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Object (Category) Recognition

Active research area, largely focused on 
“categories” rather than specific objects
– E.g., bicycle
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– Question of what constitutes a category, not 
issue for specific objects

– Most of history of object recognition is specific 
objects, 1960-2000+

Increasing use of shared datasets – e.g., 
Caltech, PASCAL (10K images, 10 categories)

Classification vs. Localization 

Classification: presence or absence of an 
object category in an image

Localization (detection): where objects and 
potentially subparts are in an image

Image retrieval such as Web search often 
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Image retrieval such as Web search often 
requires only classification
– E.g., searching for photos of motorcycles

Interpreting and interacting with the world 
generally requires localizing
– Visual user interfaces, monitoring, navigation

Localizing Often Difficult

Classification implicitly assumes that object 
is major part of image
– E.g., classifying “Where’s Waldo” images

Detection specifies much more information
– Many ways to be wrong: millions of possible 
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Many ways to be wrong: millions of possible 
locations vs. one presence/absence decision

Category Recognition Research

Research largely focused on classification 
rather than detection
– Both methods and evaluation criteria

• Recent PASCAL challenge an exception, but still 
comparatively few entries for localization task
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Broad range of learning techniques readily 
applicable to classification
– Detection not only a harder problem also fewer 

techniques to directly apply

Yet localizing important for most 
applications other than retrieval

Category Recognition Approaches

Bag of features (“visual words”) models 
– Capture little or no spatial information, less well 

suited to localization

Pixel-based techniques – combination of 
segmentation and recognition
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– Little in way of explicit object representation

Part-based statistical models
– Data term and spatial prior

• Constellation, pictorial structures (tree), kfans
− Markov random field (MRF)

– Best current localization techniques



Recognition Cues

Appearance
– Patterns of intensity or color, e.g., tiger fur

– Generally measured locally over region

Geometry
l f f l l f
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– Spatial configuration of parts or local features
• E.g., face has eyes above nose above mouth

Early era relied on geometry (1960-80), 
later on appearance (1985-95), more 
recently both

Role of Sparse Features

Recognition often viewed as bottom-up 
process
– First detect a relatively small number of 

distinctive local features (e.g., SIFT [Lowe04])
– Then match detected features to pre-existing 
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model

Specific Object Object Category

Problems With Detecting Features

Local decisions about presence or absence 
of features are difficult and error prone
– E.g., often hard to determine whether a corner 

is present without more context
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Recognition Without Feature Detection

Pictorial structures [FE73]
– Model consists of parts arranged 

in deformable configuration
• Match cost function for

each part (at all locations)
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• Deformation cost function 
for each connected pair of parts

Intuitively natural notion of parts connected 
by springs
– “Wiggle until fits”, no individual feature detection

– Recent work making computationally tractable

Modern Pictorial Structures

Developed efficient algorithms for certain 
types of pictorial structure models
– Gaussian spatial models with tree- or fan-like 

underlying graph structures [FH00,FH05,CFH05]
• Dynamic programming techniques
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Addressed learning models [CH06]
– Using weak supervision, where training data 

specifies coarse bounding box but not parts

Spatial models learned using SVM and HOG 
templates for parts [FMR08]

Formal Definition of Pictorial Structure

Object modeled by graph, M=(V,E)
– Parts V=(v1, …, vn) 

– Spatial relations E={eij}
• Gaussian on relative locations 

for pair of parts i,j 
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p p ,j

Spatial prior PM(L) on
configurations of parts 
L=(l1, …, ln)
– Where li over discrete 

configuration space
• E.g., translation, rotation, scale

7 nodes
9 edges

(out of 21)



Object Detection

Given image I and model M
– Prior PM(L) distribution of spatial configurations
– Likelihood PM(I|L)=∏PM(I|li) of image given conf. 

Evidence over all configs L, marginalization
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PM(I) = ∑L PM(I|L) PM(L) ∝ ∑L PM(L|I) 

Or quality of best configuration (MAP est.)

maxL PM(I|L) PM(L)

Or sample from distribution PM(I|L) PM(L) 

Latter two localize parts, maximizer L*

Fast Methods

Spatial term based on relative location of 
pairs, allows convolution-like operations

PM(li,lj) α ρ(li-lj)

Best match (MAP estimate) [FH00, FH05]
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– Linear time methods for min convolution yield 
O(mn) time, generalized distance transforms

Marginalization over configs [FH05]
– Can apply FFT yielding O(mnlogm) time 

– For Gaussian, binomial filters yield O(mn) time

– Fast sampling of good candidate matches

Graphical Model View

Probabilistic model
– Collection of random variables with explicit 

dependencies between certain pairs

Graph structure
– Reachability corresponds to 
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– Reachability corresponds to 
conditional independence

Undirected edges – correlation rather 
than causality
– Markov random field (MRF)

– Distribution factors according to cliques

Tree Structured Models

Kinematic structure of 
animate objects
– Skeleton forms tree
– Parts as nodes, joints as edges

2D image of joint
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2D image of joint
– Spatial configuration for 

pair of parts
– Relative orientation, 

position and scale 
(foreshortening) – x,y,s,o

Tree Factorization

Spatial prior factors
∏eij∈E PM(li,lj)

PM(L) = ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
∏vi∈V PM(li)deg(vi)-1

Denominator constant
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Denominator constant
– No prior on absolute location

Dynamic programming methods
– Viterbi or Baum-Welch algorithms

– Not very practical, O(h2n) 

• Quadratic in number of locations per part, h

Best Match (MAP Estimate)

All possible spatial configurations 
“considered” – most eliminated implicitly
– Dynamic programming for min convolution

Example using simple binary silhouette for 
appearance
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appearance
– Min cost match not always “best”



Efficient Algorithm for Central Part  

Location L=(l1, …, ln) specifies where each 
part positioned in image
Best location minL (Σi mi(li) + di(li,l1))
– Part cost mi(li) – negative log of likelihood

• Measures degree of mismatch of appearance ai
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• Measures degree of mismatch of appearance ai
when part vi placed at each of h locations, li

– Deformation cost di(li,l1) – negative log of prior
• Spring cost ci1 of part vi measured with respect 

to central part v1

• E.g., quadratic or truncated quadratic function
• Note deformation cost zero for part v1 (wrt self)

Central Part Model

Spring cost cij: i=1, ideal location of lj wrt l1
– Translation oj=rj-r1

– Tj(x)=x+oj

Spring cost deformation from this ideal
– ⎟⎜l –T (l )⎟⎜2

r2
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– ⎟⎜lj–Tj(l1)⎟⎜2

v1

v3

v2

r1

r3

o2

o3

Consider Case of 2 Parts

minl1,l2
(m1(l1) + m2(l2)+⎟⎜l2–T2(l1)⎟⎜2)

– Where T2(l1) transforms l1 to ideal location with 
respect to l2 (offset)

minl1
(m1(l1) + minl2

(m2(l2)+⎟⎜l2–T2(l1)⎟⎜2))
S d t  i   li d di t  t f !
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– Second term is a generalized distance transform!

minl1
(m1(l1) + DTm2

(T2(l1))

Sequential rather than simultaneous min
– Don’t need to consider each pair of positions for 

the two parts because a distance

• Just distance transform the match cost function, m

Overall Computation for 2 Parts 

Image and model
(translation)

Match cost of each
part m1(l1), m2(l2)
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+

p 1( 1), 2( 2)

Distance transform 
of m2(l2)

minl1
(m1(l1) + DTm2

(T2(l1))

Star Graph – Central Reference Part

minL (Σi (mi(li) + di(li,l1)))

minL (Σi mi(li) + ⎟⎜li – Ti(l1)⎟⎜2)
– Quadratic distance between location of part vi

and ideal location given location of central part

i ( (l )  
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minl1
(m1(l1) + 
Σi>1 minli

(mi(li)+⎟⎜li–Ti(l1)⎟⎜2))
– i-th term of sum minimizes only over li

minl1
(m1(l1) + Σi>1 DTmi

(Ti(l1)))
– Where DTf(x) = miny (f(y) + ⎟⎜y-x⎟⎜2)

Star Graph 

Simple overall computation
– Match cost mi(li) for each part at each location
– Distance transform of mi(li) for each part other 

than reference part
• Shifted by ideal relative location Ti(l1) for that 
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part

– Sum the match cost for the first part with the 
distance transforms for the other parts

– Find location with minimum value in this sum 
array (best match)

DT allows for flexibility in part locations



Overall Computation for Star Graph 

Part costs, O(h) time each, total O(hn)
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Distance transform non-reference part costs, 
sum to get MAP location, O(hn) time

More General Flexible Templates

Efficient computation using distance 
transforms for any tree-structured model
– Not limited to central reference part – star 

Two differences from reference part case
– Relate positions of parts to one another using 
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Relate positions of parts to one another using 
tree-structured recursion
• Solve with Viterbi (or forward-backward for 

marginals) algorithm

– Parameterization of distance transform more 
involved – transformation Tij for each 
connected pair of parts 

Minimizing Over Tree Structures

Use dynamic programming to minimize
ΣV mj(lj) + ΣE dij(li,lj)

Can express as function for pairs Bj(li) 
– Cost of best location of vj given location li of vi

R i  f l  i  t  f hild  
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Recursive formulas in terms of children 
Cj of vj

– Bj(li) = minlj ( mj(lj) + dij(li,lj) + ΣCj Bc(lj) )

– For leaf node no children, so last term empty 
– For root node no parent, so second term 

omitted

Efficient Algorithm for Trees

MAP estimation algorithm
– Tree structure allows use of Viterbi style 

dynamic programming
• O(nh2) rather than O(hn) for h locations, n parts
• Still slow to be useful in practice (h in millions)
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– Couple with distance transform method for 
finding best pair-wise locations in linear time
• Resulting O(nh) method

Similar techniques allow sampling from 
posterior distribution in O(nh) time
– Using forward-backward algorithm

O(nh) Algorithm for MAP Estimate

Express Bj(li) in recursive minimization 
formulas as DTf(Tij(li))
– Cost function

• f(y) = mj(Tji
-1(y)) + ∑Cj Bc(Tji

-1(y)) 

– Tij maps locations to space where difference 
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ij p p
between li and lj is a squared distance
• Distance zero at ideal relative locations

Yields n recursive equations, one per part 
– Each can be computed in O(h) time

• Where h number of parameter values (fixed 
dimensional parameter space)

Sampling the Posterior

Generate good possible matches as 
hypotheses
– Locations where posterior P(L|I) high
– Validate using another technique

• Here use a correlation-like measure (Chamfer)
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( )

Computation similar to MAP estimation
– Recursive equations, one per part
– Ability to solve each equation in linear time

• Linear time dynamic programming 
approximation to Gaussian using box filters

– Fast running times (seconds)



Sampling Approach

Marginal distribution for location lr of 
(arbitrarily chosen) root part
p(lr|I,Θ) = ∑L\lr (∏V p(I|li,ai) ∏E p(li,lj|cij))

Can be computed efficiently due to tree 
structured dependencies
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structured dependencies
p(lr|I,Θ) ∝ p(I|lr,ar) ∏Ch sc(lr) 

– And fast convolution when p(li,lj|cij) Gaussian
sj(li) ∝ ∑lj (p(I|lj,aj) p(li,lj|cij) ∏Ch sc(lj))

Sample location for root from marginal
– Sample from root to leaves using p(lj|li,I,Θ)

Samples From Posterior
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Pictorial Structure as Proposal Distribution

Computationally simpler distribution
– E.g., POP model, [AT07]

Can use to address limitations of models
– Non-Gaussian pairwise constraints
– Non-independence of part appearances
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– Non-independence of part appearances

Use model that factors to propose high 
probability answers according to a simpler 
model
Maximize a less tractable criterion only for 
those sample configurations

More Spatial Structure in Model

While preserving computational tractability
Adding latent spatial variable(s) to models
– Correspond to overall model parameters rather 

than parts
– Need to ensure no large cliques in resulting 
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Need to ensure no large cliques in resulting 
graph as computation increases exponentially

K-fans
– Generalization of star graph to root set of size 

k rather than single root node
– Depth one graph of low tree width

Spatial Models for Human Pose

Widespread use of kinematic tree models
– Encode relationships between rigid parts 

connected by joints (2D and 3D)
– Enables efficient exact inference/global 

optimization of pose given model and data
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Limitations of Kinematic Trees

Only represent relationships between 
connected parts (note still good proposals!)
Coordination between limbs not encoded
– Critical for balance and many activities
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Equally good under tree model



Non-Tree Models

Larger cliques, latent variables
– Introduce additional variable corresponding to 

common factor of limb coordination
• Does not correspond to any part 
• Dependencies among orientation parameters
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– Still relatively efficient inference for small clique

A Latent Gait Variable for Humans

Introduce additional variable corresponding 
to common factor [LH05]
– Consistency between limb positions, not 

captured by kinematic (skeletal) model
• Rather than directly connecting limbs which 

l l
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creates large clique

Example Using Brown MOCAP Data

MAP estimate of best pose, single frame
– Loopy models, but with small cliques
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Ground Truth Latent 
Variable 
Model

Tree Model Larger Clique 
Using LBP
(Pairwise)

Latent Gait Variable Helps 

Comparison using ground truth (MOCAP)
– Latent gait variable model, tree structured 

model, model with large clique (loopy graph)
– Better even than model with “more constraint”
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K-fan Models

Prior factors according to graph of spatial 
constraints between parts

PM(L) = ∏C ΨC(LC)
– Product over maximal cliques of triangulated 

graph, LC locations of corresponding parts 
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K-fan generalizes star graph structure
– Cliques of size k+1 for k central nodes

– Exact discrete inference in
O(nmk) time for n parts and 
m locations per part, using
fast convolution methods

Spatial Prior for k-Fan

Let R⊆V be set of reference parts, “center”
PM(L) = PM(LR)  ∏vi∈R’ PM(li|LR)

– Where LR vector of locations for R
LR=(l1, …, lk) for R=(v1, …, vk)
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Makes explicit that part locations are 
independent conditioned on reference set
– Product over non-reference parts, R’

Geometric interpretation in terms of parts 
defining “reference frame”   



Edge-Based Part Models

Assume likelihood factors
– Foreground product over parts

– Background product over pixels

PM(I|L) = ∏i gi(I,li) ∏p bp(I)
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Foreground model simple edge template
– Probability of an edge at 

each pixel

– Use vector of probabilities 
for four possible orientations

– Slight dilation to account for discretization

Overall Estimation Approach

Overall estimation more accurate (and 
faster) than feature detection
– E.g., optimization approach [CFH05,FPZ05] 

for star or 2-fan vs. feature detection for full 
joint Gaussian [FPZ03]
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– 6 parts under translation, Caltech-4 dataset

– Single class, equal ROC error
Airplane Motorbike Faces Cars

Feat. Det. [FPZ03] 90.2% 92.5% 96.4% 90.3%

Est.-Star [FPZ05] 93.6% 97.3% 90.3% 87.7%

Est.-Fan [CFH05] 93.3% 97.0% 98.2% 92.2%

Learning the Models

[FPZ05] uses feature detection to learn 
models under weakly supervised regime
– Know only which training images contain 

instances of the class, no location information

[CFH05] does not use feature detection 
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[CFH05] does not use feature detection 
but requires extensive supervision
– Know locations of all the parts in all the 

positive training images

[CH06] weak supervision without relying 
on feature detection – no part locations

Weakly Supervised Learning

Consider large number of initial patch 
models to generate possible parts

Generate all pairwise models formed by 
two initial patches

Consider all sets of reference parts for 
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Consider all sets of reference parts for 
fixed k

Greedily add parts based on pairwise 
models to produce initial model

EM to iteratively improve model

Model Improvement

Use EM to update model
– Increase likelihood of training data by iteratively 

improving both appearance and spatial models

POP – patchwork of parts [AT07]
– More accurate model that accounts for 
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– More accurate model that accounts for 
overlapping parts

– Average probabilities of patches that overlap
• Distribution does not factor, can’t compute 

efficiently

• Sample from factored distribution and maximize 
POP criterion

Example Learned Models

Star graph (one fan)
– Reference part in bold box
– Blue ellipse 2σ level set of Gaussian
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Side View of Car Side View of Bicycle



Adding Local Context to Models

Spatial relations not only among parts of 
object but also object and background
– E.g., vehicles on roads, often in front of 

buildings
– Less predictable relative locations than object 
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parts within a category

Use coarser appearance models 
– Less predictable appearance of “scene parts”

Augment spatial model using two-level 
hierarchy

Contextual Model

Learn part-based object category model 
as before
Also learn spatial relationship between 
object bounding box and parts of scene
Parts modeled using quantized colors and 
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Parts modeled using quantized colors and 
surface orientation
Posterior that factors according to object 
and parts scene context “parts”

Example Learned Models
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Side View of Car Side View of Bicycle

Recognition Results

Four categories from PASCAL 06 VOC
– Manmade objects: bicycle, bus, car, motorbike
– Detection task (localize object)

• Standard measure used in VOC, overlap of 
detected location with ground truth > 50%
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• Average precision

Training with weak supervision
– Use object bounding box

• For scene model 
• To separate multiple instances in images

Comparison of Results

Scene information substantially increases 
accuracy
Better accuracy – average precision –
than entries in VOC challenge
– One method rather than several different 
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One method rather than several different 
methods

Example Results
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Summary of Basic Model

Pictorial structures: detection without 
doing feature detection
– For common object class datasets, faster and 

more accurate than spatial models using 
feature detection 
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Role of spatial structure
– Latent structural variable such as human “gait” 

can substantially improve localization

Role of local context
– Including scene parts in model can 

substantially improve localization

Distance Transform

Map of distances from any point to nearest 
point of some type
– Distances to object boundaries in computer 

graphics, robotics and AI
– Distances to image features in computer vision
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Generally used for data on grid
– Pixels or voxels, 2D or 3D
– Related to exact algorithms for Voronoi diagrams

Efficient algorithms for computing
– Linear in number of pixels, fast in practice

Uses of Distance Transforms

Proximity-based matching: Chamfer and 
Hausdorff distances
– For each point of set A nearest 

point of set B
– But not correspondence or 
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one-to-one matching
– Related to morphological dilation

Path planning and obstacle avoidance
– Maximal clearance path
– Re-compute if moving obstacles

• But bound on how fast changes

Distance Transform Formula

Set of points, P, and measure of distance
DT(P)[x] = miny∈P dist(x,y)

For each location x distance to nearest 
point y in P

Can think of “cones” rooted at each y P
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– Can think of “cones” rooted at each y ∈ P
– Min over all the cones (lower envelope)

Relation to Voronoi Diagram

Locus equidistant from two or more points
– Dual of Delaunay triangulation
– Compute in O(nlogn) time (Graham scan)
– Use to efficiently find closest point, O(logn)
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Grid Formulation of Distance Trans.

Commonly computed on a grid Γ, for set 
of points P ⊆ Γ
DT(P)[x] = minx’∈ Γ (dist(x,x’) + 1P(x’))
Where 1P(x’) indicator function for P

Value of 0 when x’ P  otherwise
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– Value of 0 when x’∈P, ∞ otherwise
– Can think of cone rooted at each 

grid point where indicator is 0
– Cones for grid cells not 

corresponding to points in set P 
are infinite, don’t contribute to min

0
0

11
2 1 2

1 1
2 1 2

3
2
2
3



Generalized Distance Transform

No need to limit only to indicator function 
with cost of zero or infinity

– Applies to any cost map

DT(P)[x] = minx’∈ Γ (dist(x,x’) + cost(x’))
– Can think of cone rooted at each 
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Can think of cone rooted at each 
point of grid rather than just 
where indicator 0 (binary grid)

– Height of root of each cone
corresponding cost at that
location – min over cones

Naïve Computation

For each point on the grid, explicitly 
consider each point and minimize
– O(n2) method

Combinatorial methods using explicit point 
set P not much better and also don’t 
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set P not much better and also don t 
generalize
Not very practical even for moderate size 
grids such as images
– Even a low-resolution video frame has about 

300K pixels
• About 100 billion distance computations

Faster Methods on Grid

1D case, L1 norm: |x1 – x’1| + |x2 – x’2| 
– Two passes: 

• Find closest point on left
• Find closest on right if closer than one on left

– Incremental:
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• Moving left-to-right, closest point on left either 
previous closest point or current point

• Analogous for moving right-to-left 

– Can keep track of closest point as well as 
distance to it
• Will illustrate distance only, less book-keeping

L1 Distance Transform Algorithm

Two pass O(n) algorithm for 1D L1 norm
(just distance and not source point)
1. Initialize: For all j

D[j] ← 1P[j]

2. Forward: For j from 1 up to n-1 1 0
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D[j] ← min(D[j],D[j-1]+1)

3. Backward: For j from n-2 down to 0
D[j] ← min(D[j],D[j+1]+1)

∞ 0 ∞ 0 ∞ ∞ ∞ 0 ∞

∞ 0 1 0 1 2 3 0 1

1 0 1 0 1 2 1 0 1

0 1

L1 Distance Transform

2D case analogous to 1D
– Initialization
– Forward and backward pass

• Forward pass adds one to closest above and to 
left, takes min with self
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• Backward pass analogous below and to right

0
0

11
2 1 2

1 1
2 1 2

3
2
2
3

0
0

1∞
∞ ∞ ∞

∞ ∞
∞ ∞ ∞

∞
∞

∞
∞

0
0

1∞
∞ ∞ ∞

∞ 1
∞ 1 2

∞
2
2
3

s
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1

0
1

1
s

0
0

∞∞
∞ ∞ ∞

∞ ∞
∞ ∞ ∞

∞
∞

∞
∞

L2 Distance Transform

What about Euclidean distance
sqrt((x1 – x’1)2 + (x2 – x’2)2 ) ?
Not linear function of location on grid
– Simple local propagation 

methods not correct s
1√2

1
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Local propagation just approximation
– Introduces considerable 

error, particularly at larger 
distances

– Bigger neighborhood can help
but not fix



Exact L2 Distance Transform

1D case doesn’t seem helpful
– Same as L1

– But just saw 2D case not same as L1

Several quite complex methods
– Linear or O(nlogn) time  but at edge of practical
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– Linear or O(nlogn) time, but at edge of practical

Revisit 1D
– Decompose 2D into two 1D transforms
– Yield relatively simple method, though not local
– Requires more advanced way of understanding 

running time – amortized analysis

Squared Distance on 2D Grid

Consider f(x,y) on grid
– For instance, indicator function for membership 

in point set P, 0 or ∞

Distance transform
Df(x,y) = minx′ y′((x-x′)2 + (y-y′)2 + f(x′,y′))
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Df(x,y)  minx ,y ((x x ) + (y y ) + f(x ,y ))
First term does not depend on y’
= minx′((x-x′)2 + miny′((y-y′)2 + f(x′,y′)))
But then can view as 1D distance transform 
restricted to column indexed by x’
= minx′((x-x′)2 + Df|x’(y)) 

Approach for L2 Distance Transform

Start with point set on grid
Initialize to 0,∞ cost function
Perform 1D transform on columns of cost 
function
P f  1D t f    f lt
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Perform 1D transform on rows of result
– Cascade results in each dimension

Compute square roots if actual distance 
needed
– Note, as does not change minima, often more 

efficient to leave as squared distance 

Computing 1D L2
2 Transform Efficiently 

Compute h(x)=minx’ ((x-x’)2+f(x’))
Intuition: each value defines a constraint
– Geometric view: in one dimension, lower

envelope of arrangement of n quadratics 
• Each rooted at (x,f(x))
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( , ( ))
− Related to convex hull in computational geometry

Algorithm for 1D Lower Envelope

Incrementally add quadratics
– Keep only those on lower envelope

• Maintain ordered list of visible 
quadratics and the intersections of 
successive ones

f New Rightmost
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Consider in left-to-right order
– Compare new intersection with 

rightmost quadratic to rightmost 
existing intersection
• If to left, hides rightmost quadratic 

so remove and repeat
NewRightmost

New Rightmost

Running Time of LE Algorithm

Consider adding each quadratic just once
– Intersection and comparison constant time
– Adding to lists constant time
– Removing from lists constant time

• But then need to try again
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ut t e eed to t y aga

Amortized analysis
– Total number of removals O(n)

• Each quadratic, once removed, never considered 
for removal again

Thus overall running time O(n)



1D L2
2 Distance Transform

static float *dt(float *f, int n) {
float *d = new float[n], *z = new float[n];
int *v = new int[n];
int k = 0;
v[0] = 0;
z[0] = -INF;
z[1] = +INF;
for (int q = 1; q <= n-1; q++) {

73

float s = ((f[q]+square(q))-(f[v[k]]+square(v[k])))
/(2*q-2*v[k]);

while (s <= z[k]) {
k--;
s  = ((f[q]+square(q))-(f[v[k]]+square(v[k])))

/(2*q-2*v[k]);    }
k++;
v[k] = q;
z[k] = s;
z[k+1] = +INF; }

DT Values From Intersections

k = 0;
for (int q = 0; q <= n-1; q++) {

while (z[k+1] < q)
k++;

d[q] = square(q-v[k]) + f[v[k]];
}
return d;
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}

2D version easily runs at video rates
No reason to approximate L2 distance
– Simple to implement as well as fast

Distance Transforms in Matching

Chamfer measure – asymmetric
– Sum of distance transform values

• “Probe” DT at locations specified by model and 
sum resulting values

Hausdorff distance (and generalizations)
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( g )
– Max-min distance which can be computed 

efficiently using distance transform
– Generalization to quantile of distance 

transform values more useful in practice
• Max sensitive to even single outlier

Chamfer Measure

Asymmetric comparison of two binary 
images A,B
– Use points of A to select corresponding values 

in distance transform of B
– Sum selected values
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chamf(A,B) = ∑a∈A minb∈B ⎟⎜a-b⎟⎜

= ∑a∈A DB(a)

1+1+2+2+3+3+3+3+4+4+5+
12+14+15 = 72

Hausdorff Distance

Classical definition
– Directed distance (not symmetric)

• h(A,B) = maxa∈A minb∈B ⎟⎜a-b⎟⎜

– Distance (symmetry)
• H(A,B) = max(h(A,B), h(B,A))
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( , ) ( ( , ), ( , ))

Minimization term simply a distance 
transform of B
– h(A,B) = maxa∈A DB(a)
– Maximize over selected values of DT

Not robust, single “bad match” dominates

Hausdorff Matching

Partial (or fractional) Hausdorff distance to 
address robustness to outliers
– Rank rather than maximum

• hk(A,B) = ktha∈A minb∈B⎟⎜a-b⎟⎜ = ktha∈A DB(a)

K th largest value of D at locations given by A
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– K-th largest value of DB at locations given by A

– Often specify as fraction f rather than rank

• 0.5, median of distances; 0.75, 75th percentile

1,1,2,2,3,3,3,3,4,4,5,12,14,15

1.0.75.5.25



Applications of Pictorial Structures

PASCAL VOC 2008 [FMR08]
– Discriminatively trained star-graph model

Long-term arm and hand tracking [BEHZ08]
– Hypothesize and test using hypotheses from Hypothesize and test using hypotheses from 

pictorial structure model

Person detection – full body and upper body 
models [ARS09]
– Discriminatively learned part models
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Top PASCAL08 Detection Method

Mixture of star-graph spatial models 
[FMR08]
– Given object category represented by several 

star graphs (e.g., encode multiple viewpoints)
– Spatial deformation of fine-scale parts with 

respect to coarse-scale root part
– Parts modeled using HOG templates

Learned using weak supervision paradigm 
where object bounding box given but not 
part locations
Discriminative training using SVM’s
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Form of Model

Two component bicycle model with 6 parts
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Coarse Root Fine Parts Spatial Constraint

Score of Hypothesis

Root w/n parts
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Processing of Part Response

83 84



Example Results

After non-maximum suppression
Fast: approx 1 sec to search all scales
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Learn root and part filters and spatial model 
from bounding boxes (positive and negative)
Latent SVM
– Classifiers that score an example x using

Learning Models

– With model parameters β and latent variables z
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Latent SVM Training

Convex if fix z for positive examples

Initialize β and iterate
– Pick best z for each positive example

– Optimize β via gradient descent

Positive examples should have some z with 
high score, negative examples none 
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Learned Person Model (PASCAL)
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Coarse Root Fine Parts Spatial Constraint

Example Horse Detections (PASCAL)
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Quantitative Results

7 systems in 2008 PASCAL detection 
challenge
20 classes
– First place in 7 classes, second place in 8 

classes, lower rank in remaining 5 classes, g
– No other system with as many first and second 

place rankings

Much faster than most systems 
(algorithms!)
– Approx 2 seconds to match a model to an image
– Approx 4 hours to train a model

90



Bicycle Class PASCAL 2008

91

Person Class PASCAL 2008
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Bird Class PASCAL 2008
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Comparison of Car Models (2006 Data)
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Arm and Hand Tracking

For recognizing signing want long-term, 
accurate, computationally tractable 
tracking of arms and hands [BEHZ08]
Find torso, then treat each arm as simple 
kinematic chain pictorial structurep
Empirically, sampling from
max marginals gives better 
results than from marginals
– Both better than straight MAP 

estimation
– Good “test” criteria
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Challenging Problem

Long-term tracking of arms and hands in 
TV broadcasts is difficult
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Multiple Good Configurations

Hypothesize and test paradigm
– Postulate configurations by sampling pictorial 

structures with high posterior probability
– Verify using other means

For tree, factored distribution
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– Marginals or max marginals
• Low dimensional table per part

– Sample high probability location of “root” part
• Posterior, fine if occluded (bad part likelihood)!

– Then sample high (conditional) probability 
location for each child, and so on

Computing (Max) Marginals

Likelihoods and messages at each node 
over space of configurations
Messages between nodes fast convolution 
(min conv.) of neighboring messages

= ⋅ ⋅ ⋅
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The Approach

Root upper arms at shoulders of torso
– Generate hypotheses
Verify using color and HOG features

•Pose detection

•Intermediate •Hand and arm

•Pose detection
•Arm model

•Color 
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•Find pose with 
minimum cost

•Input

•Head and torso 
segmentation

Intermediate 
step

•Hand and arm
configuration

•Find 
pose 

with min 
cost

•Input
•Output

• 11 DOF

•Color 
information by 

pixel-wise 
labelling

•Gradient
using HOG

Sampling and Verifying

Sample arm configurations using 
generative pictorial structure model
Score each using color and HOG based 
match measure, keep best so far
Scoring uses richer modelScoring uses richer model
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•Pixels can count 
more than once

•No handling 
of occlusions

•Explanation of only 
the foreground

•Errors arising
with hypotheses

Sampling Example

Video illustrating sampling
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Distribution of overlap scores for 296 frames:

•Evaluation

Accuracy Left arm Right arm Hands

Overlap ≥ 0 2 99 7% 100% 100%

Quantitative Results

Page 
102
f 23

Qualitatively correct for nearly 100% of the frames

Overlap ≥ 0.2 99.7% 100% 100%

Overlap ≥ 0.5 91.2% 99.7% 95.6%

Overlap ≥ 0.6 75.0% 82.8% 82.8%



Matching Quality

Good enough arm and hand position for 
subsequent learning and recognition of 
signs
– Using temporal information as well as 

individual frame matches

Example video
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Person Detection CVPR09

State-of-art body pose estimation and 
detection (Andriluka et al, TU Darmstadt)
Pictorial structure model
– Use sum-product BP, but exact for acyclic graph
– [FH05] 4D pairwise configuration x y s o[FH05] 4D pairwise configuration x,y,s,o

“loose limbed prior”
• Found to be better than Ramanan05 spatial prior

– Tree slightly better than star model

Discriminatively trained part models
– Densely sampled shape context previously used 

for pedestrian detection (BMVC 05)
104

Example Results

10 part full body model, 8 part pedestrian 
model, 6 part upper body model
Posterior rendered with color per part and 
intensity corresponding to probability
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Spatial Priors

8 part pedestrian model, star versus tree

6 part upper body model
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Full Body Pose Estimation

Compared to Ramanan NIPS06
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Upper Body Pose Estimation

Compared to Ferrari et al CVPR08 
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Summary

Pictorial structure models
– Part-based appearance
– Spatial constraints using small cliques of parts 

(pairs, triples)

Simplifying models so that can do exact Simplifying models so that can do exact 
inference is good!
– Apply dynamic programming can make fast
– Currently best-performing object category 

recognition and person detection methods

Even though discretizing parameters!
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Question 1

What form of pictorial structure model 
learning works best in practice (2 answers)?
A) Maximum likelihood estimation of both the 

spatial model and part appearances
B) Maximum likelihood estimation of the spatial 

model and discriminative training for the part 
appearances

C) Discriminative training of the spatial model and 
maximum likelihood estimation of the part 
appearances

D) Discriminative training of both the spatial model 
and part appearances
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Question 2

For a pictorial structure model with n 
parts, h locations per part, and cliques of 
size k, how much does use of the distance 
transform speed up the running time?
A) A factor of k
B) A factor of n
C) A factor of h
D) A factor of hk
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Question 3

In estimating human body pose using a 
pictorial structure model, for what part is 
the estimate least affected by occlusion of 
that part?
A) The root part
B) A leaf part
C) A part with many neighbors in the graph
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