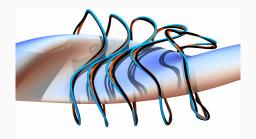
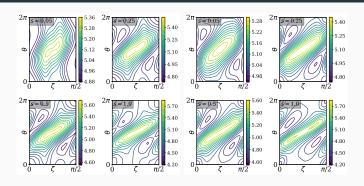
Cornell Simons Retrospective


David Bindel 14 Jul 2025

Department of Computer Science Cornell University

Cornell Group (Over Time)

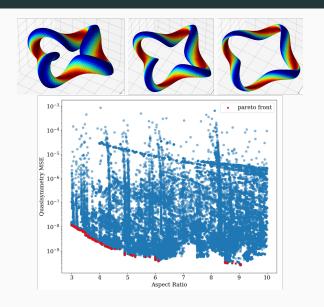
Coil Optimization Under Uncertainty

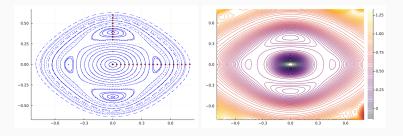


Black: ref; red: TuRBO-ADAM 10mm; blue: TuRBO-ADAM 20mm.

- Evaluate objective with FOCUS
- · Global search with modified TuRBO
- Local refinement with ADAM with control variate
- · About 0.01% the evaluation budget (vs J.-F. Lobsien).

(Glas, Padidar, Kellison, B, JPP 2022) + (Padidar, Zhu, Huang, Gardner, B, NeurIPS 2021)


Direct Optimization of Fast-Ion Confinement

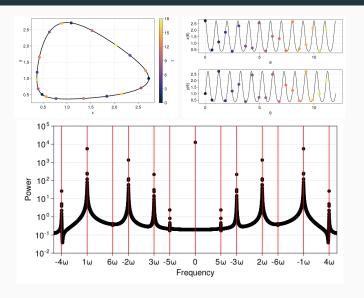

- Directly seek to minimize particle loss (no proxies)
- Led to unexpected configurations, discovery of piecewise omnigeneity (J.L. Velasco)
- · BO take ongoing! (Dhrir, Churchill, Padidar, Czekanski, B)

(B, Landreman, Padidar, PPCF 2023)

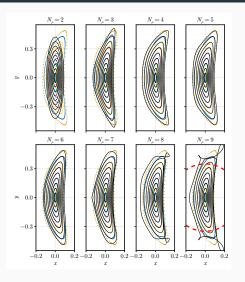
Multi-Objective Optimization

Invariant Circles via Kernels

Goal: Find (non-constant) h s.t. $h \circ F = h$.

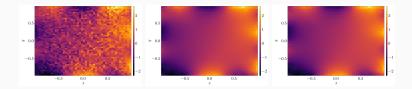

Discretize via favorite ansatz, e.g. $h = \sum_{j=1}^{m} c_j \phi(||x - x_j||)$. Define $h(x_j) = y_j$ and $h(F(x_j)) = y_j'$, solve (for example)

minimize
$$\frac{\eta}{2} y^{\mathsf{T}} K^{-1} y + \frac{1}{2} ||y - \tilde{y}||^2$$
 s.t. $y_i = y_i'$


to encourage *h* smooth, non-constant, invariant under *F*.

(Ruth and B, SIADS 2025)

Invariant Sets and Signal Processing



Regularized Near Axis Expansion

(Ruth, Jorge, and B, JPP 2025)

Walk on Spheres

· WoS is a Monte Carlo method for certain PDEs via

$$\nabla \phi = 0 \quad \iff \quad \phi(x) = \mathbb{E}_{\|z\| = \rho} [\phi(x+z)]$$

- · Basic implementation is noisy use variance reduction!
- Next step: combine with deterministic mesh-free methods

(Czekanski, Faber, Fairborn, Wright, B, arXiv:2404.17692)

9

GPU-Accelerated Alpha Tracing

- · CUDA-accelerated version of SIMSOPT tracing code
 - · Began life as a parallel computing class project!
- · Timing comparison
 - · CPU: 6000 particles, 1 ms, 50s simulation on 128 cores
 - GPU: 25K particles, 10 ms, 82s simulation on 1 GPU
- Talk to Michael, we want people using the code!

(Czekanski - ongoing?)

Differentiable Rendering and Neutron Transport

https://www.cs.cornell.edu/~xideng/int.html

Differentiable rendering idea:

- · Simulate photon/neutron transport via MC
- · Reparameterize to enable differentiation wrt geometry
- · Build GPU-accelerated infrastructure to make it fast

Works great for graphics (photons), why not neutron transport?

(Deng, Tang, Marschner, B - ongoing)

Symmetry-Exploiting Eigensolvers

- Imvertible B, AB = BA and $Av = v\lambda \implies A(Bv) = (Bv)\lambda$
- \cdot A group ${\mathcal G}$ of orthogonal matrices commute with A
- · Maximal invariant subspaces of ${\cal G}$ are invariant for A
- \cdot Non-abelian groups \implies geometrically degenerate
- · Idea: Numerical subspace reductions, then eigensolve.

Can combine with non-eigenvalue-based stability tests.

(Anderson, Wright, B - ongoing)

What next?

- · More transport solvers and statistics with Michael
- More eigensolves (and optimization?) with Caira
- · More unexpected transitions (Dennis, Sihwa, Calvin)?
- More engineering challenges?
- · More conversations with all of you!