Numerical Methods for Data Science: Latent Factor Models, Part I

David Bindel
17 June 2019

Department of Computer Science
Cornell University
How do we teach numerical methods in a “data science” age?

- CS 4220 (S12): Data science projects in NA course
- CS 6241 (S18): “Numerical methods for data science”
- SJTU CS 258 (Jun 18+19): Undergrad version
- CS 3220 (F19): “Computational math for CS”
Lecture plan

Three threads from “lay of the land” to current research:

• Monday: Latent Factor Models
 • Matrix data and decompositions
 • NMF and topic models
• Wednesday: Scalable Kernel Methods
 • Structure and interpretation of kernels
 • Making kernel methods scale
• Friday: Spectral Network Analysis
 • Network spectra, optimization, and dynamics
 • Network densities of states
Matrix Data: Relations and Ranking

<table>
<thead>
<tr>
<th></th>
<th>Casa Blanca</th>
<th>Forest Gump</th>
<th>Rocky</th>
<th>The Matrix</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bob</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carol</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dan</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Matrix Data: Images and Functions
Matrix Data: Networks and Relations

\[W = \begin{bmatrix}
0 & 0 & w_{AC} & 0 & 0 & w_{AP} \\
0 & 0 & 0 & 0 & w_{BP} \\
w_{CA} & 0 & 0 & 0 & w_{CP} \\
0 & 0 & 0 & 0 & 0 & w_{DP} \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix} \]
Matrix Data

- Relations between objects and features, e.g.
 - Documents and word frequencies ("bag of words" models)
 - User rankings of movies, songs, etc
 - Images and pixel values
 - Indicators for DNA markers in organisms
 - Treatments and outcome histograms
 - Snapshots of a state vector at different times
- Grid samples of bivariate functions
 - Image pixels indexed by row and column
 - PMF values for a discrete 2D random variable
- Relations between pairs of objects
 - Network relations (e.g. friendships)
 - Co-occurrence statistics, interaction frequencies, etc

Can generalize beyond pairwise data with tensor methods.
Map objects and features to *latent coordinates*, model data as bilinear function of coordinates:

\[a_{ij} \approx l_{i,:} M r_{:,j}. \]

Unkowns: latent coordinates for points, bilinear form.

This is underdetermined — need constraints on \(L, M, R \) for uniqueness.
Model data arranged as a matrix \(A \in \mathbb{R}^{m \times n} \) by

\[
A \approx LMR, \quad L \in \mathbb{R}^{m \times r}, \ M \in \mathbb{R}^{r \times r}, \ R \in \mathbb{R}^{r \times n}
\]

perhaps with constraints on \(L, M, \) and \(R. \)
Latent Factor Modeling

Model data arranged as a matrix $A \in \mathbb{R}^{m \times n}$ by

$$A \approx LMR, \quad L \in \mathbb{R}^{m \times r}, M \in \mathbb{R}^{r \times r}, R \in \mathbb{R}^{r \times n}$$

perhaps with constraints on L, M, and R.

From this, we would like to

- Compress data
- Remove “noise” (including outliers)
- Fill in missing data
- Cluster and classify objects
- Find meaningful “parts” to data

with the Magic of Matrices.
The Magic of Matrices (or Machine Learning)

https://xkcd.com/1838/
What is The Matrix?

A ∈ ℝ^{m×n} is an m-by-n array of real numbers:

\[
A = \begin{bmatrix}
 a_{11} & a_{12} & \ldots & a_{1n} \\
 a_{21} & a_{22} & \ldots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \ldots & a_{mn}
\end{bmatrix}
\]

Is this right? Consider some \(a_{ij}\) meanings:

- Image pixel at row \(i\) and column \(j\)
- Departure of train \(j\) from station \(i\)
- Frequency of word \(j\) in document \(i\)

None seem all that linear algebraic!

Seek useful puns between matrices and arrays.
In LA, a matrix represents (w.r.t. basis choice):

- **Linear map** \(L : \mathcal{V} \rightarrow \mathcal{W} \quad w = Av \)
- **Linear operator** \(L : \mathcal{V} \rightarrow \mathcal{V} \quad w = Av \)
- **Sesquilinear form** \(b : \mathcal{V} \times \mathcal{W} \rightarrow \mathbb{R} \quad b = w^*Av \)
- **Quadratic form** \(\phi : \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R} \quad \phi = v^*Av \)

Different possible attitudes toward bases

- **Pure LA:** The LA object is the thing
 - Think basis independent
 (except canonical choices)
- **Numerical LA:** Sometimes bases matter!
 - Sparsity, shape, non-negativity
- **Data:** The matrix (array) is the thing
Matrices in Linear Algebra: Canonical Forms

<table>
<thead>
<tr>
<th>Linear map (or bilinear form)</th>
<th>General bases</th>
<th>Orthonormal bases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank/nullity</td>
<td>$A = XI_k Y^*$</td>
<td>SVD</td>
</tr>
<tr>
<td>$A = UΣV^*$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear operator</td>
<td>Jordan form</td>
<td>Schur form</td>
</tr>
<tr>
<td>$A = VJV^{-1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A = UTU^*$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quadratic form</td>
<td>Sylvester inertia</td>
<td>Symm eigendecompos</td>
</tr>
<tr>
<td>$A = X_1X_1^* - X_2X_2^*$</td>
<td>$A = VΛV^*$</td>
<td></td>
</tr>
</tbody>
</table>

What if basis choice (identity of rows and columns) matters?

- Natural transformations are basis permutations.
- Permutation matrices \subset orthogonal matrices.
- Orthogonal decompositions make good building blocks!
The SVD and the Symmetric Eigenvalue Problem

<table>
<thead>
<tr>
<th>SVD</th>
<th>SEP</th>
</tr>
</thead>
</table>
| $A = U \Sigma V^*$
$A = V \Lambda V^*$
V orthonormal
$\Sigma = \text{diag}(\sigma_1, \sigma_2, \ldots)$
σ_j descending, nonneg
Full: Σ rectangular
Economy: U rectangular
Agrees with SVD if SPD | $A = V \Lambda V^*$
V orthonormal
$\Lambda = \text{diag}(\lambda_1, \lambda_2, \ldots)$
λ_j descending
$A = A^*$

• U, V orthonormal
• $\Sigma = \text{diag}(\sigma_1, \sigma_2, \ldots)$
• σ_j descending, nonneg
• Full: Σ rectangular
• Economy: U rectangular
• $A = A^*$
• Agrees with SVD if SPD
Variational construction of SVD (similar for SEP):

- Maximize $\|Av\|$ over $\|v\| = 1$
 - Unique maximum value, no local maxima!
 - Result: $Av_1 = \sigma_1 u_1$ where $u_1 = Av_1/||Av_1||$
- Maximize $\|Av\|$ over $\|v\| = 1$ and $v \perp v_1$
 - Again a “nice” optimization problem
 - Result: $Av_2 = \sigma_2 u_2$

- Continue in this fashion

Completely greedy is OK in principle! No need to backtrack.
Matrices and Data: Low-Rank Approximation by SVD

\[A = U \Sigma V^* \]

\[A_k \approx U_k \Sigma_k V_k^* \]
Consider the (economy) SVD of $A \in \mathbb{R}^{m \times n}$ for $m \geq n$

$$A = U \Sigma V^*, \quad U \in \mathbb{R}^{m \times n}, \Sigma \in \mathbb{R}^{n \times n}, V \in \mathbb{R}^{n \times n}$$

where $U^*U = I$, $V^*V = I$ and Σ is diagonal with

$$\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_n \geq 0$$

Eckart-Young: Best rank k approximation is the truncated SVD

$$\hat{A} = U_k \Sigma_k V_k^*.$$

True in Frobenius norm, spectral norm. Error is

$$\|A - \hat{A}\|_F^2 = \sum_{j=k+1}^{n} \sigma_j^2, \quad \|A - \hat{A}\|_2 = \sigma_{k+1}$$
Actual Computation

SVD and SEP admit similar computational schemes

- Small and dense (up to a couple 1000, MATLAB eig/svd):
 - Orthogonal reduction to bidiagonal / tridiagonal ($O(n^3)$)
 - Cheaper reduction rest of the way to the decomposition
- Subspace iteration
 - Start with random orthonormal columns
 - Multiply by A (and maybe A^*) a couple times
 - RandNLA: Few steps for OK accuracy (with oversample)
 - Good for cache use, great for modest accuracy
- Krylov methods (Matlab eigs and svds)
 - Repeatedly multiply a few vectors by A (and maybe A^*)
 - Orthogonalize at each step (parallel bottleneck)
 - Various restarting and acceleration tricks
 - High accuracy for a few extreme pairs
Some Computational Aspects

Big takeaways:

• We have good codes that (mostly) “just work”
• People have thought through how to make them run fast
• Have good backward stability properties
• No misconvergence or sensitivity to starting point

These are great building blocks
Example: PCA

- Matrix rows represent different object properties
- Typically center (subtract column means); may scale
- Run SVD on resulting matrix
- Dominant singular values are “principal components”
Example: LDA

- Matrix rows represent different object properties
- Rows are labeled, want to discriminate these labels
- Solution involves a generalized SEP
- May be very different from PCA directions
Example: Latent semantic analysis

Vector space model (Salton and Yang, 1975)

- Columns are documents, row entries are word frequency
- Scale raw data (tf-idf)
- Take SVD of resulting matrix
- Rows of $U \approx$ latent word representations
- Columns of $V \approx$ latent document representations
- Useful for comparing words to words, docs to docs
- Also useful for searching for docs by keywords

Problem: latent coordinates are hard to interpret!
Example: Spectral Clustering

Goal: Cluster objects (rows) according to features

- Compute a truncated SVD: $A \approx U_r \Sigma_r V_r^*$
- Treat rows of $U_r \Sigma_r$ as latent coordinates
- Run k-means to cluster points

Essentially gives

$$A \approx LC^*$$

where

$$l_{ij} = \begin{cases} 1, & \text{item } i \text{ in class } j \\ 0, & \text{otherwise} \end{cases} \quad C_{i,j} = \text{centroid of class } j$$

Several types of spectral clustering – will discuss again later!
SVD and SEP provide useful dimension reduction

- Lower-dimensional “latent spaces” for further analysis
- Latent space clarifies object similarity / dissimilarity
- But interpreting the coordinate system is hard!

So what do we want beyond SVD and SEP?

- Linear dimension with interpretable structure (today)
- Nonlinear dimension reduction (a little coming up)
Factor data matrix $A \in \mathbb{R}^{m \times n}$ as

$$A \approx LMR, \quad L \in \mathbb{R}^{m \times r}, \ M \in \mathbb{R}^{r \times r}, \ R \in \mathbb{R}^{r \times n}$$

with different structures on L, M, and R.

- R (or MR) as maps original features to “latent” features
- Can impose constraints on L, M, and R
- Orthogonality constraints gets us to SVD (easy)
- Other types of constraints are harder
- …but other constraints improve interpretability
Idea: Express latent factors via rows/columns of A

- Improves interpretability (maybe — more tricks help)
- May improve cost of working with matrix
 - Can form part of a row/column without forming all
 - Useful in both experiments and computation
- *But* how do we choose good representative rows/cols?
 - Want things to be as linearly independent as possible
 - Also want good approximation quality
 - SVD provides a “speed of light” bound
Interpolative Decomposition / Skeletonization

- C consists of the leading k columns of A
- $T = C^\dagger (A\Pi)_{:,k+1:n}$ chosen to minimize Frobenius norm error
- Exists some Π — not easily computed — such that
 - Entries of T are at most 2
 - Singular values of $[I \ T]$ in $[1, 1 + \sqrt{k(n - k)}]$
 - Approximation error within $1 + \sqrt{k(n - k)}$ of optimal
Idea: $A \approx CUR$ where

- C consists of columns of A
- R consists of rows of A
- $U = C^\dagger A R^\dagger$ is optimal given C, R
- Selection of good C and R is again the challenge

Can also consider symmetric variants where $R = C^*$.
Pivoted QR decomposition is

$$A\Pi = QR$$

where R is upper triangular, r_{ii} are positive and decreasing.

Idea: Be greedy (as in SVD), but choose among columns of A

- Choose column a_i with maximum norm
 - Set $r_{11} = \|a_i\|$ and $q_1 = a_i/r_{11}$ (so $a_1 = q_1r_1$)
 - Orthogonalize vs q_1: $a'_j = a_j - q_1r_j$ with $r_j = q_1^T a_j$
- Choose modified column a'_i with maximum norm
 - Set $r_{22} = \|a'_i\|$ and $q_2 = a'_i/r_{22}$
 - Orthogonalize vs q_2 to get new A' matrix
- Keep repeating the process (re-ordered Gram-Schmidt)

Unlike SVD this is not optimal — but often pretty good.
As with SVD, constructive definition ≠ usual computation.

- Dense case is a standard building block (qr in MATLAB)
- Ongoing work to improve parallelism and cache efficiency
- Clever tournament pivoted (TSQR) for $m \gg n$

Again: A great building block to borrow from someone else!
The Geometry of Pivoted QR

Chosen column is on the convex hull of a 1D projection
implies it is a point on the convex hull of the original columns.
Symmetric positive definite matrices \equiv Gram matrices:

$$H = A^T A$$

Decompose:

$$A\Pi = QR \implies\Pi^T H \Pi = R^T Q^T QR = R^T R$$

Running pivoted Cholesky is equivalent to pivoted QR.

Esp useful when A is implicit (only access via H).
Let’s look briefly at an example we’ll see again on Wednesday.
Example: Pivoted Cholesky on a Kernel Matrix

Diagonal element: $1.00e+00$
Example: Pivoted Cholesky on a Kernel Matrix

Diagonal element: 6.77×10^{-2}
Example: Pivoted Cholesky on a Kernel Matrix

Diagonal element: 1.91e-02
Example: Pivoted Cholesky on a Kernel Matrix

Diagonal element: 5.11e-04
Example: Pivoted Cholesky on a Kernel Matrix

Diagonal element: 1.19e-04
Example: Pivoted Cholesky on a Kernel Matrix

Diagonal element: 4.18e-05
Example: Pivoted Cholesky on a Kernel Matrix

Diagonal element: 8.54e-07
Example: Pivoted Cholesky on a Kernel Matrix

Diagonal element: 3.58×10^{-7}
Example: Pivoted Cholesky on a Kernel Matrix

Diagonal element: $1.92e^{-07}$
Improving the Decomposition

Recall interpolative decomposition:

\[A \Pi \approx C \begin{bmatrix} I & T \end{bmatrix} \]

and can keep all \(|t_{ij}| \leq 2 \) with right \(\Pi \).

Idea: Start from pivoted QR and refine

- Compute truncated pivoted QR

\[A \Pi = QR = \begin{bmatrix} Q_1 & Q_1 \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} \\ 0 & R_{22} \end{bmatrix} \approx Q_1 \begin{bmatrix} R_{11} & R_{12} \end{bmatrix} \]

- Set \(C = Q_1R_{11} \) and \(T = R_{11}^{-1}R_{12} \)

- For large entries (\(|t_{ij}| > 2\)), swap columns \(\pi_i \) and \(\pi_{r+j} \).

- Recompute \(T \); repeat swaps until happy.
What if we want a low-rank factorization with more structure?

- Non-negativity?
- Sparsity of factors?
- Normalization for a probabilistic interpretation?

Hard in general, but there are some effective approaches.

After the break: From non-negative matrix factorization to spectral topic modeling