USNCCM07

Structure Preserving Model Reduction for Damped Resonant MEMS

David Bindel

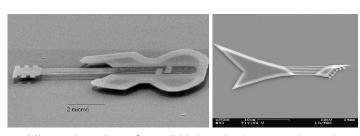
USNCCM 07, 23 Jul 2007

Collaborators

- Tsuyoshi Koyama
- Sanjay Govindjee
- Sunil Bhave
- Emmanuel Quévy
- Zhaojun Bai

Resonant MEMS

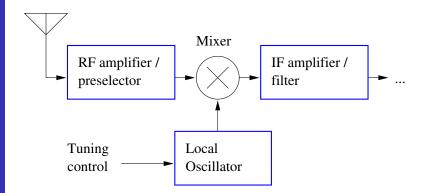
USNCCM07



Microguitars from Cornell University (1997 and 2003)

- MHz-GHz mechanical resonators
- Favorite application: radio on chip
- Close second: really high-pitch guitars

The Mechanical Cell Phone

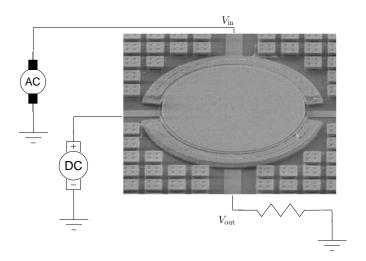


- Your cell phone has many moving parts!
- What if we replace them with integrated MEMS?

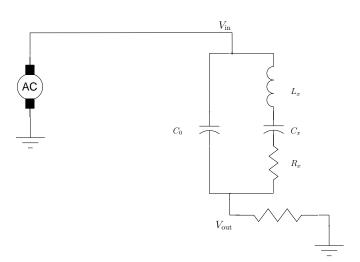
Ultimate Success

"Calling Dick Tracy!"

Example Resonant System



Example Resonant System



Model Reduction: Basic set-up

USNCCM07

Linear time-invariant system:

$$Mu'' + Ku = b\phi(t)$$
$$y(t) = p^{T}u$$

Frequency domain:

$$-\omega^2 M \hat{u} + K \hat{u} = b \hat{\phi}(\omega)$$
$$\hat{y}(\omega) = p^T \hat{u}$$

Transfer function:

$$H(\omega) = p^{T}(-\omega^{2}M + K)^{-1}b$$

$$\hat{y}(\omega) = H(\omega)\hat{\phi}(\omega)$$

Model Reduction: Basic set-up

USNCCM07

Have a *rational* transfer function relating input and output:

$$H(\omega) = p^{T}(-\omega^{2}M + K)^{-1}b$$

Can approximate *H* by Galerkin projection:

$$\hat{H}(\omega) = (Vp)^T (-\omega^2 V^T M V + V^T K V)^{-1} (Vb)$$

Could also try to approximate H directly (often equivalent).

The Designer's Dream

USNCCM07

Ideally, would like

- Compact models for behavioral simulation
- Parameterized for design optimization
- Including all relevant physics
- With reasonably fast and accurate set-up

We aren't there yet.

Standard Projection Model Reduction

USNCCM07

Approximate *H* by Galerkin projection:

$$\hat{H}(i\omega) = (Vp)^{T}(-\omega^{2}V^{T}MV + V^{T}KV)^{-1}(Vb)$$

1 Define $K_{\sigma} := K - \sigma^2 M$; build a Krylov subspace

$$span(V) = \mathcal{K}_n(K_{\sigma}^{-1}M, K_{\sigma}^{-1}b) = span\{(K_{\sigma}^{-1}M)^j K_{\sigma}^{-1}b\}_{j=0}^n$$

Has the *moment-matching property*:

$$H^{(k)}(i\sigma) = \hat{H}^{(k)}(i\sigma), \quad k = 0, \dots, n$$

Get 2*n* moments for symmetric systems (or for separate left and right subspaces).

Project onto one or more modal vectors.

The Hero of the Hour

USNCCM07

Major theme: use problem structure for better reduced models

- ODE structure
- Complex symmetric structure
- Perturbative structure
- Geometric structure

SOAR and ODE structure

USNCCM07

Damped second-order system:

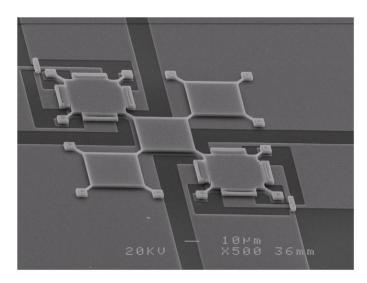
$$Mu'' + Cu' + Ku = P\phi$$
$$y = V^{T}u.$$

Projection basis Q_n with Second Order ARnoldi (SOAR):

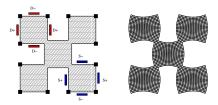
$$M_n u_n'' + C_n u_n' + K_n u_n = P_n \phi$$
$$y = V_n^T u$$

where
$$P_n = Q_n^T P$$
, $V_n = Q_n^T V$, $M_n = Q_n^T M Q_n$, ...

Checkerboard Resonator

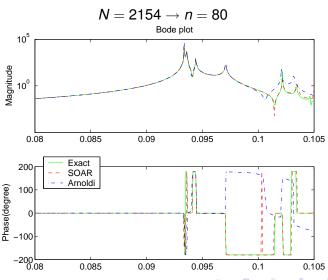


Checkerboard Resonator



- Anchored at outside corners
- Excited at northwest corner
- Sensed at southeast corner
- Surfaces move only a few nanometers

Performance of SOAR vs Arnoldi



Complex Symmetry

USNCCM07

Model with radiation damping (PML) gives complex problem:

$$(K - \omega^2 M)u = f$$
, where $K = K^T, M = M^T$

Forced solution *u* is a stationary point of

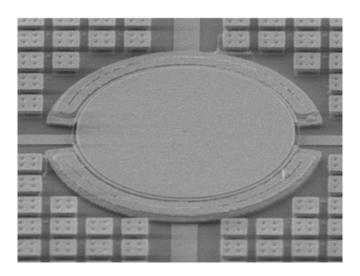
$$I(u) = \frac{1}{2}u^{T}(K - \omega^{2}M)u - u^{T}f.$$

Eigenvalues of (K, M) are stationary points of

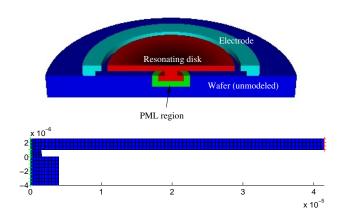
$$\rho(u) = \frac{u^T K u}{u^T M u}$$

First-order accurate vectors ⇒ second-order accurate eigenvalues.

Disk Resonator Simulations

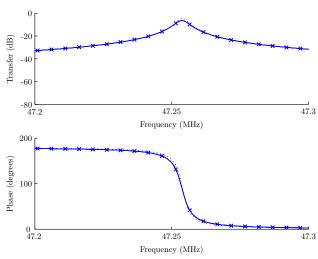


Disk Resonator Mesh



- Axisymmetric model with bicubic mesh
- About 10K nodal points in converged calculation

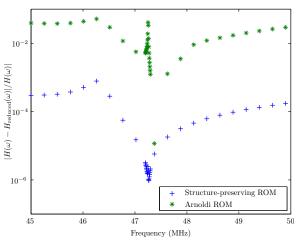
Symmetric ROM Accuracy



Results from ROM (solid and dotted lines) near indistinguishable from full model (crosses)

Symmetric ROM Accuracy

USNCCM07



Preserve structure ⇒ get twice the correct digits

Perturbative Structure

USNCCM07

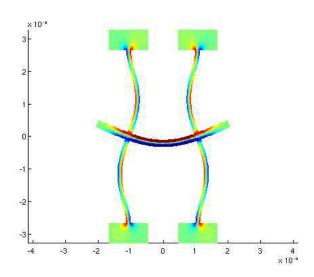
Dimensionless continuum equations for thermoelastic damping:

$$\sigma = \hat{C}\epsilon - \xi\theta\mathbf{1}
\ddot{u} = \nabla \cdot \sigma
\dot{\theta} = \eta \nabla^2 \theta - \operatorname{tr}(\dot{\epsilon})$$

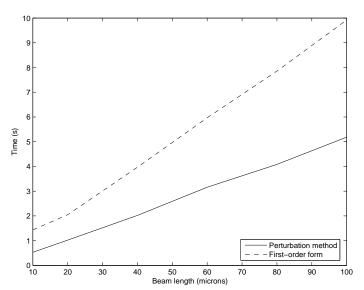
Dimensionless coupling ξ and heat diffusivity η are 10^{-4} \implies perturbation method (about $\xi = 0$).

Large, non-self-adjoint, first-order coupled problem \to Smaller, self-adjoint, mechanical eigenproblem + symmetric linear solve.

Thermoelastic Damping Example



Performance for Beam Example



Aside: Effect of Nondimensionalization

USNCCM07

100 μ *m* beam example, first-order form.

Before nondimensionalization

• Time: 180 s

• nnz(L) = 11M

After nondimensionalization

Time: 10 s

• nnz(L) = 380K

Semi-Analytical Model Reduction

USNCCM07

We work with hand-build model reduction all the time!

- Circuit elements: Maxwell equation + field assumptions
- Beam theory: Elasticity + kinematic assumptions
- Axisymmetry: 3D problem + kinematic assumption

Idea: Provide global shapes

- User defines shapes through a callback
- Mesh serves defines a quadrature rule
- Reduced equations fit known abstractions

Global Shape Functions

USNCCM07

Normally:

$$u(X) = \sum_{j} N_{j}(X)\hat{u}_{j}$$

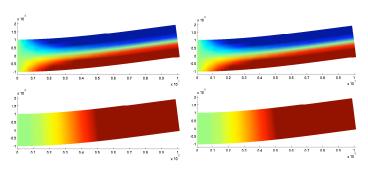
Global shape functions:

$$\hat{u} = \hat{u}^I + G(\hat{u}^g)$$

Then constrain values of some components of \hat{u}^I , \hat{u}^g .

USNCCM07

Which mode shape comes from the reduced model (3 dof)?



(Left: 28 MHz; Right: 31 MHz)

Conclusions

USNCCM07

Respecting problem structure is a Good Thing!

- ODE structure
- Complex symmetric structure
- Perturbative structure
- Geometric structure

Result:

Better accuracy, faster set-up, better understanding.