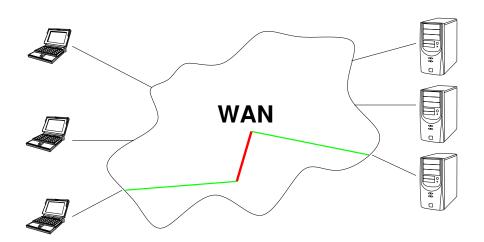
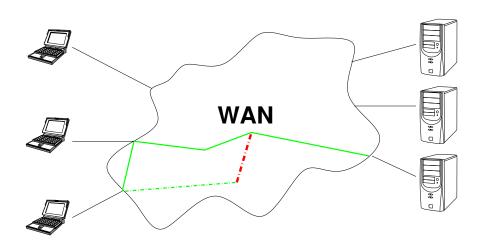
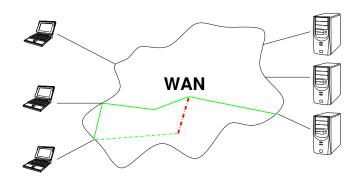

Matrix Factorizations for Computer Networks

David Bindel

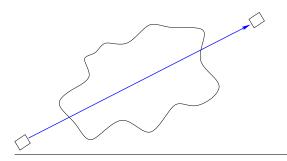

Department of Computer Science Cornell University

30 Apr 2011


A fuzzy picture of the Internet


A slightly-less fuzzy picture

Overlays to the rescue?


Overlays and measurement

Measure a few paths to infer:

- *Path* properties (ToN 2007, SIGCOMM 2004, IMC 2003)
- Link properties (ToN 2009, SIGCOMM 2006)
- Routing topology? (underway)

Discrete Radon transform

Radon transform:

$$(Ru)(L) = \int_{L} u(\mathbf{x}) |d\mathbf{x}|$$

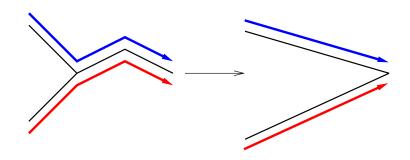
Discrete version:

$$(Gu)_i = \sum_{j \in \mathsf{links}(i)} u_j$$

Path metrics and path matrices

Relate path and link properties via a linear map:

$$Gu = b$$

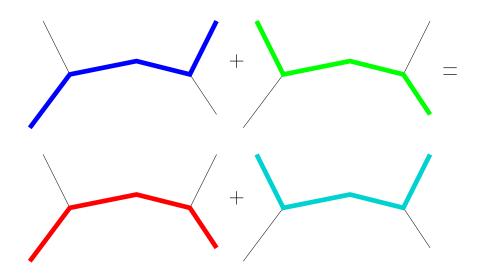

where

- b_i = property of ith end-to-end path
- u_j = property of link j

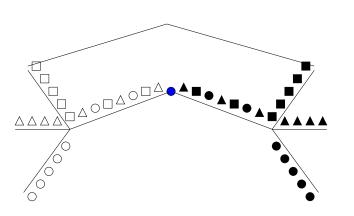
•
$$G_{ij} = \begin{cases} 1 & \text{if path } i \text{ uses link } j \\ 0 & \text{otherwise} \end{cases}$$

Wanted: a sparse rank-revealing factorization of G

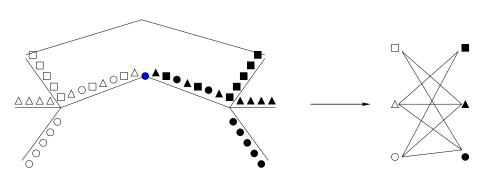
Network virtualization and column dependencies


"Fans" == structured linear dependency among columns (links):

$$G(:,fan) = \begin{bmatrix} c_1 & c_2 & c_1 + c_2 & c_1 + c_2 \end{bmatrix} = \begin{bmatrix} c_1 & c_2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$


Factor out a zero-one "virtualization matrix."

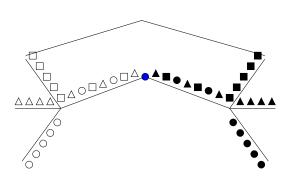
Row dependencies and dependent paths

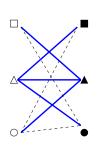


More complicated linear dependencies?

Linear dependencies

Junctions and bipartite graphs




Bipartite router graph at r:

Left node = segment from source $\rightarrow r$ Right node = segments $r \rightarrow$ destination

Edge = path traversing r

Junctions and bipartite graphs

Spanning trees in the router graph \Longrightarrow spanning sets among path vectors

For more

On network tomography:

- Chen, B., Song, Chavez, Katz. Algebra-based scalable overlay network monitoring: Algorithms, evaluation, and applications. ACM ToN, 17(6), 2009.
- Zhao, Chen, B. Towards unbiased end-to-end network diagnosis.
 ACM ToN, 15(5), 2007
- http://www.cs.cornell.edu/~bindel
- ... or come talk to me!

On completely different things:

- Micro-machined wineglass gyroscopes (Erdal Yilmaz)
- Resonances and nonlinear eigenvalue problems (Amanda Hood)