Revisiting the Power of Non-Equivocation in Distributed Protocols

Benjamin Chan

Joint work with Naama Ben-David & Elaine Shi

Cornell Tech
July 28 2022 (PODC)
What exactly is it about Byzantine behavior that makes it more difficult to deal with than, say, crash faults?

This Talk: Equivocation.
(cryptography lets us deal with everything else).
Preliminaries
Our Setting: Asynchronous Networks

Network Adversary may choose to deliver messages between players in any order (with eventual delivery)

- pairwise channels
- adversary sees message contents
Recall: Asynchronous Consensus in the presence of “crash faults”

- feasible for $f < n/2$
- (probabilistic termination)

Agreement: honest players must decide the same value
Recall: Asynchronous Consensus in the presence of “crash faults”

- feasible for $f < \frac{n}{2}$
- (probabilistic termination)

why $f < \frac{n}{2}$?

n players

0

partition

0

decide 0 (if $n - f \leq \frac{n}{2}$)

1

decide 1

1

1
Recall: Asynchronous Byzantine Agreement

- feasible for $f < \frac{n}{3}$
- a rather annoying loss in fault tolerance
- feels like a complete change in setting

Byzantine failures can behave arbitrarily e.g. can “equivocate”
Q: Why does byzantine behavior break $f<n/2$ threshold?

A: Byzantine attackers can “equivocate.”

“Say different things to different people”
Q: Why does byzantine behavior break $f < n/2$ threshold?

A: Byzantine attackers can “equivocate.”

[DLS88]
Q: Why does byzantine behavior break $f < n/2$ threshold?

A: Byzantine attackers can “equivocate.”

[DL88]

But we really like our $f < n/2$ thresholds...
This talk: understanding the power of ✨ Non-Equivocation ✨, an up-and-coming primitive
This talk: understanding the power of ✨ Non-Equivocation ✨, an up-and-coming primitive

If we prevent byzantine players from equivocating

"I saw 0"

"I saw 1"

can we get $f < n/2$?
This talk: understanding the power of Non-Equivocation, an up-and-coming primitive

If we prevent byzantine players from equivocating

"I saw 0"

"I saw 1"

can we get f < n/2?

Interested in arbitrary protocols, not just consensus
This talk: understanding the power of Non-Equivocation, an up-and-coming primitive F_{NEQUIV}
This talk: understanding the power of 🌟 Non-Equivocation 🌟, an up-and-coming primitive

sequence #
e.g. m is player i's kth message
This talk: understanding the power of ✨ Non-Equivocation ✨, an up-and-coming primitive

player i

$\text{register}_i(k, m)$

Can only register one m per k

sequence #

e.g. m is player i’s kth message
This talk: understanding the power of Non-Equivocation, an up-and-coming primitive.
This talk: understanding the power of Non-Equivocation, an up-and-coming primitive

Can only register one \(m \) per \(k \)

sequence #
e.g. \(m \) is player \(i \)'s \(k \)th message
This talk: understanding the power of 🌟 Non-Equivocation 🌟, an up-and-coming primitive

player i

register$_i(k, m)$

Can only register one m per k

sequence #

e.g. m is player i’s kth message

F_{NEQUIV}

validate(i, k, m)

true if player i previously registered (k, m)

false otherwise

player j
This talk: understanding the power of ✨ Non-Equivocation ✨, an up-and-coming primitive

- **register\(_i\)(k, m)**
 - For player \(i\)
 - \(k, m\) is registered

- **validate\(_i\)(i, k, m)**
 - For player \(i\)
 - \(k, m\) is valid
 - \(true\) if player \(i\) previously registered \((k, m)\)
 - \(false\) otherwise

- **validate\(_j\)(i, k, m)**
 - For player \(j\)
 - \(k, m\) is valid for \(i\)

- **validate\(_h\)(i, k, m')**
 - For player \(h\)
 - \(k, m'\) is valid for \(i\)

- **F_NEQUIV**
 - A function or process

- **true**
 - If \(i\) previously registered \((k, m)\)

- **false**
 - Otherwise
This talk: understanding the power of ✨ Non-Equivocation ✨, an up-and-coming primitive

May be given by:
- Trusted Hardware (TPM, SGX)
- RDMA
- Blockchains

player i \(\text{register}_i(k, m)\) \rightarrow player j

\begin{align*}
\text{validate}(i, k, m) \quad & \text{true if} \\
& \text{player i previously registered (k,m)} \\
& \text{false otherwise}
\end{align*}
This talk: understanding the power of ✨Non-Equivocation✨, an up-and-coming primitive

May be given by:
- Synchrony

validate(i, k, m)

true if player i previously registered (k, m)
false otherwise

register_i(k, m)
Prior Work:

- Asynchronous Byzantine Agreement [CMSK07, CVL10]
- Multiparty Computation (Malicious)* [BBCK14, Cohen16]

\[
F_{\text{NEQUIV}} \text{ makes } f < n/2 \text{ feasible!}
\]

*running into problems when using ABA to run ACS [BC18]
makes $f < n/2$ feasible!

Prior Work:
- Asynchronous Byzantine Agreement [CMSK07, CVL10]
- Multiparty Computation (Malicious)* [BBCK14, Cohen16]

Q: is there a more direct relationship?
As protocol designers, given non-equivocation, can we reason about each byzantine fault, as if it were a crash fault?

*running into problems when using ABA to run ACS [BC18]
Prior Work:

- Asynchronous Byzantine Agreement [CMSK07, CVL10]
- Multiparty Computation (Malicious)* [BBCK14, Cohen16]

\[F_{NEQUIV} \] makes \(f < n/2 \) feasible!

Q: is there a more direct relationship? As protocol designers, given non-equivocation, can we reason about each byzantine fault, as if it were a crash fault?

Then intuition in the crash world could translate immediately to the Byzantine regime.

^ really nice!

*running into problems when using ABA to run ACS [BC18]
Our Work:
A 1:1 compiler from protocols for $f < n/2$ crash faults, to protocols for $f < n/2$ byzantine faults, using non-equivocation.
Yes!

Our Work:
A 1:1 compiler from protocols for $f < n/2$ crash faults, to protocols for $f < n/2$ byzantine faults, using non-equivocation.

Theorem:
Let Π be a n-party protocol, which optionally uses a PKI and pseudorandom coins. Suppose that Π computes some functionality F under f “crash faults” (that can choose their input), with communication complexity M bits. Then, compiled(Π) computes F under f byzantine faults using $\sim O(n^2M)$ bits, assuming a crs, PKI, and non-equivocation.
Roadmap

1. Introduction
2. What’s good about our compiler?
3. Compiler in a nutshell.
Our Work:
A 1:1 compiler from protocols for $f < n/2$ crash faults, to protocols for $f < n/2$ byzantine faults, using non-equivocation.

Key properties of our compiler:

- Supports arbitrary randomized protocols, secret state, and a PKI
Our Work:
A 1:1 compiler from protocols for $f < n/2$ crash faults, to protocols for $f < n/2$ byzantine faults, using non-equivocation.

Key properties of our compiler:

- Supports arbitrary randomized protocols, secret state, and a PKI
- “One to one”
 - no additional processes or additional messages
 - preserves fault tolerance: we “transform” every byzantine fault to a crash fault
Our Work:
A 1:1 compiler from protocols for $f < n/2$ crash faults, to protocols for $f < n/2$ byzantine faults, using non-equivocation.

Key properties of our compiler:

- Supports arbitrary randomized protocols, secret state, and a PKI
- “One to one”
 - no additional processes or additional messages
 - preserves fault tolerance: we “transform” every byzantine fault to a crash fault
- “small” overhead per message
Our Work:
A 1:1 compiler from protocols for $f < n/2$ crash faults, to protocols for $f < n/2$ byzantine faults, using non-equivocation.

Key properties of our compiler:

- Supports arbitrary randomized protocols, secret state, and a PKI
- “One to one”
 - no additional processes or additional messages
 - preserves fault tolerance: we “transform” every byzantine fault to a crash fault
- “small” overhead per message

Why do we want this?
Requirements of a protocol designer
(trying to solve some problem P)

Π

our protocol
(for P)

- randomized
 (e.g., for consensus)
- can use cryptography
 (e.g. for secure communication)
- efficiency and fault tolerance
 (i.e. minimize communication complexity)
Requirements of a protocol designer
(trying to solve some problem P)

Prior Work [CJKR12]

\prod
our protocol
(for P)

- randomized
 (e.g., for consensus)
- can use cryptography
 (e.g. for secure communication)
- efficiency and fault tolerance
 (i.e. minimize communication complexity)

exponential overhead
(in # of rounds of protocol)
Requirements of a protocol designer
(trying to solve some problem P)

\[\Pi \]

our protocol
(for P)

Prior Work [CJKR12]

- randomized
 (e.g., for consensus)
- can use cryptography
 (e.g., for secure communication)
- efficiency and fault tolerance
 (i.e., minimize communication complexity)

strong limitations that we overcome in this work.

exponential overhead
(in # of rounds of protocol)
Compiler in a Nutshell
Our Work:
A 1:1 compiler from protocols for $f < n/2$ crash faults, to protocols for $f < n/2$ byzantine faults, using non-equivocation.

Start with the crash fault protocol $\Pi = \{\text{next_state}_i\}_{i \in [n]}$ for player i running state S_{k-1}.
Our Work:
A 1:1 compiler from protocols for $f < \frac{n}{2}$ crash faults, to protocols for $f < \frac{n}{2}$ byzantine faults, using non-equivocation.

Start with the crash fault protocol $\Pi = \{\text{next}_i \}_{i \in [n]}$

Player i running protocol Π

State S_{k-1}

Multicast m

Player j

Multicast model w.l.o.g.!
Our Work:
A 1:1 compiler from protocols for $f < n/2$ crash faults, to protocols for $f < n/2$ byzantine faults, using non-equivocation.

Start with the crash fault protocol $\Pi = \{\text{next}_\text{state}_i\}_{i \in [n]}$.

- player i running Π
- state S_{k-1}
- multicast m
- if $m \neq \bot$, flip coins r
- $(S_k, m') = \text{next}_\text{state}_i(S_{k-1}, m, r)$
- state S_k
- player j
Our Work:
A 1:1 compiler from protocols for $f < n/2$ crash faults, to protocols for $f < n/2$ byzantine faults, using non-equivocation.

Start with the crash fault protocol $\Pi = \{\text{next}_i \mid i \in [n]\}$

- Player i running Π
- Multicast m
- If $m \neq \bot$, flip coins r
 - $(S_k, m') = \text{next}_i(S_{k-1}, m, r)$
- Multicast m'

```
player i
<table>
<thead>
<tr>
<th>state $S_{k-1}$</th>
</tr>
</thead>
</table>
| player j
| state $S_k$     |
| player p
```
Now, what if player i is Byzantine?

Our Work:
A 1:1 compiler from protocols for $f < n/2$ crash faults, to protocols for $f < n/2$ byzantine faults, using non-equivocation.

If $m \neq \bot$, flip coins r

$$(S_k, m') = \text{next}_i(S_{k-1}, m, r)$$
An age-old approach: given a byzantine fault, force it to behave like a crash fault. (A GMW-style compiler)
An age-old approach: given a byzantine fault, force it to behave like a crash fault. (A GMW-style compiler)

1. Force player \(i \) to correctly evaluate its state transition.

\[
\text{if } m \neq \bot, \text{ flip coins } r \\
(S_k, m') = \text{next_state}_i(S_{k-1}, m, r)
\]
An age-old approach: given a byzantine fault, force it to behave like a crash fault.
(A GMW-style compiler)

1. Force player i to correctly evaluate its state transition.

 stateupdate$_{i,k}$ messages: a proof that player i correctly evaluated its kth transition
 given input m and the correctness of first $k-1$ transitions

 If $m \neq \perp$, flip coins r

 $$(S_k, m') = \text{next_state}_i(S_{k-1}, m, r)$$

 Multicast m', **stateupdate$_{i,k}$**
An age-old approach: given a byzantine fault, force it to behave like a crash fault. (A GMW-style compiler)

1. Force player i to correctly evaluate its state transition.

 $\text{stateupdate}_{i,k} \text{ messages: a proof that player } i \text{ correctly evaluated its } k\text{th transition given input } m \text{ and the correctness of first } k-1 \text{ transitions}$

Problem: player i wants to keep its coins and state private!

See paper: a (standard) solution using zero-knowledge proofs, commitments, and PRFs.
An age-old approach: given a byzantine fault, force it to behave like a crash fault.

(A GMW-style compiler)

1. Force player i to correctly evaluate its state transition.

 $\mathit{stateupdate}_{i,k}$ messages: a proof that player i correctly evaluated its kth transition given input m and the correctness of first $k-1$ transitions.
An age-old approach: given a byzantine fault, force it to behave like a crash fault. (A GMW-style compiler)

1. Force player i to correctly evaluate its state transition.

\[
\text{if } m \neq \bot, \text{ flip coins } r \\
(S_k, m') = \text{next_state}_i (S_{k-1}, m, r)
\]
An age-old approach: given a byzantine fault, force it to behave like a crash fault. (A GMW-style compiler)

1. Force player i to correctly evaluate its state transition.
2. Prevent player i from lying about the message m that it received.

$$\text{state } S_{k-1} \quad \text{multicast } m, \text{stateupdate}_{j,k^*} \quad \text{if } m \neq \perp, \text{ flip coins } r$$

$$(S_k, m') = \text{next_state}_i(S_{k-1}, m, r)$$

$$\text{multicast } m', \text{stateupdate}_{i,k}$$
An age-old approach: given a byzantine fault, force it to behave like a crash fault.
(A GMW-style compiler)

1. Force player i to correctly evaluate its state transition.
2. Prevent player i from lying about the message m that it received.
 a. m itself must be a product of a valid state transition by player j

$$
\text{if } m \neq \bot, \text{ flip coins } r
\left(S_k, m' \right) = \text{next}_i \left(S_{k-1}, m, r \right)
$$

$$
m', stateupdate_{i,k}
$$
An age-old approach: given a byzantine fault, force it to behave like a crash fault.

(A GMW-style compiler)

1. Force player i to correctly evaluate its state transition.
2. Prevent player i from lying about the message m that it received.
 a. m itself must be a product of a valid state transition by player j.
An age-old approach: given a byzantine fault, force it to behave like a crash fault. (A GMW-style compiler)

1. Force player i to correctly evaluate its state transition.
2. Prevent player i from lying about the message m that it received.
 a. m itself must be a product of a valid state transition by player j
 b. player i should not equivocate which m it received

```
\begin{align*}
\text{player } i & \quad \text{state } S_{k-1} \\
\text{multicast } m, stateupdate_{j,k^*} & \quad \text{player } j \\
\text{if } m \neq \bot, \text{ flip coins } r & \\
(S_k, m') = \text{next_state}_i(S_{k-1}, m, r) & \\
\text{multicast } m', stateupdate_{i,k} & \\
\text{forward } stateupdate_{j,k^*} & \\
\text{player } p & \quad \text{state } S_k
\end{align*}
```
An age-old approach: given a byzantine fault, force it to behave like a crash fault.

(A GMW-style compiler)

1. Force player i to correctly evaluate its state transition.
2. Prevent player i from lying about the message m that it received.
 a. m itself must be a product of a valid state transition by player j
 b. player i should not equivocate which m it received

\[
\text{if } m \neq \bot, \text{ flip coins } r \\
(S_k, m') = \text{next}_i(S_{k-1}, m^*, r)
\]
An age-old approach: given a byzantine fault, force it to behave like a crash fault. (A GMW-style compiler)

1. Force player i to correctly evaluate its state transition.
2. Prevent player i from lying about the message m that it received.
 a. m itself must be a product of a valid state transition by player j
 b. player i should not equivocate which m it received
An age-old approach: given a byzantine fault, force it to behave like a crash fault.
(A GMW-style compiler)

1. Force player i to correctly evaluate its state transition.
2. Prevent player i from lying about the message m that it received.
 a. m itself must be a product of a valid state transition by player j
 b. player i should not equivocate which m it received

\[
\text{multicast } m, \text{stateupdate}_{j,k^*} \\
\text{multicast } m', \text{stateupdate}_{i,k} \\
\text{forward stateupdate}_{j,k^*}
\]
An age-old approach: given a byzantine fault, force it to behave like a crash fault. (A GMW-style compiler)

1. Force player \(i \) to correctly evaluate its state transition.
2. Prevent player \(i \) from lying about the message \(m \) that it received.
 a. \(m \) itself must be a product of a valid state transition by player \(j \)
 b. player \(i \) should not equivocate which \(m \) it received
An age-old approach: given a byzantine fault, force it to behave like a crash fault. (A GMW-style compiler)

1. Force player i to correctly evaluate its state transition.
2. Prevent player i from lying about the message m that it received.
 a. m itself must be a product of a valid state transition by player j
 b. player i should not equivocate which m it received

Non-Equivocation forces player i to commit to a single state transition (per k) in honest view.
In the end, validation is easy

kth state transition

player i

multicast \(m', stateupdate_{i,k} \)
forward \(stateupdate_{j,k^*} \)

player k

player j
In the end, validation is easy

- Validate the first $k-1$ state transitions for player i.
- Validate all k^* state transitions for player j.
- Finally, check that $\text{stateupdate}_{i,k}$ is correct and not equivocated.
In the end, validation is easy

kth state transition

player i

multicast $m', stateupdate_{i,k}$

forward $stateupdate_{j,k^*}$

player k

- validate the first $k-1$ state transitions for player i
- validate all k^* state transitions for player j
- Finally, check that $stateupdate_{i,k}$ is correct and not equivocated.

should have already been done previously during protocol execution!
Wrapping it up: an intuitive security proof

Any behavior that passes validation, can be caused by a crash fault.
Wrapping it up: an intuitive security proof

Any behavior that passes validation, can be caused by a crash fault.

compiled(Π)

\[\mathcal{F}_{\text{NEQUIV}} \]

A byzantine adversary
Wrapping it up: an intuitive security proof

Any behavior that passes validation, can be caused by a crash fault.

\[
\text{compiled}(\Pi) \cong \Pi \quad \text{reduction}
\]

Looks like a crash fault adversary
Wrapping it up: an intuitive security proof

Any behavior that passes validation, can be caused by a crash fault.

\[\text{compiled}(\Pi) \]

\[\mathcal{F}_{\text{NEQUIV}} \]

A byzantine adversary

\[\sim \]

the outcomes of the protocols in the two worlds are indistinguishable

\[\Pi \]

\[\text{reduction} \]

Looks like a crash fault adversary
Wrapping it up: an intuitive security proof

Any behavior that passes validation, can be caused by a crash fault.

\(\text{compiled}(\Pi) \)

\(F_{\text{NEQUIV}} \)

A byzantine adversary

\(\Pi \)

\(\approx \)

\(\text{UC security:} \)

Where the adversary chooses the input/sees the output of all processes (in both worlds)

reduction

Looks like a crash fault adversary
Final Corollaries

Assuming a CRS, a PKI, and F_{NEQUIV}:

- Asynchronous Byzantine Agreement for $f < n/2$ [compiling AAKS17]
- Asynchronous Multiparty Computation for $f < n/2$ [compiling any crash-fault protocol]
- Can compile arbitrary protocols with secret state.
Final Corollaries

Assuming a CRS, a PKI, and F_{NEQUIV}

- Asynchronous Byzantine Agreement for $f < n/2$ [compiling AAKS17]
- Asynchronous Multiparty Computation for $f < n/2$ [compiling any crash-fault protocol]
- Can compile arbitrary protocols with secret state.

Future Work

- Further efficiency/setup improvements with the compiler
- Weaker notions of non-equivocation, or less cryptography?
- Applications
Conclusion: a Takeaway

- **Equivocation essentially characterizes Byzantine faults** (compared to crash faults), even in settings with secret state, assuming cryptography and setup.
- Synthesize a somewhat messy literature on the capabilities of non-equivocation, showing a compiler.
- A nice security proof!

Thank You!!!