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Outline

1. One big idea.
2. One little idea.
3. One illustrative example.



Big picture

A : C → Cn×n analytic in Ω, usually a Laplace or z-transform

Λ(A) := {z ∈ C : A(z) singular}
Λε(A) := {z ∈ C : ‖A(z)−1‖ ≥ ε−1}

I Λ(A) and Λε(A) describe asymptotics, transients of some
linear differential or difference equation.

I Lots of function theoretic proofs from analyzing ordinary
eigenvalue problems carry over without change.



Counting eigenvalues

If A nonsingular on Γ, analytic inside, count eigs inside by

WΓ(det(A)) =
1

2πi

∫
Γ

d
dz

ln det(A(z)) dz

= tr
(

1
2πi

∫
Γ

A(z)−1A′(z) dz
)

Suppose E also analytic inside Γ. By continuity,

WΓ(det(A)) = WΓ(det(A + sE))

for s in neighborhood of 0 such that A + sE remains
nonsingular on Γ.



Idea 1

Winding number counts give continuity of eigenvalues =⇒
Should consider eigenvalues of A + sE for 0 ≤ s ≤ 1:

Analyticity of A and E +
Matrix nonsingularity test for A + sE =
Inclusion region for Λ(A + E) +
Eigenvalue counts for connected components of region



Example: Matrix Rouché

‖A−1(z)E(z)‖ < 1 on Γ =⇒ same eigenvalue count in Γ

Proof:
‖A−1(z)E(z)‖ < 1 =⇒ A(z) + sE(z) invertible for 0 ≤ s ≤ 1.

(Gohberg and Sigal proved a more general version in 1971.)



Example: Nonlinear Gershgorin

Define

Gi =

z : |aii(z)| <
∑
j 6=i

|aij(z)|


Then

1. Λ(A) ⊂ ∪iGi

2. Connected component ∪m
i=1Gi contains m eigs

(if bounded and disjoint from ∂Ω)

Proof: Write A = D + F where D = diag(A).
D + sF is diagonally dominant (so invertible) off ∪iGi .



Example: Pseudospectral containment

Define D = {z : ‖E(z)‖ < ε}. Then
1. Λ(A + E) ⊂ Λε(A) ∪ DC

2. A bounded component of Λε(A) strictly inside D contains
the same number of eigs of A and A + E .



Idea 2

Can use the usual proof to get first-order changes to isolated
nonlinear eigenvalues. Let E be a function perturbing A. If
A(λ)v = 0 and w∗A(λ) = 0, then

0 = δ(w∗A(λ)v)

= w∗A(λ)δv + (δw)∗A(λ)v + w∗δ(A(λ))v
= w∗δ(A(λ))v
= w∗(E(λ) + A′(λ) δλ)v

So nonlinear eigenvalue changes like

δλ =
w∗E(λ)v
w∗A′(λ)v



Example: Lattice Schrödinger

Consider the discrete analogue to Schrödinger’s equation:

Hψ = (−T + V )ψ = Eψ

where
(Hψ)k = −ψk−1 + 2ψk − ψk+1 + Vkψk .

Assume Vk = 0 for k ≤ 0 and k ≥ L. May be complex.

Want to relate the spectrum for two variants:
1. Non-negative integers: ψ0 = 0 and ψ ∈ l2

2. Bounded: ψk = 0 for k = 0 and k ≥ L + N.



Example: Lattice Schrödinger
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Example: Lattice Schrödinger
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Spectral Schur complement

Write H in either case as

H =

[
−T11 + V11 −eLeT

1
−eLeT

1 −T22

]
Then Λ(H) ∩ Λ(−T22)

c = Λ(S), where

S(z) = (−T11 + V11)− zI −
(

eT
1 (−T22 − zI)−1e1

)
eLeT

L

Write S(N)(z) and S(∞)(z) for bounded and unbounded cases.



Spectral Schur complement

For z 6∈ [0,4], choose ξ2 − (2− z)ξ + 1 = 0, |ξ| < 1. Then

S(∞)(z) = (−T11 + V11)− zI − ξeLeT
L

S(N)(z) = (−T11 + V11)− zI − ξ

(
1− ξ2N

1− ξ2(N+1)

)
eLeT

L

Convenient to write z = 2− ξ − ξ−1, use ξ as primary variable.



Error bounds

Find ‖S(∞) − S(N)‖ ≤ ε if

|ξ| <
(

1 +
log(3ε−1)

2N + 1

)−1

= 1−O
(

log(ε−1)

N

)
.

Therefore, eigenvalues in bounded case (in ξ plane) either
1. Are within O(log(ε−1)/N) of circle (continuous spectrum)
2. Are in Λε(S(∞)).

Get exponential convergence to discrete spectrum, linear
convergence to continuous spectrum.



Error estimate

If S(∞) has an isolated eigenvalue at γ, then S(N)

asymptotically has eigenvalues γ(N) → γ with

γ(N) − γ = γ2N w∗eLeT
L vL

(1− γ2)w∗v − w∗eLeT
L v

+ O(γ2N+1)

where S(∞)(γ)v = 0 and w∗S(∞)(γ) = 0.



Similar applications

I Resonance calculations, error analysis, and some
asymptotics for (continuum) 1D Schrödinger problems
(joint with M. Zworski)

I Error analysis of resonance calculations via radiation
boundary conditions.

I Linear stability analysis for traveling waves.
I Bounds on distance to instability via subspace projections.
I Estimates of damping in MEMS resonators.



Conclusions

I For analytic NEPs, get analogues to standard perturbation
bounds (Rouché, Gerschgorin, pseudospectral)

I Also get first-order perturbation theory
I Get interesting problems via approximation of spectral

Schur complements
I Get interesting questions from audience?


