Linear Stability: Some Thoughts

David Bindel
08 Dec 2023

Department of Computer Science
Cornell University

Ideal MHD linear stability

Standard approach:

- Analyze Hessian of W (stable if positive definite)
- Or analyze $-\rho \omega^{2} \xi=F \xi$.

Numerical steps either way:

- Discretize
- Possibly spectral transform (shift-invert)
- Compute a few eigenpairs via Lanczos or Arnold
- Maybe compute more with filtering (e.g. EVSL, FEAST)

There are good textbooks on this stuff:
Spectral Approximation of Linear Operators (Chatelin);
Templates for the Solution of Algebraic Eigenvalue Problems
(Bai, Demmel, Dongarra, Ruhe, van der Vorst, eds)

Plan today

Some salient points (if you're a numerical analyst)

- Discrete + essential spectrum (slow and Alfvén)
- Highly symmetric geometry
- Maybe we just care about stability (vs spectrum)

Two mini-talks:

- Symmetry and why it matters
- Stability constraints in optimization

And a question: what do we want to compute?

Group reminder

A group \mathcal{G} is a set with

- an identity element $e \in \mathcal{G}$
- an associative operation (multiplication)
- inverses.

Can be continuous ($G L(\mathcal{V}), O(\mathcal{V}), S O(\mathcal{V})$) or discrete.

Symmetry group

Common use of group theory to describe symmetries:

I think stellarator symmetry corresponds to a dihedral group.

Group representations

A representation of a group \mathcal{G} is a homomorphism

$$
\rho: \mathcal{G} \rightarrow \mathrm{GL}(\mathcal{V})
$$

For a finite group and a Hilbert space, the map goes to $O(\mathcal{V})$.
Decomposition ideas:

- Subrepresentation is $\mathcal{U} \subset \mathcal{V}$ s.t. $\forall g \in \mathcal{G}, \rho(g) \mathcal{U} \subset \mathcal{U}$.
- Requires $\rho(g) \mathcal{U} \subset \mathcal{U}$ (invariant subspace)
- Irreducible if no nontrivial subrepresentations.
- Character table gives basic types of irreps.
- Canonical decomposition of \mathcal{V} by type of irrep.

Ex: $\mathcal{V}=\mathcal{L}^{2}(\mathbb{R}), \quad \mathcal{G}=\mathbb{Z} / 2 \mathbb{Z}, \quad[\rho(g) f](x)=f(-x)$
canonical decomposition into even and odd functions.

Why we care

Suppose

- Operators A and G commute
- \mathcal{U} a maximal invariant subspace of G for eigenvalue μ

Then for any $u \in \mathcal{U}$,

$$
G u=\mu u \Longrightarrow A G u=\mu A u \Longrightarrow G A u=\mu A u \Longrightarrow A u \in \mathcal{U}
$$

\mathcal{U} is invariant for A (ie. $A \mathcal{U} \subset \mathcal{U}$).
Note: $A G=G A$ and $A H=H A$ with $G H \neq H G$
$\Longrightarrow \exists u: A u=\mu u, G u \neq H u$
$\Longrightarrow A$ has multiple eigenvalues

Why does this matter?

Symmetry-adapted bases block-diagonalize A:

- Can construct by hand or use canonical projectors.
- Sets up for less expensive computations.
- Sometimes split degenerate modes across blocks \Longrightarrow convergence easier for eigensolvers.

NB: Works on continuous spectrum as well.

Caira Anderson working on a solver that uses this.

Stability without eigenvalues

- Sometimes maybe we want part of spectrum.
- But for checking stability, eigenvalues are overkill.
-What to do instead?

Factorization

Simplest check for positive definiteness: Cholesky factorization

$$
A=R^{\top} R, \quad R \text { upper triangular }
$$

- Succeeds (with nonzero diagonal) iff R nonsingular.
- Can take advantage of sparsity.
- For block diagonal A, just factor the blocks.

But this gives a binary determination - how to use in optimization?

Log determinant

Given Cholesky factorization $A=R^{\top} R$

$$
\operatorname{det}(A)=\operatorname{det}(R)^{2}=\prod_{j} r_{j j}^{2}
$$

Better scaled:

$$
\log \operatorname{det}(A)=2 \sum_{j} \log r_{j j}
$$

Log barrier idea: given vector θ of design parameters,

$$
\text { minimize } \phi(\theta)-\lambda \log \operatorname{det}(A(\theta))
$$

Differentiation of log barrier:

$$
\delta[\log \operatorname{det}(A)]=\operatorname{tr}\left(A^{-1} \delta A\right)=\left\langle A^{-1}, \delta A\right\rangle_{F} .
$$

Note: Can compute relatively quickly when δA low rank.

Log determinant

Log-det pros and cons

- Does need to be interior point!
- Natural from an interior point perspective (though have to be careful with nonconvexity of objective - see, e.g. Kocvara 2002 in context of stability-constrained truss design).
- May worry about scalability for large discretizations
- Tricks like low-rank δ A help
- Can also use stochastic trace estimators

Could probably use this with DCON3D approach...

Bordered system

Considered bordered system

$$
\left[\begin{array}{cc}
A(\theta) & b \\
b^{T} & 0
\end{array}\right]\left[\begin{array}{l}
f(\theta) \\
g(\theta)
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

- KKT for $\mathcal{K}=\frac{1}{2} f^{\top} A f+g^{\top}\left(b^{\top} f-1\right)$
- Well-posed if $\operatorname{dim} \mathcal{N}(A(\theta)) \leq 1$ (and $b \not \perp \mathcal{N}(A(\theta)))$
- $g(\theta)=0$ iff $A(\theta) f(\theta)=0$
- Sign $g(\theta)$ is $(-1)^{(1+\text { nneg })}$ (nneg $=\#$ negative eigs)
- Have tricks for fast solves (Govaerts and Pryce)

Bordered system

Considered bordered system

$$
\left[\begin{array}{cc}
A(\theta) & b \\
b^{T} & 0
\end{array}\right]\left[\begin{array}{l}
f(\theta) \\
g(\theta)
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Differentiate:

$$
\left[\begin{array}{cc}
A(\theta) & b \\
b^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\delta f(\theta) \\
\delta g(\theta)
\end{array}\right]=\left[\begin{array}{c}
-\delta A(\theta) f(\theta) \\
0
\end{array}\right]
$$

Cost per derivative: one bordered solve (re-use factorizations).

Bordered system

Bordered system pros and cons

- Might worry about big steps with even change in nneg
- Issue with higher-dimensional kernels
- Can fix with wider borders (Govaerts BEMW)
- Can also ameliorate issue of even nneg
- Can't use same b everywhere
- But random will work most of the time

What do we want to compute?

Things we can compute without getting all eigenvalues

- Partial decomposition via symmetry groups
- Stability test functions (in this talk)
- Inertia (counts of positive, negative, zero eigs)
- Bounds on distance to instability
- Extremal eigenvalues and derivatives
- Densities of states
- And more!

The question you ask matters a lot! So what do we want?

