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A Favorite Application: MEMS

I’ve worked on this for a while:
SUGAR (early 2000s) – SPICE for MEMS
HiQLab (2006) – high-Q mechanical resonator device modeling
AxFEM (2012) – solid-wave gyro device modeling

Goal today: two illustrative snapshots.
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Resonant MEMS

MEMS Basics

Micro-Electro-Mechanical Systems
Chemical, fluid, thermal, optical (MECFTOMS?)

Applications:
Sensors (inertial, chemical, pressure)
Ink jet printers, biolab chips
Radio devices: cell phones, inventory tags, pico radio

Use integrated circuit (IC) fabrication technology
Tiny, but still classical physics
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Resonant MEMS

Where are MEMS used?
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Resonant MEMS

My favorite applications

(Cornell University) Fudan 7 / 56



Resonant MEMS

Why you should care, too!
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Resonant MEMS

The Mechanical Cell Phone
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...and lots of mechanical sensors, too!
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Resonant MEMS

Ultimate Success

“Calling Dick Tracy!”
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Resonant MEMS

Computational Challenges

Devices are fun – but I’m not a device designer.
Why am I in this?
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Resonant MEMS

Model System
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Resonant MEMS

The Circuit Designer View
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Resonant MEMS

Electromechanical Model

Balance laws ( KCL and BLM ):
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Resonant MEMS

Electromechanical Model

Assume time-harmonic steady state, no external forces:
"
i!C +G i!B

�BT

˜K � !2M

# 
� ˆV
�û

�
=


� ˆI

external

0

�

Eliminate the mechanical terms:

Y (!) � ˆV = � ˆI
external

Y (!) = i!C +G + i!H(!)

H(!) = BT

(

˜K � !2M )

�1B

Goal: Understand electromechanical piece (i!H(!)).
As a function of geometry and operating point
Preferably as a simple circuit
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Resonant MEMS

Damping and Q

Designers want high quality of resonance (Q)
Dimensionless damping in a one-dof system

d2u

dt2
+Q�1

du

dt
+ u = F (t)

For a resonant mode with frequency ! 2 C:

Q :=

|!|
2 Im(!)

=

Stored energy
Energy loss per radian

To understand Q, we need damping models!
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Resonant MEMS

The Designer’s Dream

Reality is messy:
Coupled physics
... some poorly understood (damping)
... subject to fabrication errors

Ideally, would like:
Simple models for behavioral simulation
Parameterized for design optimization
Including all relevant physics
With reasonably fast and accurate set-up

We aren’t there yet.
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Anchor losses and disk resonators

Disk Resonator Simulations
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Anchor losses and disk resonators

Damping Mechanisms

Possible loss mechanisms:
Fluid damping
Material losses
Thermoelastic damping
Anchor loss

Model substrate as semi-infinite =) resonances!
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Anchor losses and disk resonators

Resonances in Physics
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Anchor losses and disk resonators

Resonances and Literature

In bells of frost I heard the resonance die.
– Li Bai (translated by Vikram Seth)
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Anchor losses and disk resonators

Perfectly Matched Layers

Complex coordinate transformation
Generates a “perfectly matched” absorbing layer
Idea works with general linear wave equations

Electromagnetics (Berengér, 1994)
Quantum mechanics – exterior complex scaling
(Simon, 1979)
Elasticity in standard finite element framework
(Basu and Chopra, 2003)
Works great for MEMS, too!
(Bindel and Govindjee, 2005)
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Anchor losses and disk resonators

Model Problem Illustrated
Outgoing exp(−ix̃) Incoming exp(ix̃)

Transformed coordinate
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Anchor losses and disk resonators

Model Problem Illustrated
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Anchor losses and disk resonators

Finite Element Implementation
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Matrices are complex symmetric
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Anchor losses and disk resonators

Eigenvalues and Model Reduction
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H(!) = BT
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Look at
Poles of H (eigenvalues)
Bode plots of H

Model reduction: Replace H(!) by cheaper ˆH(!).
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Anchor losses and disk resonators

Approximation from Subspaces

A general recipe for large-scale numerical approximation:
1 A subspace V containing good approximations.
2 A criterion for “optimal” approximations in V.

Basic building block for eigensolvers and model reduction!

Better subspaces, better criteria, better answers.
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Anchor losses and disk resonators

Variational Principles

Variational form for complex symmetric eigenproblems:
Hermitian (Rayleigh quotient):

⇢(v) =
v⇤Kv

v⇤Mv

Complex symmetric (modified Rayleigh quotient):

✓(v) =
vTKv

vTMv

First-order accurate eigenvectors =)
Second-order accurate eigenvalues.
Good for model reduction, too!

(Cornell University) Fudan 28 / 56



Anchor losses and disk resonators

Disk Resonator Simulations
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Anchor losses and disk resonators

Disk Resonator Mesh
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Anchor losses and disk resonators

Model Reduction Accuracy
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Results from ROM (solid and dotted lines) nearly indistinguishable
from full model (crosses)
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Anchor losses and disk resonators

Model Reduction Accuracy
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Anchor losses and disk resonators

Response of the Disk Resonator
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Anchor losses and disk resonators

Variation in Quality of Resonance
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Anchor losses and disk resonators

Explanation of Q Variation
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Anchor losses and disk resonators

Explanation of Q Variation
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Elastic wave gyros

Bryan’s Experiment

“On the beats in the vibrations of a revolving cylinder or bell”
by G. H. Bryan, 1890
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Elastic wave gyros

A Small Application

Northrup-Grummond HRG
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Elastic wave gyros

Current example: Micro-HRG / GOBLiT / OMG

Goal: Cheap, small (1mm) HRG
Collaborator roles:

Basic design
Fabrication
Measurement

Our part:
Detailed physics
Fast software
Sensitivity
Design optimization
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Elastic wave gyros

How It Works
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Elastic wave gyros

How It Works
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Elastic wave gyros

Goal state

We want to compute:
Geometry
Fundamental frequencies
Angular gain (Bryan’s factor)
Damping (thermoelastic, radiation, material)
Sensitivities of everything
Effects of symmetry breaking

For speed and accuracy: use structure!
Axisymmetric geometry =) 3D to 2D via Fourier
Perturbed geometry =) interactions for different wave numbers
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Elastic wave gyros

Getting the Geometry

Simple isotropic etch modeling fails – 1mm is huge!
Working on better simulator (reaction-diffusion).
For now, take idealized geometries on faith...

(Cornell University) Fudan 44 / 56



Elastic wave gyros

Full Dynamics
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Elastic wave gyros

Essential Dynamics

Dynamics in 2D subspace of degenerate modes:
�
�!2mI + 2i!⌦gJ + kI

�
c = 0

Scaled gain g is Bryan’s factor

BF =

Angular rate of pattern relative to body
Angular rate of vibrating body
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Elastic wave gyros

If no parameters in the world were very large or very small,
science would reduce to an exhaustive list of everything.

– Nick Trefethen
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Elastic wave gyros

Fourier Picture

Write displacement fields as Fourier series:

u =

1X

m=0
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A

Works whenever geometry is axisymmetric
Treat non-axisymmetric geometries as mapped axisymmetric

Now coefficients in PDEs are non-axisymmetric

Problems with different m decouple if everything axisymmetric
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Elastic wave gyros

Fourier Picture

Perfect axisymmetry:
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Elastic wave gyros

Fourier Picture

Broken symmetry (via coefficients):
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Elastic wave gyros

Perturbing Fourier
Modes “near” azimuthal number m = nonlinear eigenvalues

⇣
K
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� !2M
mm

+ E
mm

(!)
⌘
u = 0.

Need:
Control on E

mm

Depends on frequency spacing
Depends on Fourier analysis of perturbation

Perturbation theory for nonlinearly perturbed eigenproblems
For self-adjoint case, results similar to Lehmann intervals

First-order estimate: (K
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Elastic wave gyros

Perturbation and Radiation

Incorporating numerical radiation BCs gives:
⇣
K � !2M + G(!)

⌘
u = 0.

Perturbation approach: ignore G to get (!
0

, u
0

). Then

�(!2

) =

uT
0

G(!
0

) u
0

uT
0

M
mm

u
0

.

Works when BC has small influence (coefficients aren’t small).

Also an approach to understanding sensitivity to BC!
... explains why PML works okay despite being inappropriate?
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Conclusion
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Conclusion

Conclusions

The difference between art and science is that science is
what we understand well enough to explain to a computer. Art
is everything else.

Donald Knuth

The purpose of computing is insight, not numbers.
Richard Hamming

Collaborators:
Disk: S. Govindjee, T. Koyama, S. Bhave, E. Quevy
HRG: S. Bhave, L. Fegely, E. Yilmaz
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