Continuation of Sparse Eigendecompositions

D. Bindel

Courant Institute of Mathematical Sciences New York University

CSE 07, 23 Feb 07

Basic setting

Have a C^k function

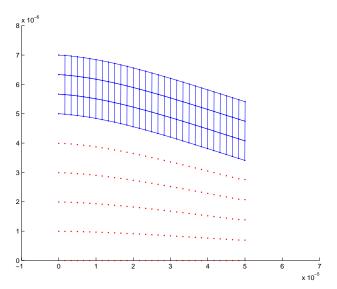
$$A: [0,1] \rightarrow \mathbb{R}^{n \times n}$$

Want to compute eigenvectors v(s) and values $\lambda(s)$ for A(s). More generally, want an invariant subspace basis V(s).

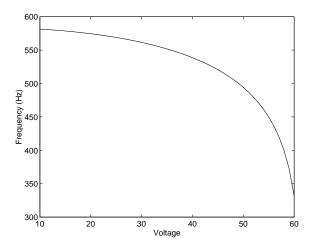
Applications:

- 1. Resonant system design
- 2. Bifurcation analysis

Example: Cantilever tuning



Example: Cantilever tuning



Example: Belousov-Zhabotinski reaction

www.pojman.com/NLCD-movies/NLCD-movies.html

Reaction-diffusion models

$$\frac{\partial u}{\partial t} = D\nabla^2 u + F(u; s)$$

Describes many systems:

- Chemical reactions (like the B-Z reaction)
- Signals in nerves
- Ecological systems
- Phase transitions

See Chemical Oscillations, Waves, and Turbulence (Kuramoto).

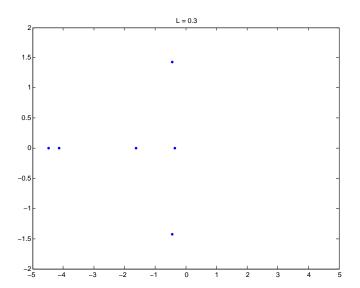
Stability analysis

Linearize about an equilibrium branch $u_0(s)$:

$$\frac{\partial}{\partial t} \delta u = \left(D \nabla^2 + F_u(u_0(s); s) \right) \delta u = A(s) \delta u$$

- Stable if eigenvalues of A(s) have negative real part
- ▶ When stability changes, have a bifurcation
- ▶ Complex eigs cross imaginary axis ⇒ oscillations, a Hopf bifurcation

Hopf bifurcation in the Brusselator



Subspaces and stability analysis

- Diagnose stability from a small subspace (slow dynamics)
- Idea: Continue invariant subspace along with the solution
- Problem: Switching subspaces
- Problem: Missing information

CIS algorithm

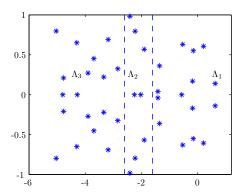
Compute a continuous block Schur form

$$Q(s)^T A(s) Q(s) = \begin{bmatrix} T_{11}(s) & T_{12}(s) \\ 0 & T_{22}(s) \end{bmatrix}$$

Algorithm phases:

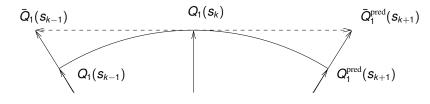
- Initialize
- Predict
- Correct
- Normalize
- Adapt

Initialization



- Compute rightmost part of the spectrum
- Include all unstable eigenvalues + a few stable ones
- Keep eigenvalue clusters together (prevent artificially short steps)

Prediction



Normalize to tangent plane:

$$ar{Q}_1(s) = Q_1(s) \left(Q_1(s_k)^T Q_1(s) \right)^{-1}$$

- ▶ Predict $\bar{Q}_1(s_{k+1})$ by polynomial fitting through $\bar{Q}_1(s_k)$, $\bar{Q}_1(s_{k-1})$,
- Suggests projection space should include computed spaces from previous few steps.

Correction

Solve the nonlinear equations

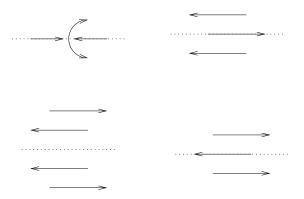
$$AQ_1 - Q_1 T_{11} = 0$$

 $(Q_1^{\text{prev}})^T Q_1 - I = 0$

- Linearization is a bordered Sylvester equation
- ▶ Newton ≈ block RQ iteration
- ▶ Modified Newton ≈ subspace iteration
- Or extract from a Krylov subspace

Then normalize to minimize Frobenius change in $Q_1(s)$.

Adaptation



May need to adjust space if

- ▶ Real parts of continued eigenvalues overlap the rest of the spectrum (generic possibilities shown)
- Eigenvalues cross imaginary axis (bifurcation)

Testing continuity

How to ensure proposed basis spans the right subspace?

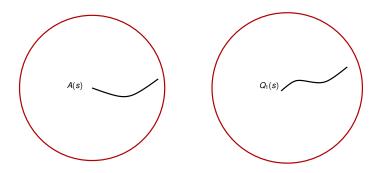
- Check rate of Newton convergence
- Check angles between subspaces
- Check distance between eigenvalues

Anything less heuristic?

Perturbation approaches

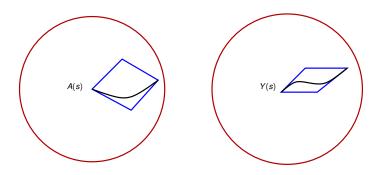
A(s) and $Q_1(s)$ trace some paths in matrix spaces.

Perturbation approaches



Can determine that if A(s) stays in some region, $Q_1(s)$ is well defined and stays in some other region.

Perturbation approaches



Can we test with smaller regions?

Checking the subspace

Recall:

$$sep(B, C) = ||S^{-1}||^{-1}$$
, where $S(X) = BX - XC$

If for $s \in [0, h]$,

$$sep(A_{11},A_{22})^2 > 4\|A_{12}\|\|A_{21}\|$$

Then have a unique C^k invariant subspace associated with A_{11} .

So if
$$A_{21}(0) = 0$$
 then $Q_1(0) = [I; 0]$ extends to $Q_1(s)$

Checking the subspace

Have block Schur $Q^T A(s)Q = T$ at s_k and $s_{k+1} = s_k + h$.

- ▶ Geodesic interpolation U(s) between $Q(s_k)$ and $Q(s_{k+1})$.
- ► Similarity: $\hat{T}(s) = U(s)^T A(s) U(s)$.

If $\theta_{\text{max}} = \text{largest angle between } Q(s_k) \text{ and } Q(s_{k+1}),$

$$\|\dot{\hat{T}}\| \leq 2\theta_{\max} \|A\| + \|\dot{A}\|.$$

Then get interpolation bounds:

- $sep(\hat{T}_{11}, \hat{T}_{22}) = O(1)$
- $\hat{T}_{12} = O(1)$
- $\hat{T}_{21} = O(h^2)$

Checking the subspace

Check that for all $s \in [0, h]$,

$$\text{sep}(\,\hat{T}_{11},\,\hat{T}_{22})^2 > 4\|\,\hat{T}_{12}\|\|\,\hat{T}_{21}\|$$

So test based on:

- Conditioning of subspace (spectral separation)
- ▶ Measure of non-normality ($\|\hat{T}_{12}\|$)
- ▶ Residual from interpolating ($\|\hat{T}_{21}\|$)

Are we there yet?

Believe we can compute

$$Q(s)^T A(s) Q(s) = \begin{bmatrix} T_{11}(s) & T_{12}(s) \\ 0 & T_{22}(s) \end{bmatrix}$$

What if the space isn't rich enough (T_{22} unstable)?

Want conditions for T_{22} stable.

- Do not want another nonsymmetric eigenproblem
- Only need sufficient conditions

Use the fact that we expect rapid decay in most modes.

Stability of T_{22}

Recall: if $\dot{u} = T_{22}u$ then

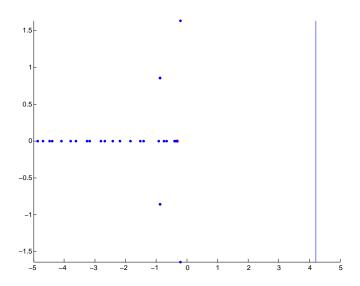
$$\frac{d}{dt}||u||^2=2u^TT_{22}u.$$

Define spectral abscissa

$$\omega(T_{22}) = \max_{v} \{ v^{T} T_{22} v \} = \lambda_{\max}(H(T_{22}))$$

Finding $\omega(T_{22})$ is a symmetric exterior eigenvalue problem! \implies estimate with Lanczos.

Bound applied to a 2D Brusselator



Conclusions

- Continuing eigendecompositions is useful for resonator design and for bifurcation analysis
- ▶ Basic algorithm: predictor-corrector + Krylov subspaces
- Tests to make sure computed subspace is good enough
- Ongoing software work (CL-MATCONT extension)