Computer Aided Design of Micro-Electro-Mechanical Systems From Energy Losses to Dick Tracy Watches

D. Bindel

Courant Institute for Mathematical Sciences New York University

Householder XVIII, 6 June 2008

1 / 65

Collaborators

- Jim Demmel
- Sanjay Govindjee
- Tsuyoshi Koyama
- Zhaojun Bai
- Sunil Bhave
- Emmanuel Quévy
- ...

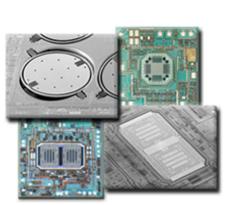
The Computational Science Picture

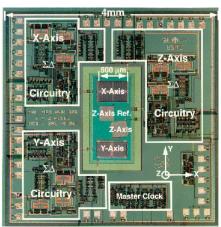
- Application modeling
 - Checkerboard filter
 - Disk resonator and radiation loss
 - Beam resonator and thermoelastic loss
 - Shear ring resonator
- Mathematical analysis
 - Physical modeling and finite element technology
 - Structured eigenproblems and reduced-order models
 - Parameter-dependent eigenproblems
- Software engineering
 - HiQLab
 - SUGAR
 - FEAPMEX / MATFEAP

The Computational Science Picture

- Application modeling
 - Checkerboard filter
 - Disk resonator and radiation loss
 - Beam resonator and thermoelastic loss
 - Shear ring resonator
- Mathematical analysis
 - Physical modeling and finite element technology
 - Structured eigenproblems and reduced-order models
 - Parameter-dependent eigenproblems
- Software engineering
 - HiQLab
 - SUGAR
 - FEAPMEX / MATFEAP

What are MEMS?

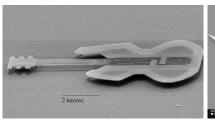


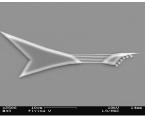


MEMS Basics

- Micro-Electro-Mechanical Systems
 - Chemical, fluid, thermal, optical (MECFTOMS?)
- Applications:
 - Sensors (inertial, chemical, pressure)
 - Ink jet printers, biolab chips
 - Radio devices: cell phones, inventory tags, pico radio
- Use integrated circuit (IC) fabrication technology
- Tiny, but still classical physics

Resonant RF MEMS

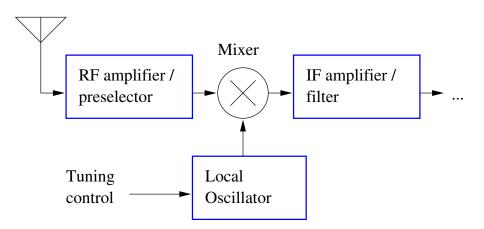




Microguitars from Cornell University (1997 and 2003)

- MHz-GHz mechanical resonators
- Favorite application: radio on chip
- Close second: really high-pitch guitars

The Mechanical Cell Phone

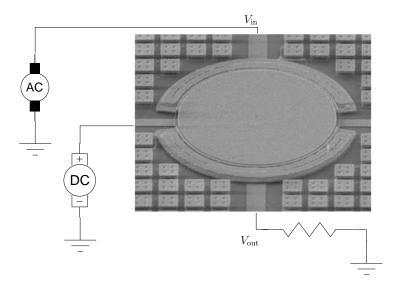


- Your cell phone has many moving parts!
- What if we replace them with integrated MEMS?

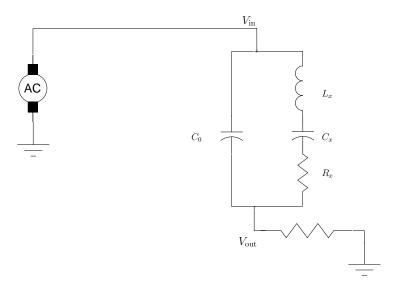
Ultimate Success

"Calling Dick Tracy!"

Disk Resonator



Disk Resonator



The Designer's Dream

Want a reduced model for the electromechanical admittance

$$Y(\omega) = i\omega C + G + i\omega H(\omega)$$

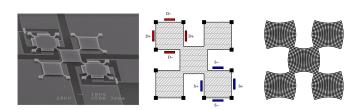
 $H(\omega) = B^{T}(\tilde{K} - \omega^{2}M)^{-1}B$

Ideally, would like

- Simple models for behavioral simulation
- Parameterized for design optimization
- With reasonably fast and accurate set-up
- Including all relevant physics

Lots of linear algebra problems left!

Checkerboard Resonator

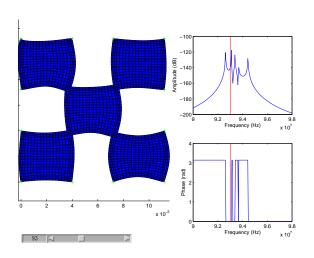


- Anchored at outside corners
- Excited at northwest corner
- Sensed at southeast corner
- Surfaces move only a few nanometers

Checkerboard Model Reduction

- Finite element model: N = 2154
 - Expensive to solve for every $H(\omega)$ evaluation!
- Build a reduced-order model to approximate behavior
 - Reduced system of 80 to 100 vectors
 - Evaluate $H(\omega)$ in milliseconds instead of seconds
 - Without damping: standard Arnoldi projection
 - With damping: Second-Order ARnoldi (SOAR)

Checkerboard Simulation



Damping and Q

Designers want high quality of resonance (Q)

Dimensionless damping in a one-dof system

$$\frac{d^2u}{dt^2} + Q^{-1}\frac{du}{dt} + u = F(t)$$

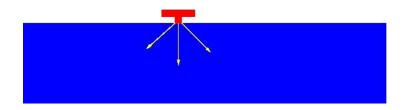
• For a resonant mode with frequency $\omega \in \mathbb{C}$:

$$Q := \frac{|\omega|}{2\operatorname{Im}(\omega)} = \frac{\operatorname{Stored\ energy}}{\operatorname{Energy\ loss\ per\ radian}}$$

To understand Q, we need damping models!

(Courant Institute) Householder 08 15 / 65

Damping Mechanisms



Possible loss mechanisms:

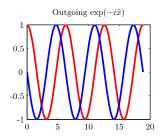
- Fluid damping
- Material losses
- Thermoelastic damping
- Anchor loss

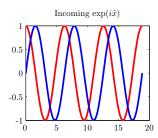
Model substrate as semi-infinite with a

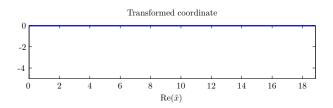
Perfectly Matched Layer (PML).

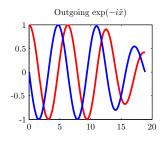
Perfectly Matched Layers

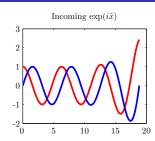
- Complex coordinate transformation
- Generates a "perfectly matched" absorbing layer
- Idea works with general linear wave equations
 - Electromagnetics (Berengér, 1994)
 - Quantum mechanics exterior complex scaling (Simon, 1979)
 - Elasticity in standard finite element framework (Basu and Chopra, 2003)

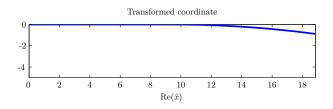


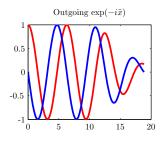


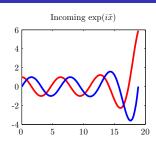


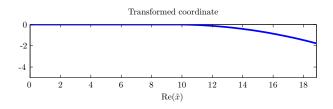


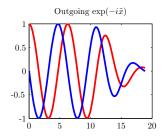


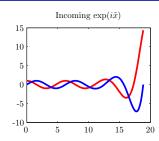


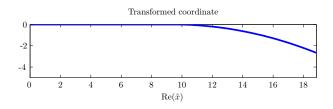


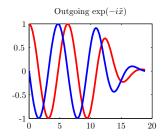


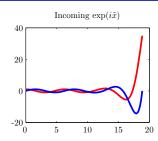


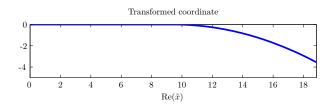


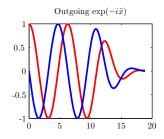


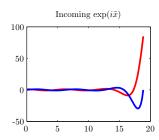


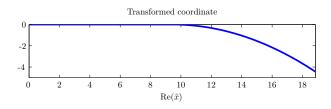




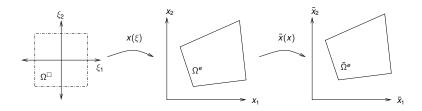








Finite Element Implementation



Combine PML and isoparametric mappings

$$\mathbf{k}^{e} = \int_{\Omega^{\square}} \tilde{\mathbf{B}}^{T} \mathbf{D} \tilde{\mathbf{B}} \tilde{J} d\Omega^{\square}$$
$$\mathbf{m}^{e} = \int_{\Omega^{\square}} \rho \mathbf{N}^{T} \mathbf{N} \tilde{J} d\Omega^{\square}$$

• Matrices are complex symmetric

Eigenvalues and Model Reduction

Want to know about the transfer function $H(\omega)$:

$$H(\omega) = B^{T}(K - \omega^{2}M)^{-1}B$$

Can either

- Locate poles of H (eigenvalues of (K, M))
- Plot H in a frequency range (Bode plot)

Usual tactic: subspace projection

- Build an Arnoldi basis V for a Krylov subspace \mathcal{K}_n
- Compute with much smaller V*KV and V*MV

Can we do better?

Variational Principles

- Variational form for complex symmetric eigenproblems:
 - Hermitian (Rayleigh quotient):

$$\rho(\mathbf{v}) = \frac{\mathbf{v}^* \mathbf{K} \mathbf{v}}{\mathbf{v}^* \mathbf{M} \mathbf{v}}$$

Complex symmetric (modified Rayleigh quotient):

$$\theta(v) = \frac{v^T K v}{v^T M v}$$

(Hochstenbach and Arbenz, 2004)

- First-order accurate eigenvectors Second-order accurate eigenvalues.
- Key: relation between left and right eigenvectors.

(Courant Institute) Householder 08 21 / 65

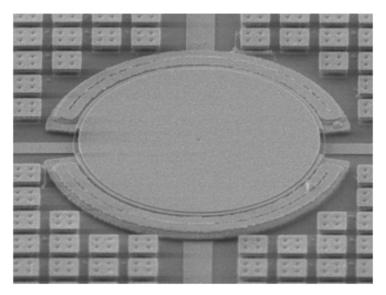
Accurate Model Reduction

• Build new projection basis from *V*:

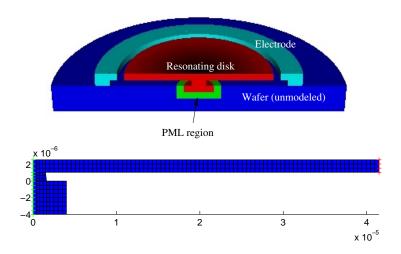
$$W = \operatorname{orth}[\operatorname{Re}(V), \operatorname{Im}(V)]$$

- span(W) contains both \mathcal{K}_n and $\bar{\mathcal{K}}_n$ \Longrightarrow double digits correct vs. projection with V
- W is a real-valued basis
 projected system is complex symmetric

Disk Resonator Simulations

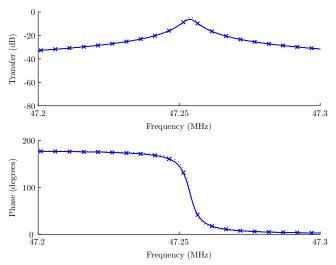


Disk Resonator Mesh



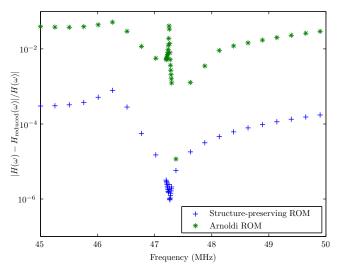
- Axisymmetric model with bicubic mesh
- About 10K nodal points in converged calculation

Model Reduction Accuracy



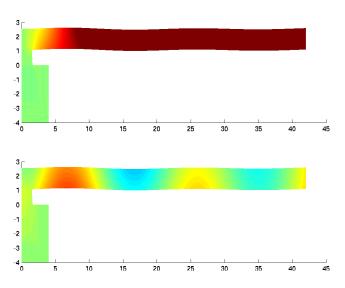
Results from ROM (solid and dotted lines) nearly indistinguishable from full model (crosses)

Model Reduction Accuracy



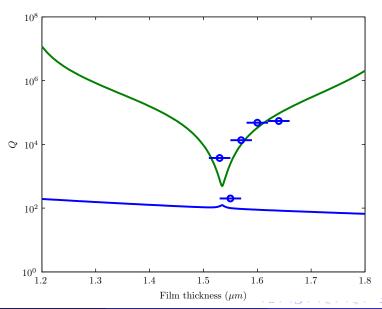
Preserve structure \implies get twice the correct digits

Response of the Disk Resonator

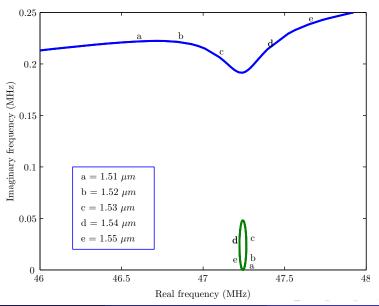


27 / 65

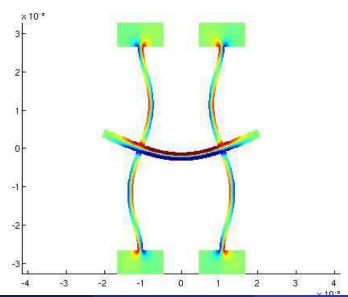
Variation in Quality of Resonance



Explanation of Q Variation



Thermoelastic Damping (TED)



Thermoelastic Damping (TED)

u is displacement and $T = T_0 + \theta$ is temperature

$$\sigma = C\epsilon - \beta\theta \mathbf{1}
\rho \ddot{u} = \nabla \cdot \sigma
\rho c_{V} \dot{\theta} = \nabla \cdot (\kappa \nabla \theta) - \beta T_{0} \operatorname{tr}(\dot{\epsilon})$$

- Coupling between temperature and volumetric strain:
 - Compression and expansion ⇒ heating and cooling

 - Not often an important factor at the macro scale
 - Recognized source of damping in microresonators
- Zener: semi-analytical approximation for TED in beams
- We consider the fully coupled system

Nondimensionalized Equations

Continuum equations:

$$\begin{aligned}
\sigma &= \hat{C}\epsilon - \xi\theta \mathbf{1} \\
\ddot{u} &= \nabla \cdot \sigma \\
\dot{\theta} &= \eta \nabla^2 \theta - \mathsf{tr}(\dot{\epsilon})
\end{aligned}$$

Discrete equations:

$$M_{uu}\ddot{u} + K_{uu}u = \xi K_{u\theta}\theta + f$$

 $C_{\theta\theta}\dot{\theta} + \eta K_{\theta\theta}\theta = -C_{\theta u}\dot{u}$

- Micron-scale poly-Si devices: ξ and η are \sim 10⁻⁴.
- Linearize about $\xi = 0$

Perturbative Mode Calculation

Discretized mode equation:

$$(-\omega^2 M_{uu} + K_{uu})u = \xi K_{u\theta}\theta$$
$$(i\omega C_{\theta\theta} + \eta K_{\theta\theta})\theta = -i\omega C_{\theta u}u$$

33 / 65

Perturbative Mode Calculation

First approximation about $\xi = 0$:

$$(-\omega_0^2 M_{uu} + K_{uu})u_0 = 0$$

$$(i\omega_0 C_{\theta\theta} + \eta K_{\theta\theta})\theta_0 = -i\omega_0 C_{\theta u}u_0$$

First-order correction in ξ :

$$-\delta(\omega^2)M_{uu}u_0 + (-\omega_0^2M_{uu} + K_{uu})\delta u = \xi K_{u\theta}\theta_0$$

Multiply by u_0^T :

$$\delta(\omega^2) = -\xi \left(\frac{u_0^T K_{u\theta} \theta_0}{u_0^T M_{uu} u_0} \right)$$

The Power of Perturbation

- Full method: nonsymmetric eigensolve of size
- Perturbation method:
 - Purely mechanical symmetric eigensolve
 - 2 Linear solve for corresponding thermal field
 - A couple dot products for frequency correction

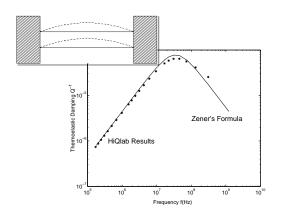
35 / 65

Zener's Model

- Clarence Zener investigated TED in late 30s-early 40s.
- Model for beams common in MEMS literature.
- "Method of orthogonal thermodynamic potentials" == perturbation method + a variational method.

36 / 65

Comparison to Zener's Model



- Comparison of fully coupled simulation to Zener approximation over a range of frequencies
- Real and imaginary parts after first-order correction agree to about three digits with Arnoldi

Onward!

The purpose of computing is insight, not numbers.

Richard Hamming

What about:

- Modeling more geometrically complex devices?
- Modeling general dependence on geometry?
- Modeling general dependence on operating point?
- Computing nonlinear dynamics?
- Digesting all this to help designers?

Conclusions

- RF MEMS are still a great source of problems
 - Still many unresolved physical modeling problems
 - Need better parameterized and nonlinear model reduction methods
 - System scale simulations mean parallel computing challenges

http://www.cims.nyu.edu/~dbindel