Scientific Computing Group

David Bindel

Doug James

Charlie Van Loan

Connections

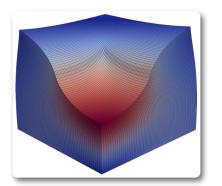
What we do:

- Matrix computations
- Fast transforms
- Model reduction
- Physical simulations
- Network modeling
- ► HPC

Who we talk to:

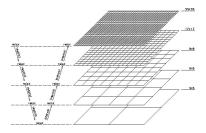
- Graphics and vision
- Machine learning
- Theory
- Computer systems
- Engineering
- Physical sciences

Example: Rank-Structured Factorization



How do we solve Ax = b for big N?

Direct or iterative?

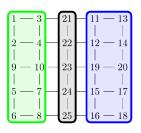


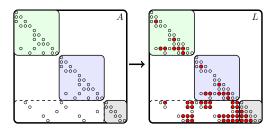
CW: Gaussian elimination scales poorly. Iterate instead!

- Pro: Less memory, potentially better complexity
- ▶ Con: Less robust, potentially worse memory patterns

Industry codes still use (out-of-core) Cholesky!

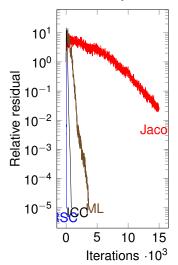
Factorization with nested dissection

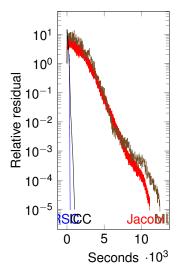




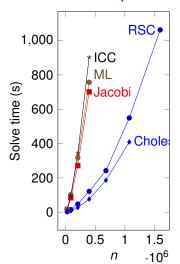
- ▶ Cholesky: $A = LL^T$, L is lower triangular.
- L may have more nonzeros than A (fill)
- Order controls fill still a lot of memory in 3D
- But in physical problems, fill has structure!

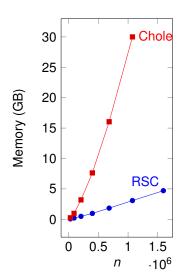
Direct solves triumph





Direct solves triumph





Example: Tensor Computations

What is a tensor? Think of it as a higher dimensional matrix.

A fourth-order tensor...

$$A = A(1:n_1, 1:n_2, 1:n_3, 1:n_4)$$

They are typically very large data objects...

$$N = n_1 \cdot n_2 \cdot n_3 \cdots n_d$$

Why?

Make it possible for scientists to extract information from high-dimensional datasets that arise from modeling...

$$A(i,j,k,\ell) =$$
 a measurement that results by setting the value of four independent variables

or discretization...

$$\mathcal{A}(i,j,k,\ell) = f(w_i,x_i,y_k,z_\ell)$$

How?

A tensor

$$A = A(1:4,1:3,1:n_3,1:n_4)$$

can be "flattened" into a block matrix:

$$A = \begin{bmatrix} \mathcal{A}(1,1,:,:) & \mathcal{A}(1,2,:,:) & \mathcal{A}(1,3,:,:) \\ \mathcal{A}(2,1,:,:) & \mathcal{A}(2,2,:,:) & \mathcal{A}(2,3,:,:) \\ \mathcal{A}(3,1,:,:) & \mathcal{A}(3,2,:,:) & \mathcal{A}(3,3,:,:) \\ \mathcal{A}(4,1,:,:) & \mathcal{A}(4,2,:,:) & \mathcal{A}(4,3,:,:) \end{bmatrix}$$

Methodology: Extract information from A using "classical" matrix computations. Then draw conclusions about tensor A.

Focus: Low Rank Approximation

Given: A(1:n, 1:n, 1:n, 1:n, 1:n, 1:n).

Find: *n*-by-*n* matrices $B_1, \ldots, B_p, C_1, \ldots, C_p$, and D_1, \ldots, D_p so that

$$A(i_1, i_2, i_3, i_4, i_5, i_6) \approx \sum_{s=1}^{p} B_s(i_1, i_2) C_s(i_3, i_4) D_s(i_5, i_6)$$

Approximating an $O(n^6)$ data object with $3pn^2$ numbers.

Vehicle: Multilinear optimization

Goal: Make intractable problems tractable through approximation.