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The NEP Picture

T(λ)v = 0, v ̸= 0.
where

• T : Ω → Cn×n analytic, Ω ⊂ C simply connected
• Regularity: det(T) ̸≡ 0

Nonlinear spectrum: Λ(T) = {z ∈ Ω : T(z) singular}.

What do we want?

• Qualitative information (e.g. no eigenvalues in RHP)
• Error bounds on computed/estimated eigenvalues
• Control on all eigenvalues in some region

Why? Because of dynamics connections!
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Why Eigenvalues?

y′ − Ay = 0 y(t)=eλtv−−−−−−−−−→ (λI− A)v = 0

yk+1 − Ayk = 0 yk=λkv−−−−−−−−−→ (λI− A)v = 0

One standard use: analyze dynamics of LTI systems

• Special solutions characterizing full system
• General: linear combinations of special solutions
• Asymptotic stability analysis and decay rates
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Why Nonlinear Eigenvalues?

We want special solutions and asymptotic decay rates for

y′′ + By′ + Ky = 0 y=eλtv−−−−−−−−→ (λ2I+ λB+ K)v = 0

y′ − Ay− By(t− 1) = 0 y=eλtv−−−−−−−−→ (λI− A− Be−λ)v = 0

T(d/dt)y = 0 y=eλtv−−−−−−−−→ T(λ)v = 0

• Higher-order ODEs
• Delay differential equations
• Boundary integral equation eigenproblems
• Radiation boundary conditions
• Dynamic element formulations
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My Motivation

T(ω)v ≡
(
K− ω2M+ G(ω)

)
v = 0
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Hidden Variables

Many real NEPs come from a decision to “hide” some state by
dealing with it semi-analytically:

• Higher-order ODEs —
hide extra derivatives

• Delay differential equations —
hide lagged state (e.g. in delay lines)

• Boundary integral equation eigenproblems —
hide domain unknowns

• Radiation boundary conditions —
hide behavior outside computational domain
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Linearization

Ex: Second-order ODE and quadratic eigenvalue problem

y′′ + Dy′ + Ky = 0 −→ d
dt

[
y
y′

]
−

[
0 I
−K −D

][
y
y′

]
= 0

λ2y+ λDy+ Ky = 0 −→ λ

[
y
λy

]
−

[
0 I
−K −D

][
y
λy

]
= 0

Trade nonlinearity vs size more generally:

T
(
d
dt

)
y = 0 −→ du

dt −Au = 0 and y = Cu

T(λ)y = 0 −→ λu−Au = 0 and y = Cu

... but u may be infinite dimensional (e.g. DDE case).
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Exact Dynamics

Laplace transforms:

T
(
d
dt

)
y = f −→ T(z)Y(z) = F(z) + I.C. terms

y(t) = L−1[Y](t) = 1
2πi

∫
Γ
Y(z)ezt dz

or first-order connection:

T
(
d
dt

)
y = f −→ du

dt −Au = Bf, y = Cu

y(t) = C exp(tA)u0 +
∫ t

0
[C exp((t− s)A)B] f(s)ds

But what do I do if I’m too lazy and ignorant to solve exactly?
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Asymptotics

First approach:

• Observe y(t) ∼ exp(αt) where α ≡ maxλ∈Λ(T) Re(λ).
• Bound α somehow.
• Go explore Valencia.

But this approach hides too much...
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Beyond (Before?) Asymptotics
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But this long run is a misleading guide to current af-
fairs. In the long run we are all dead.

— John Maynard Keynes
A Tract on Monetary Reform (1923)
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Asymptotic Behavior and First-Order IVPs

Consider a first-order problem:

y′ = Ay+ f, y(0) = y0

y(t) = exp(tA)y0 +
∫ t

0
exp((t− s)A)f(s)ds

Bounds if A = VΛV−1 and ∥f(t)∥ ≤ γ:

∥ exp(tA)∥ = ∥V exp(tΛ)V−1∥ ≤ κ(V) exp(tα)

∥y(t)∥ ≤ κ(V)
(
exp(tα)∥y0∥+

γ

−α
(1− exp(tα))

)
where α = maxRe(λ) is the spectral abscissa.

11



Pre-Asymptotic Behavior for IVP aka the Hump
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∥ exp(tA)∥
κ(V) exp(tα)

Simple bounds if A = VΛV−1

∥ exp(tA)∥ = ∥V exp(tΛ)V−1∥ ≤ κ(V) exp(tα)

where α = maxRe(λ). Nothing says V need be
well-conditioned!
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The Complex Connection

General solutions to LTI problems via Laplace transforms

(zI− A)−1 = L
[
etA

]
=

∫ ∞

0
e−ztetA dt

exp(tA) = L−1 [(zI− A)−1
]
=

1
2πi

∫
Γ
(zI− A)−1ezt dz

for large enough Re(z) and for appropriate Γ, e.g.:

• Γ a closed contour surrounding spectrum.
• Γ a vertical line to the right of the spectrum.
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A Basic Tool

Begin from the contour integral representation:

exp(tA) = 1
2πi

∫
Γ
(zI− A)−1ezt dz

Convert bounds on resolvent to bounds on exp(tA)

∥ exp(tA)∥ ≤ 1
2π

∫
Γ
∥(zI− A)−1∥ |ezt| dΓ.

We need “only” summarize how ∥(zI− A)−1∥ behaves.
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Pseudospectra

dim = 11
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Summarize ∥(zI−A)−1∥ with

Λϵ(A) ≡ {z ∈ C : ∥(zI− A)−1∥ > ϵ−1}

=
∪

∥E∥<ϵ

Λ(A+ E)

Pseudospectral abscissa is

αϵ(A) ≡ max
z∈Λϵ(A)

Re(z)

[Trefethen and Embree, 2005]
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Pseudospectral Bounds

Set Γ = ∂Λϵ(A) and Lϵ the length of Γ. Then:

∥ exp(tA)∥ ≤ 1
2π

∫
Γ
∥(zI− A)−1∥ |ezt| dΓ ≤ Lϵ

2πϵ exp(tαϵ).

NB: If eigenvectors (columns of V) are normalized,

κ(V) ≤ lim
ϵ→0

Lϵ
2πϵ =

∑
j
∥V−1ej∥ ≤

√
nκ(V)

Can also get a lower bound: for any ω ∈ R and ϵ > 0,

sup
t≥0

∥ exp(−ωt) exp(tA)∥ ≥ αϵ − ω

ϵ
.
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Beyond First-Order Systems

Approach: Exploit same Laplace transform pairing as before

exp(tA) L−−−−→ (zI− A)−1

Ψ(t) L−−−−→ T(z)−1

Here Ψ(t) = C exp(tA)B and T(z)−1 = C(zI−A)−1B.

As before, to control behavior of Ψ(t):

• Asymptotic stability / decay: look at spectral abscissa
• Pre-asymptotic: consider “resolvent” norm ∥T(z)−1∥
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Nonlinear Pseudospectra
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Summarize ∥T(z)−1∥ with

Λϵ(T) ≡ {z ∈ C : ∥T(z)−1∥ > ϵ−1}

=
∪

∥E∥<ϵ

Λ(T+ E)

Pseudospectral abscissa

αϵ(T) ≡ max
z∈Λϵ(T)

Re(z)

[Bindel and Hood, 2015]
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Aside: Comparing Pseudospectra

Suppose T, T̂ : Ω → Cn×n and

∥T(z)− T̂(z)∥ ≤ η, ∀z ∈ Ω.

Then
Λϵ(T) ⊂ Λϵ+η(T̂).

Can approximate T ≈ T̂ polynomial locally and bound
pseudospectra (for example)... but usually won’t get all of C.

Or use easier-to-compute sets (e.g. Gershgorin regions).
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Pseudospectral Bounds

Set Γ = ∂Λϵ(A) and Lϵ the length of Γ. Then:

∥Ψ(t)∥ ≤ 1
2π

∫
Γ
∥T(z)−1∥ |ezt| dΓ ≤ Lϵ

2πϵ exp(tαϵ).

But this may be useless (e.g. Lϵ = ∞) — need to be careful!

Can also get a lower bound: for any ω ∈ R and ϵ > 0,

sup
t≥0

∥ exp(−ωt)Ψ(t)∥ ≥ αϵ − ω

ϵ
.
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Example: Delay Differential Equation

DDE is
u′(t) = Au(t) + Bu(t− τ)

Characteristic function:

T(z) = zI− A− Be−τz

Assume A symmetric, α(A) < 0, and α(T) < 0.

Problem: Infinitely many eigenvalues! Have to be more clever.
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Sketch of Approach

• Seek a simpler reference problem (û′ = Aû).
• Split into reference + difference term.
• Choose a congenial contour right of both spectra.
• Bound contour integral involving difference term.
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Reference Comparison

Define R(z) = (zI− A)−1; for proper choices of Γ,

Ψ(t) = exp(tA) + 1
2πi

∫
Γ
[T(z)−1 − R(z)]ezt dz

Could choose difference reference (e.g. from a PEP).

Still need: Control of ∥T(z)−1 − R(z)∥ on a contour.
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Choice of Contour
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Choose Γ right of Λ(T) and Λ(A) but in LHP:

Γ = Γ∞ ∪ Γ0 Γ∞ = {x(y) + iy : |y| > y0}

x(y) = − 1
τ
log (|y|η) Γ0 = {x0 + iy : |y| ≤ y0, x0 = x(y0)}.
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Control on Contour

Let E(z) = T(z)−1 − R(z), contour as before:∫
Γ0

∥E(z)∥ |ezt| dΓ ≤ 2 exp(x0t)
∫ y0

0
∥E(x0 + iy)∥dy∫

Γ∞

∥E(z)∥ |ezt| dΓ ≤ exp(x0t)
Cτ
t

using boundedness of ∥E(z)∥ on Γ + curvature into RHP.

Bound:
∥Ψ(t)∥ ≤ ∥ exp(tA)∥+ ex0t

(
I0 +

Cτ
t

)
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Choices

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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• Vertical contour loses 1/t factor in second term
• Drop R (bigger constants, but faster decay)
• Probably many more options!
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The other type of nonlinearity

Slightly nonlinear / time-varying problems? Simple case:

ẋ = (A+ E(x, t))x

where ∥E∥ ≤ ϵ. Standard (?) approach:

• Find M associated with quadratic Lyapunov function for A:

AM+MA = −I.

• Look at dynamics of xTMx for A+ E (pessimize w.r.t. E):

2xTMẋ = −∥x∥2 + 2xT(ME)x
≤ −∥x∥2 + 2ϵ∥Mx∥∥x∥

• Gronwall-type bound

∥x(t)∥M ≤ exp

(
− t
2∥M

−1∥ (1− 2ϵ∥M∥)
)
∥x(0)∥M
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Work in progress

Stability of slightly nonlinear / time-varying DDE, damped, etc:

• Consider structured real perturbations E
• Replace Lyapunov-style bounds with ℓ2 bounds via NLPS
(or be more clever about RHS of Lyapunov equation?)

Still figuring this out — pointers welcome!
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Summary

For both first-order systems and more complex problems:

• Eigenvalues describe asymptotic dynamics
• Pre-asymptotic behavior requires more information:

• Complete eigendecomposition: Nice if you can get it.
• Conditioning of V: A blunt tool for blunt bounds.
• Pseudospectra, etc: A sharper tool for complex bounds.

• Pseudospectra alone don’t suffice — choices of contours,
comparison problems, etc make a difference.
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