n, /3, or 7 or, therefore, a. They are 
both quite surprising and counter-intuitive. After all, the aorta of a whale has a radius 
of 30cm whereas that  of a shrew is barely visible at 0.01cm, yet both sustain the same 
pressure and blood velocity! 
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In spite of these successes we still have the problem that area-preserving implies that 
blood does not slow down in going from the aorta to the capillary. To explain this we turn 
to the energy minimization principle. The basic idea is that the trial-and-error feedback 
implicit in evolutionary adaptation has led to network transport systems that, on the 
average, minimize the energy required to run them. Thus, to sustain a given metabolic 
rate in an organism of fixed mass, M, with a given volume of blood, Vb, the cardiac output 
must be minimized subject to a space-filling geometry. To enforce such a constraint it 
is natural to use the classic method of Lagrange multipliers. Consider then the cardiac 
output, W(rk, lk, nk, M), as a function of all relevant variables characterizing the network. 
We need to minimize the auxiliary function 

F(rk, lk, nk) = W(rk,  lk, nk, M)  + )~Vb(rk, lk, nk, M)  
N 

+ Y~ AkNkl~ + AMM (3) 
k=0 

The constants, A, Ak and )~M are the Lagrange multipliers. Since B o¢ Q0 and W = 
Q~Z this is tantamount to minimizing the total resistance, Z. By demanding OF/Olk = 
OF/Ork = OF/Onk = 0, one obtains /3k = n -1/3 with nk = n, independent of k. This 
corresponds to area-increasing branching and solves the problem of slowing blood down 
in the capillaries: Eq. (1) gives fiN/~O = (n/32) -N = NN 1/3. For humans, NN ..~ 10 x° so 
rN/~O ~ 10 -3, which is in reasonable agreement with data [7]. This result, /3k = n -1/3 
[8], however, does not give a = 3/4 when used in Eq. (2). Minimizing F with respect to 
M (i.e., OF/OM = 0) gives Vb oc M, which is just what is needed to derive Eq. (2). We 
now show that incorporating pulsatile flow not only solves all of these problems, giving 
the correct scaling relations (e.g., a = 3/4 and ~N/~O OC M°),  but also gives the correct 
magnitude for riN/riO. 

A detailed treatment of pulsatile flow is complicated. Here, we present a highly con- 
densed version that contains the essential features needed for the scaling problem. Most 
importantly, blood vessels are no longer taken to be rigid but are allowed to expand and 
contract elastically as the pulse wave propagates along them. The classic Poiseuille re- 
sistance of the rigid tube, is thereby generalized to a complex impedance, Z, signifying 
the possibility of attenuated wave propagation[7,9]. Both Z and the dispersion relation 
that determines the wave velocity, c, are derived by solving the Navier-Stokes equation 
for the fluid coupled to the Navier equations for the vessel wall by appropriate boundary 
conditions. In the linearized, incompressible fluid, thin wall approximation, this problem 
can be solved analytically to give 

Jo(i3/2ce) and Z ..~ 7rr2 c (4) 

Here c~ _-- (27rup/p)l/2r is the dimensionless Womersley number [9] and co - (Eh/2pr)  1/2, 
the classic Korteweg-Moens velocity; u is the frequency, p the blood density and E the 
modulus of elasticity for the vessel wall whose thickness is h. In general, both c and 
Z are complex functions of u. Let us examine the consequences of these formulae as 
blood flows through progressively smaller tubes forcing c~ to decrease. The crucial point 
is that the character of the wave depends critically on whether [~1 is < or > 1 reflecting 
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the behaviour of the Bessel functions in Eq. (4). In humans, typical values of c~ range 
from around 15 in the aorta to 5 in the arteries, 0.04 in the arterioles to about 0.005 in 
capillaries. Furthermore, since the volume of blood, Vb ~ M,  we expect the volume of the 
heart, VH, to scale likewise. Now, the overall volume flow-rate, Qo = VHv, so heart-rate, 
v, scales as M -1/4, in good agreement with data. Consequently, ~ c( M 1/4, so, in the 
smallest mammals ]c~] is barely larger than 1 even in their aorta. 

(i) For large tubes, where ~ is large (> 1), Eq. (4) gives c = Co, the classic Korteweg- 
Moens velocity. Numerically this gives c ~ 580cm/sec  in good agreement with measure- 
ments[7]. Since this is purely real, the wave suffers neither attenuation nor dispersion, 
reflecting the fact that, in this regime, viscosity plays almost no role. The corresponding 
impedance is given by Z = pco/rr2: its r-dependence has dramatically changed from r -4 
to r -2. Using this in Eq. (3) to minimize energy loss now leads to an area-preserving law 
at the junctions, so ~k ~ n -1/2. Physically this ensures that when pulse waves traveling 
in a vessel come to a branch point no energy is reflected back; it is the exact analog of 
impedance matching at the junctions of electrical transmission lines [7]. 

(ii) For small tubes where ](~1 < 1 the role of viscosity becomes increasingly important 
until it eventually dominates the flow; Eq. (4) gives c ~ ¼il/:~Co --4 0, in quantitative 
agreement with observation [7]. Because this has a significant imaginary part, the traveling 
wave is heavily damped, leaving an almost steady oscillatory flow whose impedance is 
given by the original Poiseuille formula; i.e., the r -4 behaviour is restored! Thus, from our 
previous argument, for large k, corresponding to small vessels, flk = n -1/3: area-preserving 
is lost and blood is forced to slow down. 

Thus flk is not independent of k but rather has a step-like behaviour which is well 
supported by data for the total cross-sectional area of the vascular bed. Because most 
of the blood resides in the large vessels whereas most of the resistance is in the small 
ones this behaviour solves the problem of having blood slow down in the capillaries while 
maintaining the success of the various scaling laws. Though considerably more involved, 
the derivation of scaling laws based on ~k, derived using the "exact" expression for Z, 
Eq. (4), in the minimization constraint, Eq. (3), leads to essentially the same results 
as before but without the attendant problems. In addition, quantitative agreement with 
values of lengths and velocities is excellent throughout the network. The crossover from 
one behaviour of flk to the other occurs where the wave and Poiseuille impedances are 
comparable in size. The number of generations where Poisseuille flow dominates turns out 
to be invariant: roughly 15. For humans, with n = 3 (the approximate effective empirical 
value [7]), Poiseuille flow becomes appreciable after about 7 branchings, whereas in a 
mouse after only 2-3. Interestingly, a mammal not much smaller than a shrew (M = 3g) 
could not support a pulse wave beyond the aorta! This may well be the the lower limit 
on the size of a mammal for, if impedances cannot be matched, the energy dissipated is 
no longer minimal. 

3.1 Some Consequences and Extensions 

Time scales in the network typically vary like M U4. We have already seen that heart- 
rate scales this way and it is straightforward to show that blood circulation time does 
likewise. It is tempting to relate this to life-span, which also scales like MU4. It seems 
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unlikely that this is a coincidence. It is more likely that dissipation in the network and the 
subsequent production of entropy plays a critical role in determining lifetime and aging. 
The seeds of destruction may very well be built into the very system designed to sustain 
life! 

The model can be generalized to organisms living in d-dimensions. The only significant 
change is that, since the network must now fill a d-dimensional volume, ~' generalizes to 
7 = n-1/d. Repeating the previous derivation leads, as before, to Eq. (2) from which we 
obtain a = 1/(1 + 1/d) -- d / (d  + 1 ). This shows that the "3" in 3/4 represents the 
dimensionality of space that most organisms live in; two-dimensional organisms, such as 
flatworms, might therefore be expected to have a = 2/3. Note the "1" in (d + 1 ) arises 
from 2 × 1/2, the "1/2" coming from the area-preserving exponent in/~ and the "2" from 
converting this from radii to cross-sectional areas. 

Other analogous network systems can be analyzed in a similar fashion. For example, in 
the mammalian respiratory system, apart from obtaining many analogous scaling laws, we 
derive the surprising result that the total surface area of the lung A L oc M 11/12, thereby 
explaining Weibel's paradox [1], that it scales with a higher exponent (11/12 ~ 0.92) than 
the 3/4 seemingly needed to supply oxygen. 

Plant vascular systems are essentially a sheath of tubes, tightly bundled together as in 
an electrical cable. Many of them are non-conducting and effectively form the heartwood 
which gives biomechanical stability [5] to branches, ultimately leading to area-preserving 
branching. Since hydrodynamic resistance of uniform conducting tubes increases linearly 
with length, resource supply to apical meristems and forest canopies would be seriously 
limited; if not circumvented, the evolution of trees and other plant forms would be severely 
constrained to ground cover. This problem is solved in the model by allowing vessels to 
have a small uniform taper. Minimizing the vessel resistance determines the magnitude 
of this taper which turns out to be quite small: for example, over 12 orders of magnitude 
variation in plant mass, the radius of the vessel in the trunk, or stem, is predicted to 
change by only about 60%, in agreement with observation. Remarkably, this taper has the 
consequence that the vessel resistance is independent of length, thereby equalizing resource 
supply to all leaves, especially those on the most distal branches of the tallest trees. This 
invariance of vessel resistance coupled with area-preserving branching and a space-filling 
network leads to many scaling laws including the 3/4-power scaling for metabolic rate. 
Detailed scaling predictions for conductivity, pressure gradients, fluid velocity, and relative 
amount of heartwood are all in excellent agreement with data. As an added bonus we can 
also show why the maximum height of a tree is of the order of 100m rather than lm 
or 1000m. This follows because the taper cannot continue indefinitely; the trunk, whose 
size is, to some extent, constrained biomechanically, simply cannot contain all conducting 
vessels if it is allowed to grow without bound. This therefore provides an explanation from 
fundamental principles why the size of trees is limited and how that size is related to basic 
parameters which depend on both mechanical and hydrodynamic constraints. 

It is also possible to use the model to calculate the fractal dimension of plants, D, as 
defined by the box-counting method. As long as the resolution is not too fine then the 
model predicts D -- 3/2, in excellent agreement with data [6]. Amusingly, measurements 
have been repeated on roots grown between glass plates separated by only 3mm in order to 
minimize their disturbance. This leads to D ~ 1.3 significantly different from 1.5. However, 
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by growing roots in this way, the network has been restricted to 2-dimensions rather than 
3. If the calculation is now repeated in 2-dimensions the model predicts d = 4/3! This is 
indirect evidence of the space-filling requirement for these networks. 

4 C o n c l u s i o n s  

The paradigm and principles expressed by the general model leads to a novel way of 
exploring these types of complex systems and understanding their scaling properties. On 
the one hand it is, by necessity, a "zeroth order model" embodying many of the essential 
features of biological systems and, as such, can serve as a point of departure for more 
detailed, possibly more realistic analyses. On the other, its success inevitably suggests 
applications to other interesting and challenging problems and situations. Obvious areas 
deserving serious investigation include intracellular transport,  aging and longevity, and 
the extension to ecological environments. Quarter-power scaling has been observed in all 
of these regimes so it is natural  to explore the application of our ideas to them. The 
success of the model should be viewed as a beginning rather than an end. 
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