
Model Compression

Cristian Bucilă
Computer Science
Cornell University

cristi@cs.cornell.edu

Rich Caruana
Computer Science
Cornell University

caruana@cs.cornell.edu

Alexandru Niculescu-Mizil
Computer Science
Cornell University

alexn@cs.cornell.edu

ABSTRACT
Often the best performing supervised learning models are
ensembles of hundreds or thousands of base-level classifiers.
Unfortunately, the space required to store this many clas-
sifiers, and the time required to execute them at run-time,
prohibits their use in applications where test sets are large
(e.g. Google), where storage space is at a premium (e.g.
PDAs), and where computational power is limited (e.g. hea-
ring aids). We present a method for “compressing” large,
complex ensembles into smaller, faster models, usually with-
out significant loss in performance.

Categories and Subject Descriptors: I.5.1 [Pattern Re-
cognition]: Models – Neural nets.

General Terms: Algorithms, Experimentation, Measure-
ment, Performance, Reliability.

Keywords: Supervised Learning, Model Compression

1. INTRODUCTION
An ensemble is a collection of models whose predictions

are combined by weighted averaging or voting. Ensemble
methods have been the focus of significant research in the
past decade, and a variety of ensemble methods have been
introduced. Well known ensemble methods include bagging
[2], boosting [14], random forests[3], Bayesian averaging [9]
and stacking [17]. Much of the interest in ensemble methods
has been fueled by their excellent empirical performance.

Ensembles, however, have one disadvantage that often
is overlooked: many ensembles are large and slow. This
makes ensemble methods unusable for applications with lim-
ited memory, storage space, or computational power such as
portable devices or sensor networks, and for applications in
which real-time predictions are needed. Consider, for exam-
ple, boosted decision trees, bagged decision trees or random
forests. These models often contain hundreds or thousands
of decision trees, each of which must be stored, and executed
at run-time to make predictions. Executing a single tree is
fast, but executing a thousand trees is not.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’06, August 20–23, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-339-5/06/0008 ...$5.00.

In this paper we show how to compress the function that
is learned by a complex model into a much smaller, faster
model that has comparable performance. Specifically, we
show how to train compact artificial neural nets to mimic the
function learned by ensemble selection, an ensemble learning
method introduced by Caruana et al. [5]. To achieve this,
we take advantage of the well known property of artificial
neural nets, namely that they are universal approximators:
given enough training data, and a large enough hidden layer,
a neural net can approximate any function to arbitrary pre-
cision. Instead of training the neural net on the original
(often small) training set used to train the ensemble, we use
the ensemble to label a large unlabeled data set and then
train the neural net on this much larger, ensemble labeled,
data set. This yields a neural net that makes predictions
similar to the ensemble, and which performs much better
than a neural net trained on the original training set.

The key difficulty when compressing complex ensembles
into simpler models this way is the need for a large unla-
beled data set. In some domains, unlabeled data is easy to
obtain. In other domains, however, large data sets (labeled
or unlabeled) are not available. In these domains, we gen-
erate synthetic cases that as closely as possible match the
distribution of the original training set. We introduce a new
method for generating synthetic cases called MUNGE that
outperforms other methods to which we have compared it.
Using MUNGE, we are able to train neural nets that are a
thousand times smaller and faster than ensemble selection
ensembles, but which have nearly the same performance as
the far more complex ensembles.

2. MODEL COMPRESSION
In some situations, it is not enough for a classifier or re-

gressor to be highly accurate, it also has to meet stringent
time and space requirements. In many cases, however, the
best performing model is too slow and too large to meet
these requirements, while fast and compact models are less
accurate, because either they are not expressive enough, or
they overfit to the limited training data. For such situations,
we propose using model compression to obtain fast, compact
yet highly accurate models.

The main idea behind model compression is to use a fast
and compact model to approximate the function learned by
a slower, larger, but better performing model. Unlike the
true function that is unknown, the function learned by a
high performing model is available and can be used to label
large amounts of pseudo data. A fast, compact and expres-
sive model trained on enough pseudo data will not overfit

and will approximate well the function learned by the high
performing model. This allows a slow, complex model such
as a massive ensemble to be compressed into a fast, compact
model such as a neural net with little loss in performance.

An important question is how do we get the pseudo data.
In some domains large amounts of unlabeled data is easy
to collect (e.g. in text, web and image domains) and can
be used as pseudo data. In other domains, however, unla-
beled data is not readily available and synthetic cases need
to be generated. This is more difficult than it might seem
at first. It is important that the synthetic data match well
the distribution of the real train and future test cases. Usu-
ally real data lay in a small submanifold of the complete
attribute space. If the synthetic data is drawn from a distri-
bution that has little overlap to this manifold, the labeled
synthetic points will fail to capture the target function in
the region of interest. On the other hand, if the distribu-
tion from which the synthetic data is sampled is too broad,
only a fraction of the points will be drawn from the true
manifold and many more samples will be necessary to ade-
quately sample the region of interest. The best case is when
the synthetic distribution is very similar to the true distribu-
tion. Then a minimum number of samples will be necessary
to adequately sample the target function.

We experiment with three methods of generating pseudo
data: RANDOM, generate data for each attribute indepen-
dently from its marginal distribution; NBE, estimate the
joint density of attributes using the Naive Bayes Estimation
algorithm [12] and then generate samples from this joint dis-
tribution; and MUNGE, a new procedure we propose that
samples from a non-parametric estimate of the joint density.

2.1 RANDOM
The simplest way to generate pseudo data is to indepen-

dently sample the value of each attribute from the marginal
distribution of that attribute. This is the procedure predom-
inantly used in the literature whenever there is a need for
artificial data (e.g. [13, 6]). Usually the nominal attributes
are generated from a multinomial distribution whose param-
eters are estimated from the training data. The continuous
attributes are usually modeled using a uniform distribution,
a Gaussian distribution with mean and variance estimated
from the training set, or via kernel density estimation [15].

The RANDOM method for generating pseudo data uses
a nonparametric bootstrap approach. For each attribute,
a value is selected uniformly at random from the multiset
(bag) of all values for that attribute present in the train set.1

When the attribute values are generated independently,
all conditional structure is lost and the pseudo examples are
generated from a distribution that is usually much broader
than the true distribution of the data. As a consequence
many of the generated pseudo examples will cover uninter-
esting parts of the space, and this may prevent the mimic
model from focusing on the important regions.

2.2 NBE
Another approach to generating pseudo data is to esti-

mate the joint distribution of attributes using the training
set, then sample pseudo examples from this joint distribu-

1For nominal attributes this is equivalent to generating the
values from the multinomial distribution. For continuous
attributes this procedure is slightly different than previously
proposed ones, but generates similar values in practice.

tion. Assuming that the true joint distribution can be esti-
mated well, the conditional structure of the domain would
be preserved and the new artificial examples would cover
well the interesting regions of the space.

One way to estimate the joint distribution of a set of vari-
ables is to use mixture model algorithms. These algorithms
model the data as coming from a mixture of components,
each component with a different distribution. The most well
known algorithm in this category, used in domains with only
continuous attributes is the mixture of Gaussians [7], where
each component consists of a Gaussian distribution with a
different mean and covariance matrix.

A mixture model algorithm that handles both discrete
and continuous attributes, NBE (Naive Bayes Estimation),
was recently introduced by Lowd and Domingos [12]. We
used NBE to estimate the joint distribution of the attributes
because it handles mixed attributes, it is simple to use, it
performs as well as learning a Bayesian Network from the
same data [12], and it is readily available.

2.3 MUNGE
Estimating a full joint distribution is difficult when there

are many attributes and few training cases. Instead of trying
to reliably estimate a joint distribution, we have developed a
new algorithm that samples directly from a non-parametric
estimate of the joint distribution.

Algorithm 1 MUNGE

Require: set of training examples T , size multiplier k,
probability parameter p, local variance parameter s

Returns: unlabeled training set D of size k × size(T)
1: D← ∅
2: loop k times
3: T ′ ← T
4: for all examples e in T ′ do

5: e′ ← the closest example of e from T ′

6: for all attributes a of example e (excluding the
label attribute) do

7: if a is continuous then

8: with probability p: ea ← norm(e′
a
, sd), and

e′
a
← norm(ea, sd), where sd ← |ea − e′

a
|/s,

and norm(a, b) is a random value taken from
the normal distribution with mean a and stan-
dard deviation b.

9: else

10: with probability p: swap the values of attribute
a for examples e and e′

11: end if

12: end for

13: end for

14: D ← D
�

T ′

15: end loop

16: Return D

Starting from the original training set, we visit each ex-
ample once and determine its closest neighbor. To measure
distance between cases, we use euclidean distance for con-
tinuous attributes and hamming distance for nominal at-
tributes. Continuous attributes are linearly scaled to [0,1].

Given example e and its closest other example e′, the val-
ues for each noncontinuous attribute are swapped between
e and e′ with probability p and are left unchanged with
probability 1 − p. For each continuous attribute a, with

TRUE DIST RANDOM

NBE MUNGE

Figure 1: Synthetic data generated for a simple 2D

problem.

probability p, ea is assigned a random value drawn from a
normal distribution with mean e′

a
and standard deviation

sd = |ea − e′
a
|/s, and e′

a
is assigned a random value drawn

from the normal distribution with mean ea and the same
standard deviation sd. We call this approach to generating
artificial data by swapping values between neighboring cases
MUNGE.2 The method is presented in Algorithm 1.

Figure 1 shows samples generated from a simple 2D dis-
tribution (TRUE DIST), and the distributions learned by
RANDOM, NBE and MUNGE from a train set of 4000
points drawn from TRUE DIST. As expected, the samples
generated by RANDOM cover an area much larger than the
true distribution, so only relatively few of the samples over-
lap with the region of interest. NBE does a better job at
approximating the true distribution, but still has problems,
especially in the “corners”. Of the three methods, MUNGE
clearly approximates the true distribution the best.

3. EXPERIMENTAL EVALUATION
We evaluate the effectiveness of model compression on

eight binary classification problems. ADULT, COVTYPE
and LETTER are from the UCI Repository [1]. COVTYPE
has been converted to a binary problem by treating the
largest class as positive and the rest as negative. We con-
verted LETTER to a binary problem in two ways. LET-
TER.p1 treats the letter ”O” as positive and the remaining
25 letters as negative, yielding a very unbalanced binary
problem. LETTER.p2 uses letters A-M as positives and
the rest as negatives, yielding a difficult, but well balanced,
problem. HS is the IndianPine92 data set [10] where the dif-
ficult class Soybean-mintill is the positive class. SLAC is a
problem from the Stanford Linear Accelerator. MEDIS and
MG are medical data sets. See Table 1 for characteristics of
these problems.

3.1 Experimental Setup
We experiment with using neural networks to compress

the models built using the ensemble selection algorithm pro-
posed by Caruana et al. in [5]. The ensemble models gener-
ated by ensemble selection are very large, complex models
that have very good generalization performance, thus they
are a perfect candidate for model compression.

2The dictionary defines munge as “To imperfectly transform
information” or “To modify data in a way that cannot be
described succinctly”.

Table 1: Description of problems.

problem #attr train size test size %poz

adult 14/104 4000 35222 25%
covtype 54 4000 25000 36%
hs 200 4000 4366 24%
letter.p1 16 4000 14000 3%
letter.p2 16 4000 14000 53%
medis 63 4000 8199 11%
mg 124 4000 12807 17%
slac 59 4000 25000 50%

 0.26

 0.265

 0.27

 0.275

 0.28

 0.285

 0.29

 0.295

 0.3

4k 10k 25k 50k 100k 200k 400k

R
M

S
E

training size

RAND
NBE

MUNGE
ensemble selection

best single model
best neural net

Figure 2: Average perf. over the eight problems.

Ensemble selection first builds a library of diverse base-
level modes using many different learning algorithms and
parameter settings. After the library is built, the basic en-
semble selection procedure builds the ensemble model by
greedily selecting at each iteration the model from the li-
brary that when added to the ensemble improves the per-
formance of the ensemble the most. Caruana et al. also
propose a number of enhancements to the basic ensemble
selection algorithm that improve its performance, but as a
side effect increase the size of the ensemble by increasing the
number of base-level models it contains.

For all problems, a training set of 4000 points is used
to train the base-level models, and a validation set of 1000
points is used as hill climb set for ensemble selection. For
compression, the 4000 training points are used as a training
set for the three algorithms for producing artificial data:
RANDOM, NBE and MUNGE. The artificial data generated
with each algorithm is then labeled by the ensemble model
and used to train a neural net model that will mimic the
ensemble. When necessary, the 1000 points validation set is
used for early stopping.

We compare the performance of the compressed models
with the performance of the target ensemble selection mod-
els on the eight test problems. We also show the perfor-
mance of the best single base-level model from the ensemble
selection library, selected using the same 1000 points valida-
tion sets, and the best neural network that could be trained
on the original 4000 points training sets, using the 1000
points validation sets for early stopping and for selecting
the number of hidden units. All the reported results reflect
the root-mean-squared-error (RMSE) of models predictions
to the binary 0/1 targets on large independent final test sets.

 0.315

 0.32

 0.325

 0.33

 0.335

 0.34

2561286432168421

R
M

S
E

number of hidden units

ADULT

MUNGE
ensemble selection

best single model
best neural net

 0.33

 0.34

 0.35

 0.36

 0.37

 0.38

 0.39

 0.4

2561286432168421

number of hidden units

COVTYPE

MUNGE
ensemble selection

best single model
best neural net

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

2561286432168421

number of hidden units

HS

MUNGE
ensemble selection

best single model
best neural net

 0.07
 0.08
 0.09

 0.1
 0.11
 0.12
 0.13
 0.14
 0.15
 0.16
 0.17
 0.18

2561286432168421

R
M

S
E

number of hidden units

LETTER.P1

MUNGE
ensemble selection

best single model
best neural net

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

2561286432168421

number of hidden units

LETTER.P2

MUNGE
ensemble selection

best single model
best neural net

 0.276
 0.278

 0.28
 0.282
 0.284
 0.286
 0.288

 0.29
 0.292
 0.294
 0.296

2561286432168421

number of hidden units

MEDIS

MUNGE
ensemble selection

best single model
best neural net

 0.29

 0.295

 0.3

 0.305

2561286432168421

R
M

S
E

number of hidden units

MG

MUNGE
ensemble selection

best single model
best neural net

 0.422

 0.424

 0.426

 0.428

 0.43

 0.432

 0.434

 0.436

2561286432168421

number of hidden units

SLAC

MUNGE
ensemble selection

best single model
best neural net

 0.26

 0.27

 0.28

 0.29

 0.3

 0.31

 0.32

 0.33

 0.34

2561286432168421

number of hidden units

AVERAGE

MUNGE
ensemble selection

best single model
best neural net

Figure 3: Performance of compressed models vs compressed models complexity.

3.2 Results
Figure 2 shows the average RMSE performance on the

eight test problems. Lower RMSE represents better per-
formance. The top horizontal line in the figure shows the
performance of the best neural nets we could train on the
original 4k train set. The bottom horizontal line shows the
performance of ensemble selection trained on the same data.
Note that the models trained with ensemble selection per-
form considerably better than the neural net models. The
horizontal line in the middle is the average performance of
the best single base-level models from the ensemble selec-
tion libraries, before an ensemble has been selected. This
line represents the best performance we could achieve with
any of the following learning methods: SVMs, bagged trees,
boosted trees, boosted stumps, simple decision trees, ran-
dom forests, neural nets, logistic regression, k-nearest neigh-
bor, and naive Bayes.

The other lines in Figure 2 show the performance of mimic
neural nets trained on different amounts of pseudo data la-
beled by the ensemble models. The lines for RANDOM,
NBE, and MUNGE correspond to neural nets with 128 hid-
den units trained on pseudo data generated using the three
methods described in Section 2. The graph starts at 4k
where there is no pseudo data added to the train sets. Be-
cause of this, the performance of all three methods is similar
to the performance of the best neural nets we could train on

the original train set. Performance of the mimic nets is
slightly worse because they are restricted to using only 128
hidden units, which is not always optimal.

As the size of the train data increases beyond 4k, more
pseudo data is being added to the train sets. At 400k, the
train set contains 396k of pseudo data and the original 4k
train data. For mimic nets trained with pseudo data gen-
erated by RANDOM, performance improves slightly at 10k,
and at 100k and beyond performs worse than a neural net
trained on just the original 4k train set. The mimic neu-
ral nets trained on pseudo data generated by NBE perform
better, though the overall pattern is similar to the graph for
RANDOM. The peak performance of the NBE trained nets
occurs when the train set contains about 20k of pseudo data
and 4k of the original data, then degrades as more artificial
data is added to the train set.

The mimic neural nets trained on pseudo data generated
with MUNGE dominate the nets trained with RANDOM
and NBE data. Moreover, the performance with MUNGE
does not degrade as more data is added to the pseudo train
set. On average, once the pseudo training set contains 100k
or more data, the mimic neural nets perform considerably
better than the best individual models in the ensemble li-
braries, and nearly as well as the target ensemble itself.
This is remarkable given that the mimic neural nets are 100-
100,000 times smaller than the ensembles, and 100 to 10,000

Table 2: RMSE results.

munge ensemble ann single ratio

adult 0.325 0.317 0.328 0.319 0.29
covtype 0.340 0.334 0.378 0.349 0.84
hs 0.204 0.213 0.231 0.231 1.47
letter.p1 0.075 0.075 0.092 0.092 1.01
letter.p2 0.179 0.178 0.228 0.203 0.98
medis 0.277 0.278 0.279 0.279 2.29
mg 0.288 0.287 0.295 0.290 0.88
slac 0.422 0.424 0.428 0.427 1.69

average 0.264 0.263 0.282 0.274 0.97

times faster to execute. It suggests that much smaller high
performing models are possible if we only knew how to train
them on the original training data. In summary, it appears
that MUNGE is the preferred method for generating pseudo
data. In the experiments in the remainder of this section we
will examine results for MUNGE only.

Figure 3 presents the performance of the mimic neural
nets trained with MUNGE data as a function of the num-
ber of hidden units in the trained network. Performance
is shown for all eight problems. The graph in the bottom
right shows the average performance across all eight prob-
lems. All MUNGE neural nets are trained on pseudo data
containing 100k samples (4k original data + 96k MUNGE
data). The graphs also show the performance of the best
neural nets trained on the original data, the performance of
the best single models from the ensemble libraries and the
performance of the target ensemble selection models.3

Looking at the graph that averages the eight problems, the
overall trend is that performance improves until around 128
hidden units when it levels off. Looking at graphs for each
individual problem, we see that for some of the problems a
small number of hidden units is enough for obtaining good
performance. For MEDIS and MG, performance does not
improve if we use networks with more than 2 hidden units,
and for SLAC 16 hidden units are enough. Since the training
set is large enough to prevent overfitting, performance does
not degrade as more hidden units are added.

The ADULT and COVTYPE problems are the only ones
where there is a significant difference between the perfor-
mance of the MUNGE neural nets and the performance of
the ensemble selection models. A more detailed discussion of
the results on these datasets will follow later in this section,
and in Section 4.

Figures 2 and 3 show that, on average, performance of
the mimic networks trained on the MUNGE data improves
with more hidden units and more pseudo data. As a final
experiment, we compress the ensemble selection models us-
ing 256 hidden unit nets and 400k MUNGE data for every
problem. Table 2 shows, for each of the eight problems, the
performance of mimic neural nets trained on the MUNGE
data, the target ensemble selection model, the best neural
net trained on the original data, and the best single model
from the ensemble library. The performance of the mimic
neural nets is as good as or better than the performance of
the ensemble models they are trained to mimic on six of the

3On HS, LETTER.p1 and MEDIS problems the best single
model from the ensemble library is actually a neural net so
the lines for best neural net and best single model overlap.

Table 3: Time in seconds to classify 10k cases.

munge ensemble ann single

adult 7.88 8560.61 3.94 48.31
covtype 4.46 3440.99 1.05 37.31
hs 12.09 1817.17 3.85 3.85
letter.p1 2.59 1630.21 0.25 0.25
letter.p2 2.59 2651.95 0.74 526.34
medis 4.78 190.18 2.85 2.85
mg 6.98 1220.04 1.80 53.58
slac 3.60 23659.03 2.85 74.48

average 5.62 5396.27 2.17 93.37

eight problems, and always better than the performance of
neural nets trained on the original 4k data.

The values in the last column of the table indicate how
effective compression is at retaining the performance of the
target ensemble selection models. These values are the ra-
tio between the improvement in performance the mimic nets
provide over the best neural nets and the improvement in
performance the target ensemble selection models provide
over the best neural nets. For example, if the mimic neural
net has performance half way between the original neural
net and the ensemble, the ratio is 0.5. If the mimic neural
net has performance equal to the target ensemble, the ratio
is 1.0. The only problem on which the ratio is less than
0.8 is ADULT. (The results on this problem are discussed
in the next paragraph.) For a few problems the ratio is
better than 1.0, indicating that the mimic neural net out-
performs the ensemble. Note, however, that in two of the
cases where the ratio is much larger than 1 (SLAC at 1.69
and MEDIS at 2.29), the range in performance is very small
so this large ratio does not actually indicate a very large
increase in performance. The ratio in the bottom row is the
ratio calculated for the average RMSE performances in the
table (not the average of the ratios, which would be inflated
by the two problems with artificially high ratios). On aver-
age, model compression with MUNGE is able to achieve 97%
of the performance increase that could at best be expected.

The only problem for which compression is ineffective is
ADULT. On this problem the mimic net performs only a
little better than a neural net trained on the original 4k
data, and the mimic net does not perform as well as the best
single model in the ensemble selection library. Interestingly,
ADULT is the only data set that has high-arity nominal
attributes. The three attributes with the highest arity have
14, 16, 41 unique values. To train a neural net on ADULT,
these attributes must first be converted to 14, 16, and 41
distinct binary attributes. The ADULT problem has only
14 attributes to begin with, yet these three attributes alone
expand to 71 sparsely coded binary inputs. It is possible
that neural nets are not well suited to this kind of problem,
and this may prevent the mimic neural net from learning
the ensemble target function. An alternate possibility is
that the MUNGE procedure is not effective at generating
pseudo data for this kind of problem.

Table 3 shows the time in seconds required to classify
10,000 test cases for the mimic neural nets with 256 hidden
units, the target ensemble models trained by ensemble se-
lection, the best neural nets trained on the original 4k train
set and the single best model in the ensemble library. There

Table 4: Size of the models in MB.

munge ensemble ann single

adult 0.45 1234.72 0.22 3.95
covtype 0.23 1108.16 0.03 3.41
hs 0.79 74.37 0.12 0.12
letter.p1 0.08 1.23 0.01 0.01
letter.p2 0.08 325.80 0.04 0.07
medis 0.27 5.24 0.14 0.14
mg 0.50 25.75 0.03 3.25
slac 0.25 1627.08 0.13 0.30

average 0.33 550.29 0.09 1.41

is significant variability in the speed of the best single model
because different kinds of models are best for different prob-
lems and some of the models (e.g. boosted trees) are much
more expensive than others (e.g. logistic regression). As
expected, the ensemble is extremely expensive. On average,
the ensemble takes about 0.5 seconds to classify a single
training case (on a single workstation) and, on the SLAC
problem, it takes 2.4 seconds per test case! The mimic neu-
ral nets, however, are very fast and take on average only
about 0.5 milliseconds per test case.4

Table 4 shows the size in megabytes for the different mod-
els in Table 2. A similar picture emerges as with execution
times: on average ensembles are about 500 megabytes, about
500 times larger than the best single models, and the largest
ensembles are more than a gigabyte. The mimic neural nets,
however, are four times smaller than the best single models,
and more than 1000 times smaller than the ensembles.

4. DISCUSSION
The number of hidden units needed in the compression

neural net to mimic the ensemble function provides an indi-
cation of how complex the function learned by the ensemble
actually is. For some problems, only a few hidden units
were required to learn the ensemble function with high fi-
delity. For other problems (e.g. COVTYPE) the target
ensemble function is more complex, and requires using 128
hidden units or more. Note that one cannot always use the
size of a neural net trained on the original training data
as a measure of function complexity because of the interac-
tion between overfitting and network size and train set size.
With compression, however, we can make the train set size
arbitrarily large, so that overfitting is not an issue, and thus
reliably measure the effect of network size on performance.

Generating unlabeled pseudo data is not computationally
expensive. Labeling large amounts of pseudo data, however,
can be expensive if the target model is a large, complex
ensemble. Training the neural net can also be expensive,
particularly if the problem has many input features, requires
a net with many hidden units, and/or requires a large pseudo
training set. In the worst case, it can be more expensive

4The speed of different models depends significantly on how
they are implemented. The times reported here are for typ-
ical implementations. For example, we use the SNNS neu-
ral net package [18], the IND decision tree package [4], the
SVMlight SVM package [11], WEKA [16] random forests,
etc. With care, some of these numbers probably could be
improved by a factor of 10 or more, though we suspect the
overall picture would not change substantially.

 0.33

 0.34

 0.35

 0.36

 0.37

 0.38

 0.39

 0.4

4k 10k 25k 50k 100k 200k 400k

R
M

S
E

training size

RAND
NBE

MUNGE
TRUE DIST

ensemble selection
best single model

best neural net

Figure 4: Perf. vs train set size for COVTYPE.

to label the pseudo data and train the mimic neural net
than it was to train the original ensemble library and build
the ensemble model. The expense of model compression is
justified only when high performing models must be used in
applications with limited storage or computational power,
in applications where predictions are needed in real time, or
where there will be very many test cases.

The amount of pseudo data needed to train a high-fidelity
mimic model depends on the effectiveness of the method for
generating artificial cases. It is clear from Figure 2 that
MUNGE is more effective than RANDOM and NBE, but
it would be interesting to assess the sample efficiency of
MUNGE compared to unlabeled data drawn from the true
distribution. Fortunately, more than 500,000 cases are avail-
able for the COVTYPE problem. Figure 4 shows the per-
formance of the mimic neural nets when pseudo data is gen-
erated using RANDOM, NBE and MUNGE, as well as the
performance of the mimic nets when real unlabeled test cases
are used instead of pseudo data (TRUE DIST). Data drawn
from the true distribution appears to be about 2-8 times
as efficient as MUNGE data: MUNGE needs about 25k to
match TRUE DIST at 10k, about 50k to match TRUE DIST
at 15k, and about 200k to match TRUE DIST at 25k. This
suggests that it may be possible to make further improve-
ments to MUNGE, and that in domains where unlabeled
data is available model compression will work even better.

Interestingly, on the HS problem, the performance of the
mimic neural net trained on MUNGE pseudo data is better
than the performance of the ensemble model it is trying to
mimic. See HS in Figure 3. We suspect that the ensemble
has overfit the data, and that the neural net may provide a
beneficial form of smoothing/regularization.

5. RELATED WORK
Zeng and Martinez also used neural nets to approximate

ensembles of classifiers [19]. In the experiments they pre-
sented, Zeng and Martinez tryed to approximate only en-
sembles of ten neural nets. The mimic nets were trained
on synthetic examples generated using an algorithm simi-
lar to RANDOM. We found that, although it yields an im-
provement on a couple of problems, on average, generating
synthetic data using RANDOM does not provide a signif-
icant improvement over simply training the neural nets on
the original data. Generating synthetic data using NBE

or MUNGE works much better. Also, Zeng and Martinez
showed that only a small number of synthetic examples,
comparable to the size of the initial train set, is sufficient
to obtain good results. This might be an indication that the
functions that were approximated, ensembles of ten neural
nets, were not hard enough to learn by a single neural net.
In contrast, we tried to approximate much harder functions
generated by ensemble selection, and as a consequence we
needed a lot more synthetic data to obtain the best results.

TREPAN was used to extract tree-structured represen-
tations of trained neural nets [6]. The TREPAN approach
also made use of additional artificial data generated from the
same train set as the one used for training the nets. New
examples were generated as needed by randomly selecting
new values for each attribute, while ensuring that some con-
straints are satisfied. For discrete attributes the values were
generated the same way as RANDOM. For continuous at-
tributes, a kernel density estimator [15] was used. Although
TREPAN models sometimes were more compact than the
neural nets they explained, and occasionally outperformed
decision trees trained directly on the original training data,
the goal in TREPAN was not to train compact models or
high performing models.

CMM is a meta-learner that learns one single model from
a bagged ensemble of the same type of models [8]. Again, the
approach makes use of additional, artificially created data
and labeled according to the bagged model. The method
used to generate synthetic data was specific to the base mod-
els used in the ensemble. The base models were decision rule
sets. For each decision rule in the rule set, some examples
were generated randomly from the hyperspace classified by
the decision rule. Although CMM generates smaller mod-
els, they are not optimized for size or performance, but for
comprehensibility instead.

DECORATE [13] uses artificial data to increase diversity
so that better ensembles can be trained. Before DECO-
RATE trains a new base learner, it generates and labels
new data the opposite way to the predictions of the current
ensemble. The new trained model is added to the current
ensemble only if the addition is beneficial to the ensemble.
This approach generates the synthetic data randomly from
the distribution of the train set. For continuous attributes,
the new values are generated from a Gaussian distribution
that has the same mean and standard deviation as the set of
values for that attribute. For discrete attributes, frequency
counts are used, which is similar to RANDOM.

6. CONCLUSIONS
Some of the highest performing models currently available

are complex ensembles containing hundreds or thousand of
base-level classifiers. These models have excellent perfor-
mance, but can be so large and slow that it may be infea-
sible to use them when memory or computational power is
limited, when predictions are needed in real time, or when
test sets are extremely large.

We present a method for model compression that is able to
train fast, compact models to mimic better performing, but
slow and complex models with little loss in performance.
Compression works by labeling a large unlabeled data set
with the target model, and then training a neural net us-
ing the newly labeled data. Where unlabeled data is not
available, we present a new method called MUNGE for gen-
erating pseudo data from a distribution similar to that of

the true data. We show that MUNGE compares favorably
with other methods for generating artificial cases. MUNGE,
however, is not as effective as drawing unlabeled data from
the true distribution, so using true unlabeled data is pre-
ferred when it is available.

We present experiments where complex ensemble models
are compressed using neural networks. Results on eight test
problems show that, on average, the loss in performance due
to compression is usually negligible, yet the mimic neural
nets are 1000 times smaller and 1000 times faster.

Acknowledgments
This work was supported by NSF Award 0412930.

7. REFERENCES
[1] C. Blake and C. Merz. UCI repository of machine learning

databases, 1998.

[2] L. Breiman. Bagging predictors. Machine Learning,
24(2):123–140, 1996.

[3] L. Breiman. Random forests. Machine Learning, 45(1):5–32,
2001.

[4] W. Buntine and R. Caruana. Introduction to IND and
recursive partitioning. Technical Report FIA-91-28, NASA
Ames Research Center, 10 1991.

[5] R. Caruana, A. Niculescu-Mizil, G. Crew, and A. Ksikes.
Ensemble selection from libraries of models. In Proc. 21st
International Conference on Machine Learning, 2004.

[6] M. W. Craven and J. W. Shavlik. Extracting tree-structured
representations of trained networks. In D. S. Touretzky, M. C.
Mozer, and M. E. Hasselmo, editors, Advances in Neural
Information Processing Systems, volume 8, pages 24–30. The
MIT Press, 1996.

[7] A. P. Dempster, N. M. Laird, and D. Rubin. Maximum
likelihood from incomplete data via the em algorithm. Journal
of the Royal Statistical Society, 1(39):1–38, 1977.

[8] P. Domingos. Knowledge acquisition from examples via
multiple models. In Proc. 14th International Conference on
Machine Learning, pages 98–106. Morgan Kaufmann, 1997.

[9] P. Domingos. Bayesian averaging of classifiers and the
overfitting problem. In Proc. 17th International Conf. on
Machine Learning, pages 223–230. Morgan Kaufmann, San
Francisco, CA, 2000.

[10] A. Gualtieri, S. R. Chettri, R. Cromp, and L. Johnson.
Support vector machine classifiers as applied to aviris data. In
Proc. Eighth JPL Airborne Geoscience Workshop, 1999.

[11] T. Joachims. Making large-scale SVM learning practical. In
Advances in Kernel Methods, 1999.

[12] D. Loyd and P. Domingos. Naive Bayes models for probability
estimation. In Proceedings of the 22nd International
Conference on Machine Learning (ICML’05), Bonn,
Germany, 2005.

[13] P. Melville and R. Mooney. Constructing diverse classifier
ensembles using artificial training examples. In Proceedings of
the IJCAI-2003, pages 505–510, Acapulco, Mexico, 2003.

[14] R. Schapire. The boosting approach to machine learning: An
overview. In MSRI Workshop on Nonlinear Estimation and
Classification, 2001.

[15] B. W. Silverman. Density Estimation for Statistics and Data
Analysis. Chapman and Hall, 1986.

[16] I. Witten and E. Frank. Data Mining: Practical Machine
Learning Tools and Techniques with Java Implementations.
Morgan Kaufmann, 1999.

[17] D. H. Wolpert. Stacked generalization. Neural Networks,
5:241–259, 1992.

[18] A. Zell, N. Mache, R. Huebner, M. Schmalzl, T. Sommer, and
T. Korb. SNNS: Stuttgart neural network simulator. Technical
report, University of Stuttgart, Stuttgart, 1992.

[19] X. Zeng and T. R. Martinez. Using a neural network to
approximate an ensemble of classifiers. Neural Processing
Letters, 12(3):225–237, 2000.

