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Ideal MHD linear stability

Standard approach:

• Analyze Hessian of W (stable if positive definite)
• Or analyze −ρω2ξ = Fξ.

Numerical steps either way:

• Discretize
• Possibly spectral transform (shift-invert)
• Compute a few eigenpairs via Lanczos or Arnoldi
• Maybe compute more with filtering (e.g. EVSL, FEAST)

There are good textbooks on this stuff:

Spectral Approximation of Linear Operators (Chatelin);
Templates for the Solution of Algebraic Eigenvalue Problems
(Bai, Demmel, Dongarra, Ruhe, van der Vorst, eds)
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Plan today

Some salient points (if you’re a numerical analyst)

• Discrete + essential spectrum (slow and Alfvén)
• Highly symmetric geometry
• Maybe we just care about stability (vs spectrum)

Two mini-talks:

• Symmetry and why it matters
• Stability constraints in optimization

And a question: what do we want to compute?
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Group reminder

A group G is a set with

• an identity element e ∈ G
• an associative operation (multiplication)
• inverses.

Can be continuous (GL(V),O(V), SO(V)) or discrete.

4



Symmetry group

Common use of group theory to describe symmetries:

I think stellarator symmetry corresponds to a dihedral group.
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Group representations

A representation of a group G is a homomorphism

ρ : G → GL(V).

For a finite group and a Hilbert space, the map goes to O(V).

Decomposition ideas:

• Subrepresentation is U ⊂ V s.t. ∀g ∈ G, ρ(g)U ⊂ U .
• Requires ρ(g)U ⊂ U (invariant subspace)
• Irreducible if no nontrivial subrepresentations.
• Character table gives basic types of irreps.
• Canonical decomposition of V by type of irrep.

Ex: V = L2(R), G = Z/2Z, [ρ(g)f](x) = f(−x)
canonical decomposition into even and odd functions.
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Why we care

Suppose

• Operators A and G commute
• U a maximal invariant subspace of G for eigenvalue µ

Then for any u ∈ U ,

Gu = µu =⇒ AGu = µAu =⇒ GAu = µAu =⇒ Au ∈ U

U is invariant for A (i.e. AU ⊂ U ).

Note: AG = GA and AH = HA with GH ̸= HG
=⇒ ∃u : Au = µu,Gu ̸= Hu
=⇒ A has multiple eigenvalues
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Why does this matter?

Symmetry-adapted bases block-diagonalize A:

• Can construct by hand or use canonical projectors.
• Sets up for less expensive computations.
• Sometimes split degenerate modes across blocks =⇒
convergence easier for eigensolvers.

NB: Works on continuous spectrum as well.

Caira Anderson working on a solver that uses this.
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Stability without eigenvalues

• Sometimes maybe we want part of spectrum.
• But for checking stability, eigenvalues are overkill.
• What to do instead?
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Factorization

Simplest check for positive definiteness: Cholesky factorization

A = RTR, R upper triangular

• Succeeds (with nonzero diagonal) iff R nonsingular.
• Can take advantage of sparsity.
• For block diagonal A, just factor the blocks.

But this gives a binary determination – how to use in
optimization?
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Log determinant

Given Cholesky factorization A = RTR

det(A) = det(R)2 =
∏
j
r2jj

Better scaled:
log det(A) = 2

∑
j
log rjj

Log barrier idea: given vector θ of design parameters,

minimize ϕ(θ)− λ log det(A(θ))

Differentiation of log barrier:

δ[log det(A)] = tr(A−1δA) = ⟨A−1, δA⟩F.

Note: Can compute relatively quickly when δA low rank.
11



Log determinant

Log-det pros and cons

• Does need to be interior point!
• Natural from an interior point perspective (though have to
be careful with nonconvexity of objective – see, e.g.
Kocvara 2002 in context of stability-constrained truss
design).

• May worry about scalability for large discretizations
• Tricks like low-rank δA help
• Can also use stochastic trace estimators

Could probably use this with DCON3D approach...
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Bordered system

Considered bordered system[
A(θ) b
bT 0

][
f(θ)
g(θ)

]
=

[
0
1

]

• KKT for K = 1
2 f
TAf+ gT(bTf− 1)

• Well-posed if dimN (A(θ)) ≤ 1 (and b ̸⊥ N (A(θ)))
• g(θ) = 0 iff A(θ)f(θ) = 0
• Sign g(θ) is (−1)(1+nneg) (nneg = # negative eigs)
• Have tricks for fast solves (Govaerts and Pryce)
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Bordered system

Considered bordered system[
A(θ) b
bT 0

][
f(θ)
g(θ)

]
=

[
0
1

]

Differentiate: [
A(θ) b
bT 0

][
δf(θ)
δg(θ)

]
=

[
−δA(θ)f(θ)

0

]
.

Cost per derivative: one bordered solve (re-use factorizations).
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Bordered system

Bordered system pros and cons

• Might worry about big steps with even change in nneg
• Issue with higher-dimensional kernels

• Can fix with wider borders (Govaerts BEMW)
• Can also ameliorate issue of even nneg

• Can’t use same b everywhere
• But random will work most of the time
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What do we want to compute?

Things we can compute without getting all eigenvalues

• Partial decomposition via symmetry groups
• Stability test functions (in this talk)
• Inertia (counts of positive, negative, zero eigs)
• Bounds on distance to instability
• Extremal eigenvalues and derivatives
• Densities of states
• And more!

The question you ask matters a lot! So what do we want?
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