The Many Applications of Eigenvalues

David Bindel 7 Feb 2019

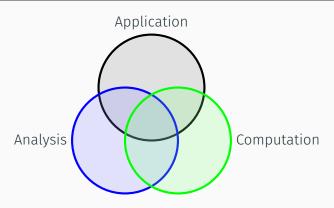
My Goals for Today

bindel@cornell.edu
Jones 317 (mostly until mid-May)

- · Show how applied math happens (to me at Cornell).
- · Convince you that eigenvalue problems are fun!
- Get you to talk to me, read slides, read papers, etc. (And maybe apply to Cornell for grad school!)

1

The Computational Science & Engineering Picture



- MEMS
- Fusion
- Networks
- Systems

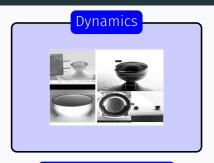
- · Linear algebra
- Approximation theory
- Symmetry + structure
- Optimization

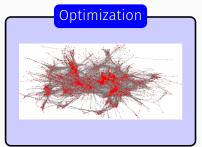
- HPC / cloud
- Simulators
- Solvers
- Frameworks

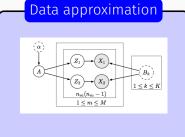
Today: Eigenvalue Problems

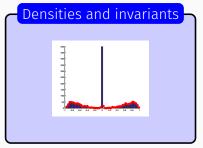
My super power is turning everything you show me into an eigenvalue problem.

— Me (at every new grad student lunch)









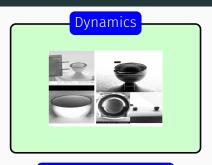
Dynamics:
$$\frac{du}{dt} = Au \text{ or } u(k+1) = Au(k)$$

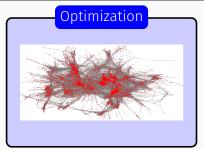
Optimization: minimize $x^T A x$ s.t. $x^T x = 1$

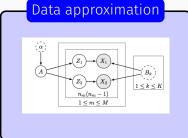
Data approximation: minimize $||A - XY^T||_F^2$

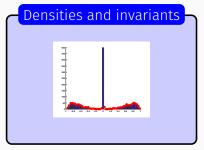
Invariants: \forall analytic $f : \mathbb{C} \to \mathbb{C}$, compute tr(f(A))

All these perspectives are connected!

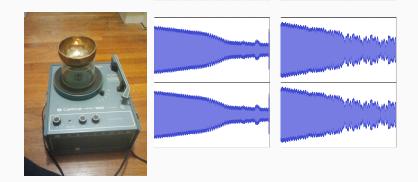






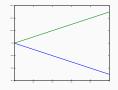


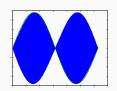
Chapter 1: Musical Microspheres



"On the beats in the vibrations of a revolving cylinder or bell" by G. H. Bryan, 1890

The Beat Goes On





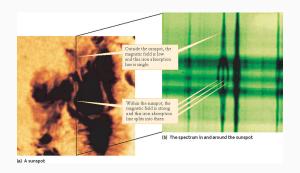
Free vibrations in a rotating frame (simplified):

$$\ddot{\mathbf{q}} + 2\beta\Omega \mathbf{J}\dot{\mathbf{q}} + \omega_0^2 \mathbf{q} = 0, \qquad \mathbf{J} \equiv \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

Eigenvalue problem: $(-\omega^2\mathbf{I} + 2i\omega\beta\Omega\mathbf{J} + \omega_0^2) q = 0$.

Solutions: $\omega \approx \Omega_0 \pm \beta \Omega$. \Longrightarrow beating $\propto \Omega$!

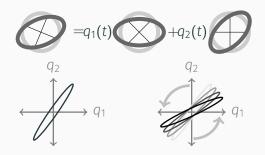
Bryan, Zeeman, Stark, ...



This is a common picture:

- Symmetry leads to degenerate modes
- · Perturbations split (some) degeneracies

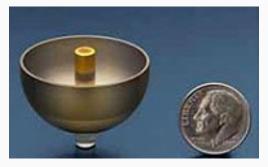
A General Picture



$$\begin{bmatrix} q_1(t) \\ q_2(t) \end{bmatrix} \approx \begin{bmatrix} \cos(-\beta\Omega t) & -\sin(-\beta\Omega t) \\ \sin(-\beta\Omega t) & \cos(-\beta\Omega t) \end{bmatrix} \begin{bmatrix} q_1^0(t) \\ q_2^0(t) \end{bmatrix}.$$

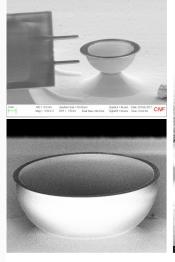
Foucault in Solid State

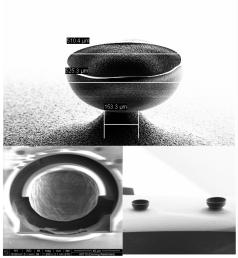
A Small Application



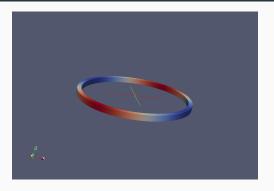
Northrup-Grummond HRG (developed c. 1965–early 1990s)

A Smaller Application (Cornell)





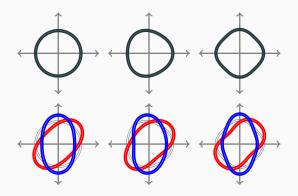
The Perturbation Picture



Perturbations split degenerate modes:

- · Coriolis forces (good)
- Imperfect fab (bad, but physical)
- Discretization error (non-physical)

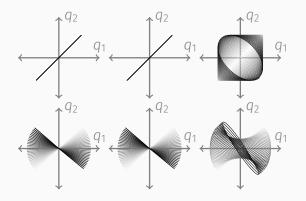
Analyzing Imperfections



Basic framework:

- $\boldsymbol{\cdot}$ Represent geometry and imperfections in Fourier series
- Treat imperfections as perturbations

Analyzing Imperfections



Payoff:

- · Quantitative: Fast and accurate "2.5D" simulations
- Qualitative: Selection rules identify "dangerous" imperfections

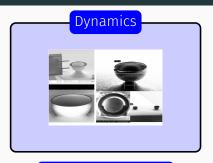
More

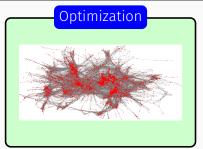
Yilmaz and Bindel

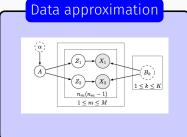
"Effects of Imperfections on Solid-Wave Gyroscope Dynamics" Proceedings of IEEE Sensors 2013, Nov 3–6.

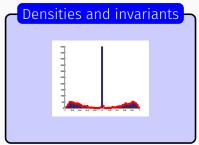
Or talk to me about:

- · Damping, radiation, and nonlinear eigenproblems in MEMS
- Nonlinear dynamics in MEMS (ongoing!)

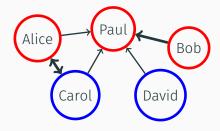








Chapter 2: Opinions in Networks



Modeling Opinion Formation

A basic model:

- · A fixed intrinsic opinion s_i
- A variable expressed opinion x_i
- Equilibrium $x_i = \operatorname{argmin}_{z_i} c_i(z_i)$, where

$$c_i(z_i) \equiv (s_i - z_i)^2 + \sum_{j \in N(i)} w_{ij}(z_i - x_j)^2$$

• Define a social cost $c(z) = \sum_i c_i(z_i)$

From Networks to Numerical Linear Algebra

Methodology: Graph problem \mapsto linear algebra problem.

Nash equilibrium: (L + I)x = sSocial optimum: (A + I)y = sCost at equilibrium: $c(x) = s^T C s$ Optimal social cost: $c(y) = s^T B s$

Price of anarchy is a ratio of quadratics:

$$PoA(s) = \frac{c(x)}{c(y)} = \frac{s^{T}Cs}{s^{T}Bs}$$

Enter eigenvalues

Given

$$PoA(s) = \frac{s^T Cs}{s^T Bs}$$

Maximize by setting gradient to zero:

$$\nabla_{s} \operatorname{PoA}(s) = \frac{2}{s^{T} B s} [Cs - \operatorname{PoA}(s) B s] = 0$$

Find worst case through a a generalized eigenvalue problem:

$$Cs_* = \lambda Bs_*$$

How this happened

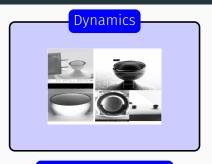
- Sigal Oren: Jon Kleinberg and I are working on this problem, he suggested you might have some insight [explains]. So why is PoA always bounded by 9/8 for symmetric networks?
- · DB: OK
 - PoA is a generalized eigenvalue.
 - Matrices are B = p(L) and C = q(L)
 - Eigs are $p(\mu)/q(\mu)$ for μ an eig of L
 - $p(\mu)/q(\mu)$ has a max of 9/8 for $\mu \ge 0$.
- · SO: Great, thanks! [Exit office]
- Ten minutes pass –
- · SO (knocks): So what about nonsymmetric networks?

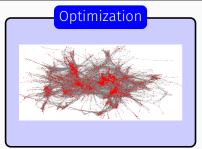
More

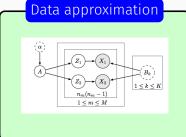
Bindel, Kleinberg, Oren "How Bad is Forming Your Own Opinion?" Games and Economic Behavior, vol 92, pp. 248–265, 2015.

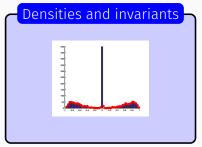
Or talk to me about:

- · Similar bounds for 3D image reconstruction!
- Spectral methods for community detection
- Fast parameterized PageRank computations



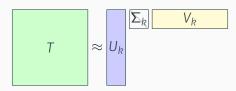






Chapter 3: Spectral Text Analysis and Topic Models

Old idea: Latent Semantic Indexing



- Documents as a word count vectors ("bag of words")
- Reweight to account for frequency (tf-idf)
- · Compute singular value decomposition and truncate
 - Gives best rank k approximation to T
- Cluster words/docs via U_k and V_k
 - · Rows for similar documents are similar
 - "Blurs out" related terms (car/automobile)
- But hard to interpret rows of U_k / cols of V_k
 - · May have negative entries, not normalized

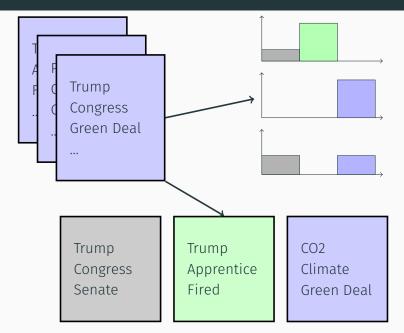
Latent Dirichlet Allocation (LDA)

A generative model for documents:

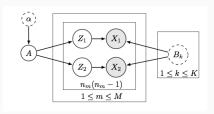
- Topics are distributions over words
- · Documents involve distribution over topics
- · Generate document by picking topic, then word from topic

Goal: Jointly determine topic and document distributions.

Topic Modeling and LDA



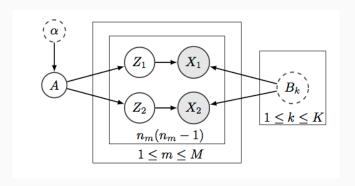
Beyond LDA



Ex: "A Practical Algorithm for Topic Modeling with Provable Guarantees." Arora *et al*, ICML 2013

- · Work with word co-occurrence statistics (topics only)
- Assume anchor words for each topic
- Much faster than MCMC-based LDA training (NLA-based)
- · Provable guarantees with enough data from model

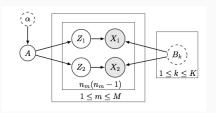
Beyond LDA



But — this is not how we write documents!

- Co-occurrence may not behave as model predicts
- · Result: sometimes funky topics for real data

Rectification

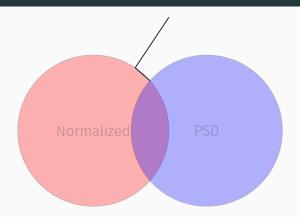


Idea: Enforce co-occurrence structure under model

- · Should represent probability (non-negative, sums to 1)
- Should be low rank and positive semi-definite

Algorithm: Alternating projections

Alternating projections

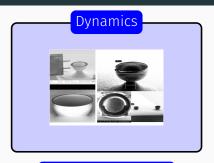


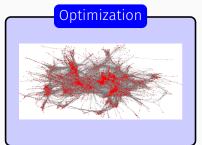
- · Alternate PSD-rank-k and normalized matrix projections
- PSD-rank-k projection by partial eigendecomposition
- Can compute fast using only matrix-vector products
- · Run inference on the resulting matrix

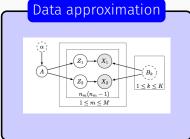
More

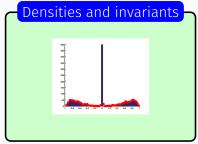
Lee, Bindel, and Mimno, "Robust Spectral Inference for Joint Stochastic Matrix Factorization," NIPS 2015

- · Still some ongoing work in this direction!
- · Moontae Lee is now faculty at the UIC business school

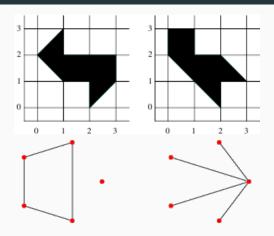






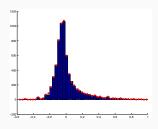


Chapter 4: Can One Hear the Shape of a Drum?



"You mean, if you had perfect pitch could you find the shape of a drum." — Mark Kac (quoting Lipmann Bers) American Math Monthly, 1966

Another Perspective: Density of States



Spectra define a generalized function (a density):

$$\operatorname{tr}(f(H)) = \int f(\lambda)\mu(\lambda) dx = \sum_{j=k}^{N} f(\lambda_k)$$

where *f* is an analytic test function. Smooth to get a picture: a *spectral histogram* or *kernel density estimate*.

A Bestiary of Matrices

- · Adjacency matrix: A
- Laplacian matrix: L = D A
- Unsigned Laplacian: L = D + A
- Random walk matrix: $P = AD^{-1}$ (or $D^{-1}A$)
- Normalized adjacency: $\bar{A} = D^{-1/2}AD^{-1/2}$
- Normalized Laplacian: $\bar{L} = I \bar{A} = D^{-1/2}LD^{-1/2}$
- Modularity matrix: $B = A \frac{dd^T}{2n}$
- Motif adjacency: $W = A^2 \odot A$

All have examples of co-spectral graphs

... through spectrum uniquely identifies quantum graphs

Example: Estrada Index

Consider

$$\operatorname{tr}(\exp(\alpha A)) = \sum_{k=1}^{\infty} \frac{\alpha^k}{k!} \cdot (\# \operatorname{closed} \operatorname{random} \operatorname{walks} \operatorname{of length} k).$$

- · Global measure of connectivity in a graph.
- · Can clearly be computed via DoS.
- · Generalizes to other weights.

Heat Kernels

DoS information equivalent to looking at the *heat kernel trace*:

$$h(s) = tr(exp(-sH)) = \mathcal{L}[\mu](s)$$

Use $H = LD^{-1}$ (continuous time random walk generator) $\implies h(s)/N = P(\text{self-return after time } s \text{ from uniform start}).$

Power Moments

DoS information equivalent to looking at the *power moments*:

$$tr(H^{j}).$$

Natural interpretation for matrices associated with graphs:

- A: number of length k cycles.
- \bar{A} or P: return probability for k-step random walk (times N).
- · L: ??

Local DoS

Local DoS $\nu_k(x)$: symmetric case with $H = Q\Lambda Q^T$,

$$\int f(x)\nu_k(x) dx = f(H)_{kk} = e_k^T Q f(\Lambda) Q^T e_k$$
$$\nu_k(x) = \sum_{j=1}^n q_{kj}^2 \delta(x - \lambda_j)$$

DoS is sum of local densities of states:

$$\mu(x) = \sum_{k=1}^{n} \nu_k(x)$$

LDoS Information

Can compute common centrality measures with LDoS

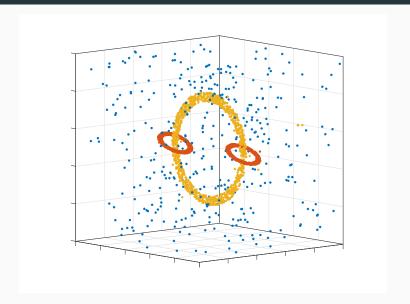
- Estrada centrality: $\exp(\gamma A)_{kk}$
- Resolvent centrality: $[(I-\gamma \bar{A})^{-1}]_{kk}$

Some motifs associated with localized eigenvectors:

- · Chief example: Null vectors of \bar{A} supported on leaves.
- Use LDoS + topology to find motifs?

What else?

LDoS and Clustering



Phase Retrieval in Graph Reconstruction

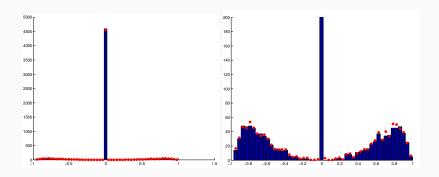
Reconstruct graph from fully resolved LDoS at all nodes?

- Assume $H = Q\Lambda Q^T$
- · No multiple eigenvalues \implies know |Q| and Λ
- Can we recover signs in Q?

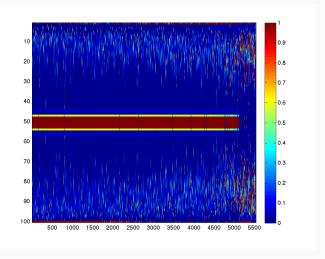
Feels a little like phase retrieval...

Computing the (L)DoS?

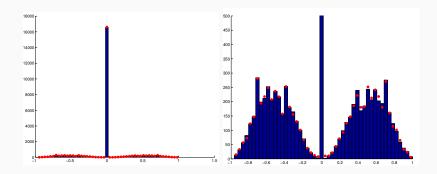
- · Kernel Polynomial Method (KPM) from physics
 - Expand density of H in a (dual) Chebyshev series
 - Coefficients look like $d_j = \operatorname{tr}(T_j(H))$
 - Use stochastic trace estimation for fast traces
 - Filtering to kill Gibbs oscillations
- Other related methods (e.g. Golub-Meurant GQL)
- · Got into this by knowing KPM and a chat with David Gleich!
- Some additional tricks for graph case
- Not enough time for details let's look at pictures!



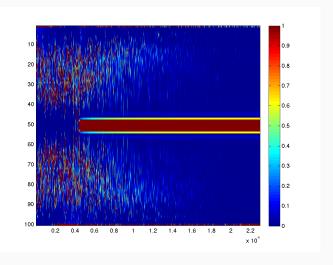
Erdos (local)



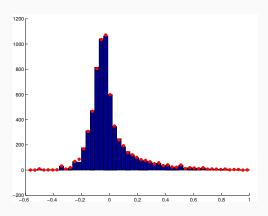
Internet topology



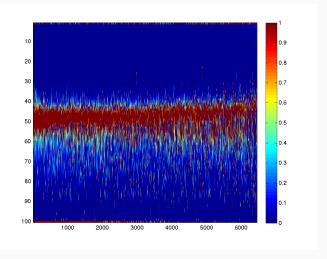
Internet topology (local)



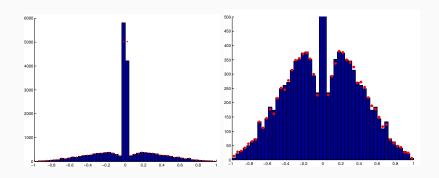
Marvel characters



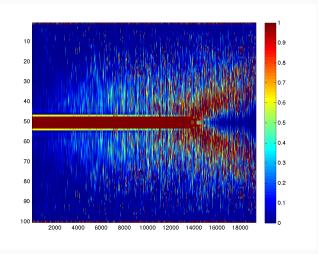
Marvel characters (local)

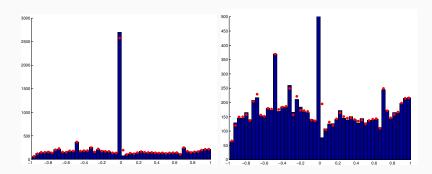


Marvel comics

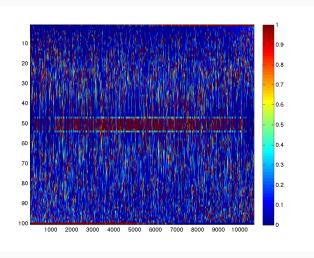


Marvel comics (local)

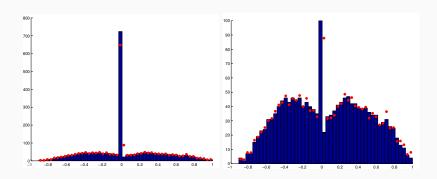




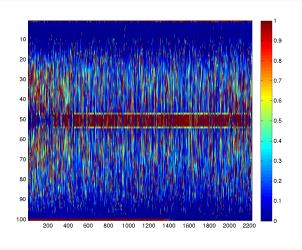
PGP (local)



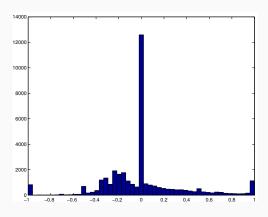
Yeast



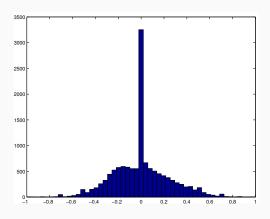
Yeast (local)



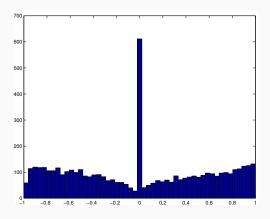
Enron emails (SNAP)



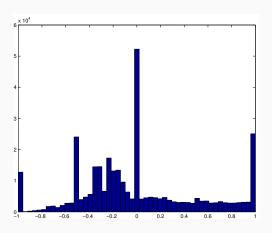
Reuters911 (Pajek)



US power grid (Pajek)

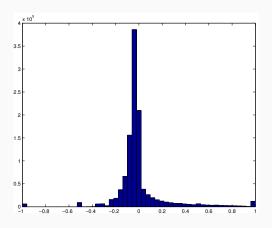


DBLP 2010 (LAW)



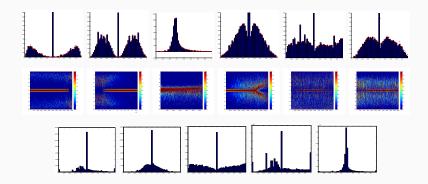
N = 326186, nnz = 1615400, 80 s (1000 moments, 10 probes)

Hollywood 2009 (LAW)



N = 1139905, nnz = 113891327, 2093 s (1000 moments, 10 probes)

What Do You Hear?



For more...

http://www.cs.cornell.edu/bindel bindel@cornell.edu Jones 317 (mostly until mid-May)

