Simulating Losses in Resonant MEMS

David Bindel 1 and Sanjay Govindjee 2

Department of Electrical Engineering and Computer Science
Department of Civil Engineering
University of California at Berkeley

Contributors

Tsuyoshi Koyama Wei He Emmanuel Quévy Roger Howe James Demmel

- PhD Student, Civil Engineering
- PhD Student, Civil Engineering
- Postdoc, Electrical Engineering
- Professor, Electrical Engineering
- Professor, Computer Science

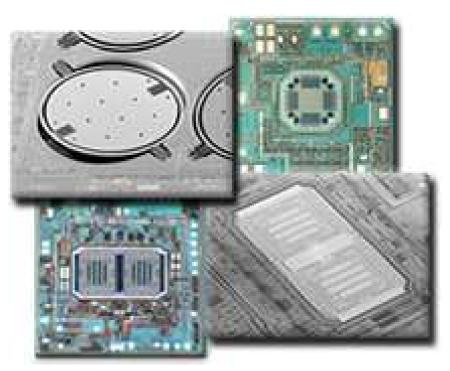
Outline

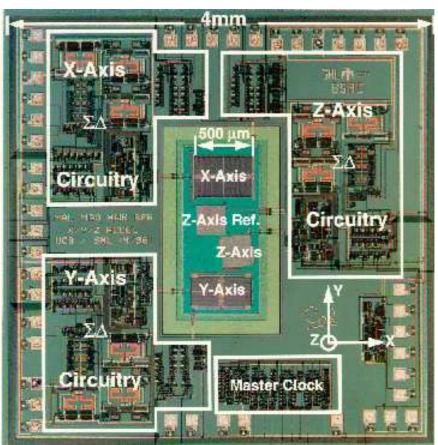
- Electromechanical resonators and RF MEMS
- Damping and quality of resonance
- Anchor losses and Perfectly Matched Layers
- Analysis of the discretized PMLs
- Complex symmetry and structured model reduction
- Analysis of a disk resonator
- Conclusions

Outline

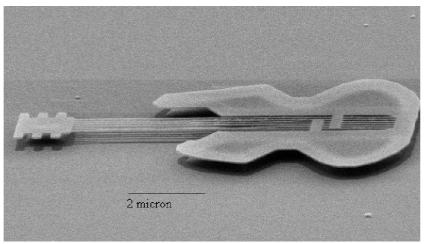
- Electromechanical resonators and RF MEMS
- Damping and quality of resonance
- Anchor losses and Perfectly Matched Layers
- Analysis of the discretized PMLs
- Complex symmetry and structured model reduction
- Analysis of a disk resonator
- Conclusions

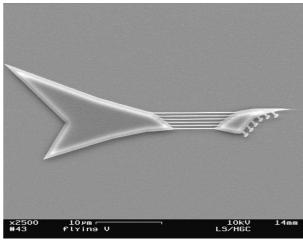
How many MEMS?





Why resonant MEMS?

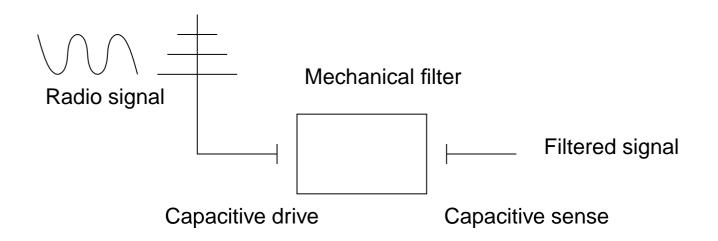




Microguitars from Cornell University (1997 and 2003)

- Sensing elements (inertial, chemical)
- Frequency references
- Filter elements
- Neural networks
- Really high-pitch guitars

Micromechanical filters



- Mechanical high-frequency (high MHz-GHz) filter
 - Your cell phone is mechanical!
- Advantage over quartz surface acoustic wave filters
 - Integrated into chip
 - Low power

Success ⇒ "Calling Dick Tracy!"

Designing transfer functions

Time domain:

$$Mu'' + Cu' + Ku = b\phi(t)$$
$$y(t) = p^{T}u$$

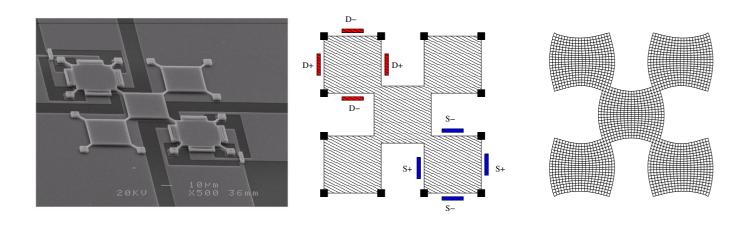
Frequency domain:

$$-\omega^2 M \hat{u} + i\omega C \hat{u} + K \hat{u} = b \hat{\phi}(\omega)$$
$$\hat{y}(\omega) = p^T u$$

Transfer function:

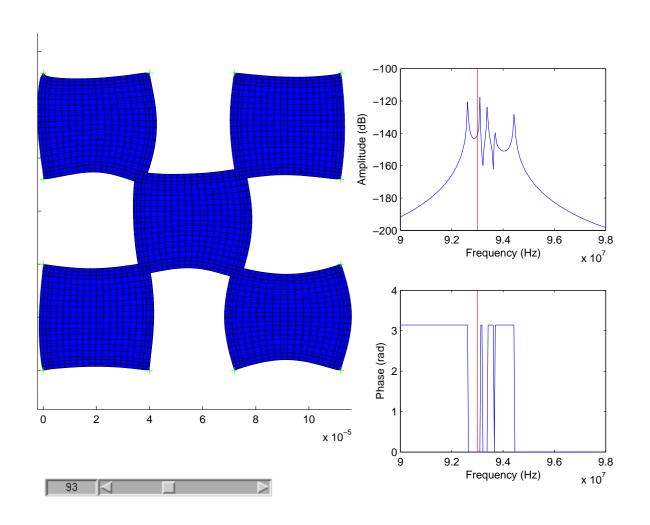
$$H(\omega) = p^{T}(-\omega^{2}M + i\omega C + K)^{-1}b$$
$$\hat{y}(\omega) = H(\omega)\hat{\phi}(\omega)$$

Checkerboard resonator

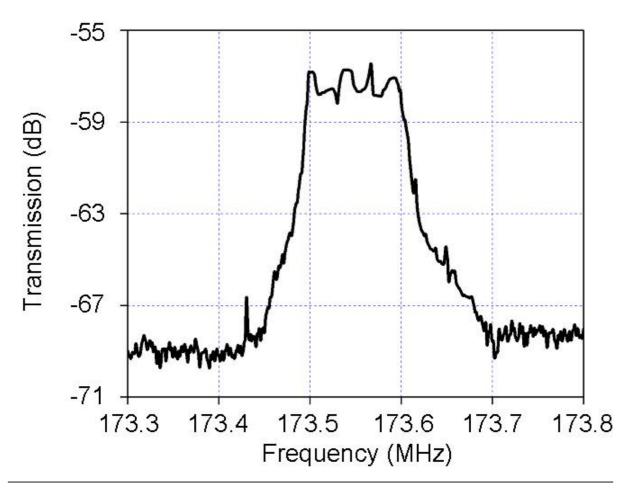


- Array of loosely coupled resonators
- Anchored at outside corners
- Excited at northwest corner
- Sensed at southeast corner
- Surfaces move only a few nanometers

Checkerboard simulation

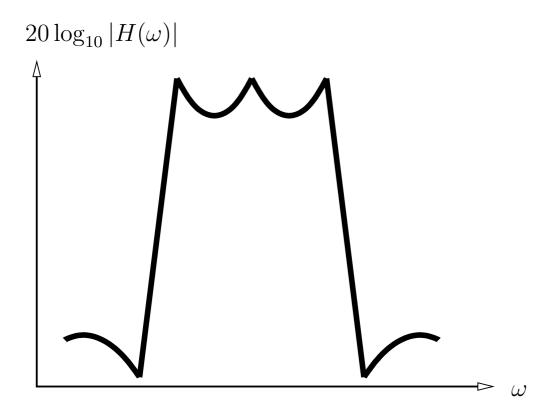


Checkerboard measurement



S. Bhave, MEMS 05

Damping and filters



- Want "sharp" poles for narrowband filters
- Want to minimize damping
 - Electronic filters have too much
 - Understanding of damping in MEMS is lacking

Damping and Q

- Designers want high quality of resonance (Q)
 - Dimensionless damping in a one-dof system:

$$\frac{d^2u}{dt^2} + Q^{-1}\frac{du}{dt} + u = F(t)$$

• For a resonant mode with frequency $\omega \in \mathbb{C}$:

$$Q:=rac{|\omega|}{2\operatorname{Im}(\omega)}=rac{\operatorname{Stored\ energy}}{\operatorname{Energy\ loss\ per\ radian}}$$

Sources of damping

- Fluid damping
 - Air is a viscous fluid ($\text{Re} \ll 1$)
 - Can operate in a vacuum
 - Shown not to dominate in many RF designs
- Material losses
 - Low intrinsic losses in silicon, diamond, germanium
 - Terrible material losses in metals
- Thermoelastic damping
 - Volume changes induce temperature change
 - Diffusion of heat leads to mechanical loss
- Anchor loss
 - Elastic waves radiate from structure

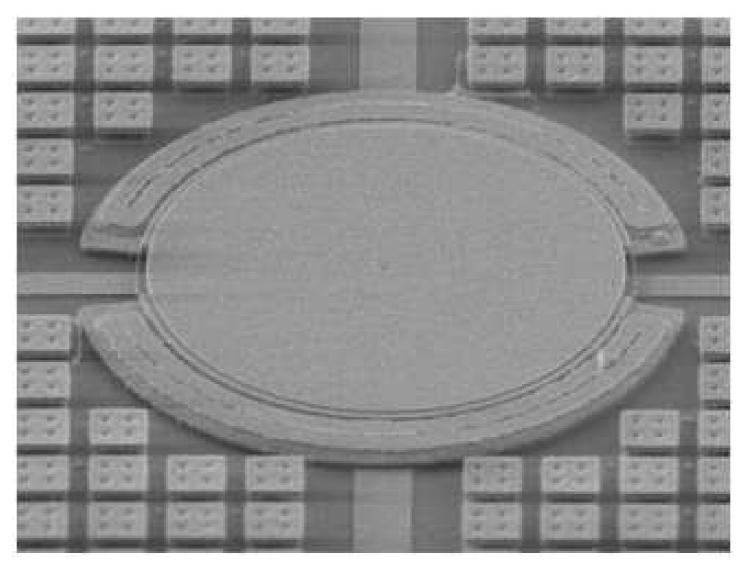
Sources of damping

- Fluid damping
 - Air is a viscous fluid ($\text{Re} \ll 1$)
 - Can operate in a vacuum
 - Shown not to dominate in many RF designs
- Material losses
 - Low intrinsic losses in silicon, diamond, germanium
 - Terrible material losses in metals
- Thermoelastic damping
 - Volume changes induce temperature change
 - Diffusion of heat leads to mechanical loss
- Anchor loss
 - Elastic waves radiate from structure

Outline

- Electromechanical resonators and RF MEMS
- Damping and quality of resonance
- Anchor losses and Perfectly Matched Layers
 - Anchor losses and infinite domains
 - Idea of the perfectly matched layer
 - Elastic PMLs and finite elements
- Analysis of the discretized PMLs
- Complex symmetry and structured model reduction
- Analysis of a disk resonator
- Conclusions

Example: Disk resonator



SiGe disk resonators built by E. Quévy

Substrate model

Goal: Understand energy loss in disk resonator

- Dominant loss is elastic radiation from anchor
- - Substrate appears semi-infinite
- Possible semi-infinite models
 - Matched asymptotic modes
 - Dirichlet-to-Neumann maps
 - Boundary dampers
 - Higher-order local ABCs
 - Perfectly matched layers

Perfectly matched layers

- Apply a complex coordinate transformation
- Generates a non-physical absorbing layer
- No impedance mismatch between the computational domain and the absorbing layer
- Idea works with general linear wave equations
 - First applied to Maxwell's equations (Berengér 95)
 - Similar idea earlier in quantum mechanics (exterior complex scaling, Simon 79)
 - Applies to elasticity in standard FEM framework (Basu and Chopra, 2003)

1-D model problem

- **Domain:** $x \in [0, \infty)$
- Governing eq:

$$\frac{\partial^2 u}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = 0$$

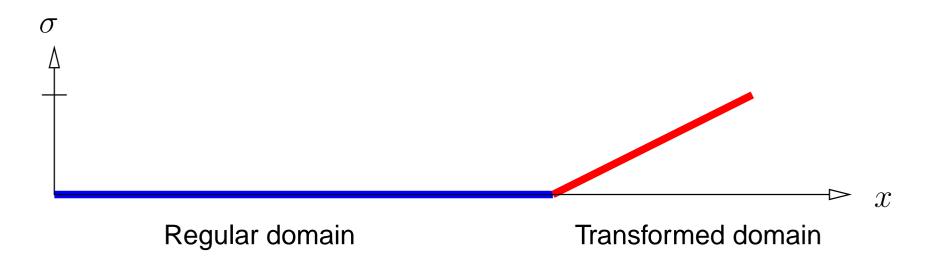
Fourier transform:

$$\frac{d^2\hat{u}}{dx^2} + k^2\hat{u} = 0$$

Solution:

$$\hat{u} = c_{\text{out}}e^{-ikx} + c_{\text{in}}e^{ikx}$$

1-D model problem with PML

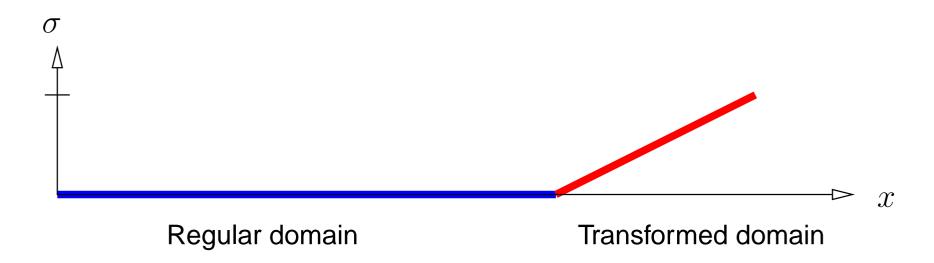


$$\frac{d\tilde{x}}{dx} = \lambda(x)$$
 where $\lambda(s) = 1 - i\sigma(s)$

$$\frac{d^2\hat{u}}{d\tilde{x}^2} + k^2\hat{u} = 0$$

$$\hat{u} = c_{\text{out}}e^{-ik\tilde{x}} + c_{\text{in}}e^{ik\tilde{x}}$$

1-D model problem with PML

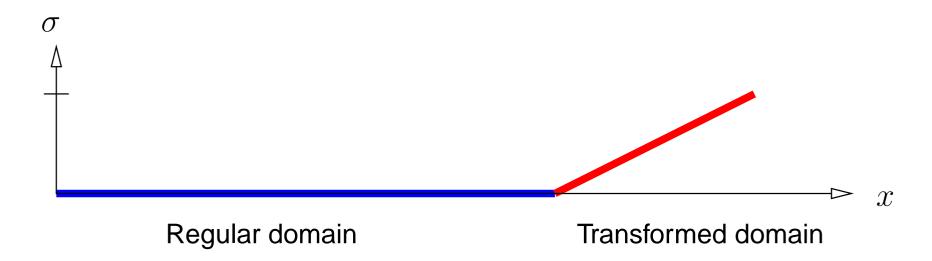


$$\frac{d\tilde{x}}{dx} = \lambda(x)$$
 where $\lambda(s) = 1 - i\sigma(s)$

$$\frac{1}{\lambda} \frac{d}{dx} \left(\frac{1}{\lambda} \frac{d\hat{u}}{dx} \right) + k^2 \hat{u} = 0$$

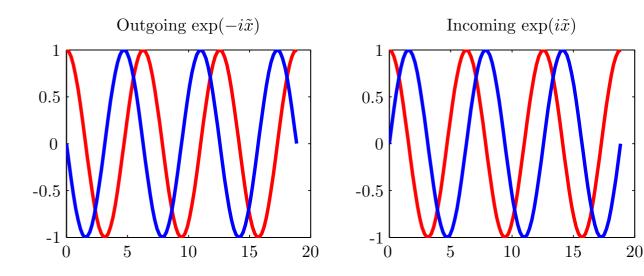
$$\hat{u} = c_{\text{out}} \exp\left(-k \int_0^x \sigma(s) \, ds\right) e^{-ikx} + c_{\text{in}} \exp\left(k \int_0^x \sigma(s) \, ds\right) e^{ikx}$$

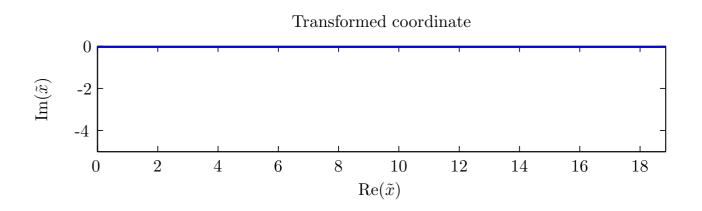
1-D model problem with PML

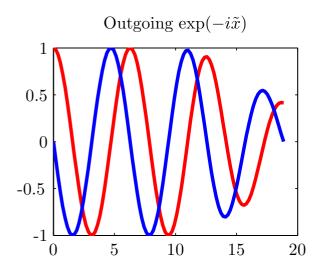


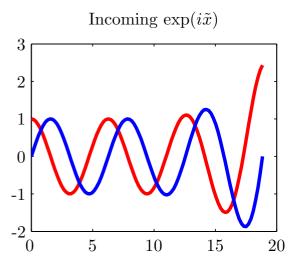
If solution clamped at x = L then

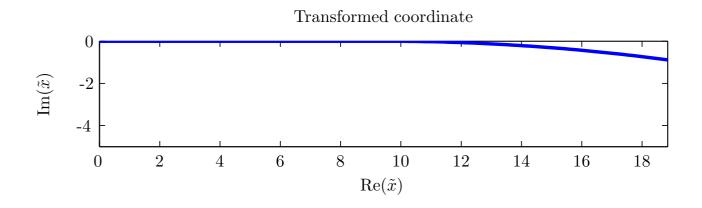
$$\frac{c_{\rm in}}{c_{\rm out}} = O(e^{-k\gamma})$$
 where $\gamma = \int_0^L \sigma(s)\,ds$

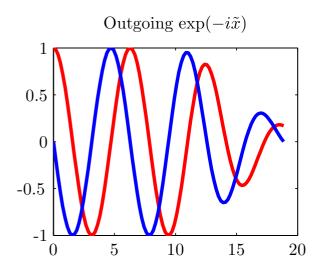


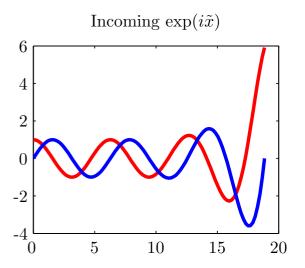


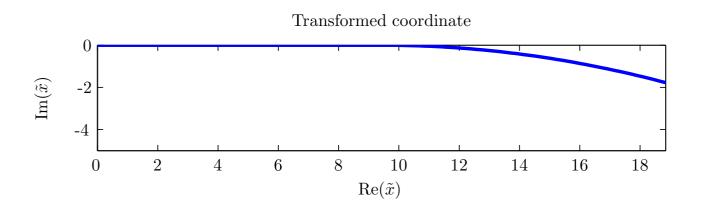


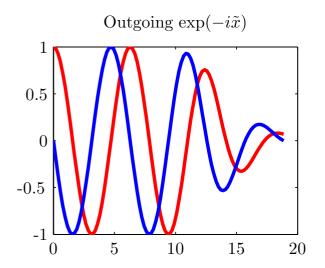


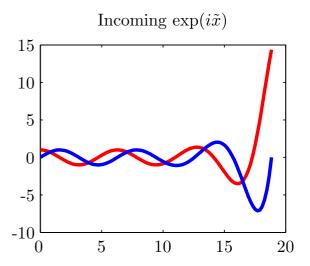


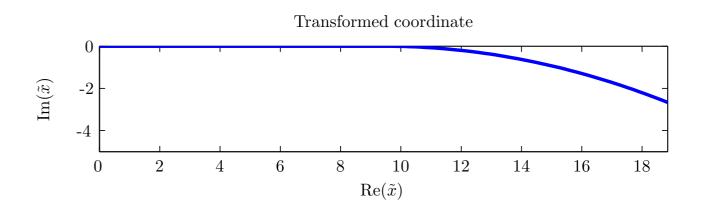


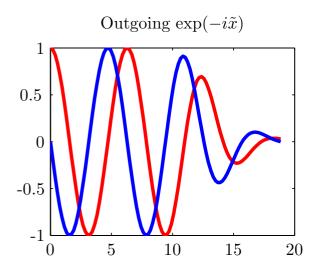


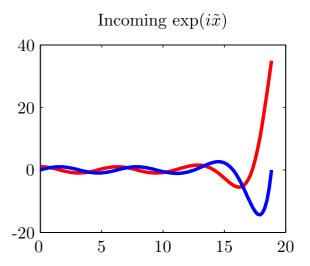


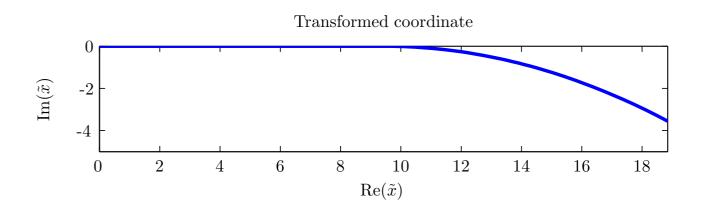


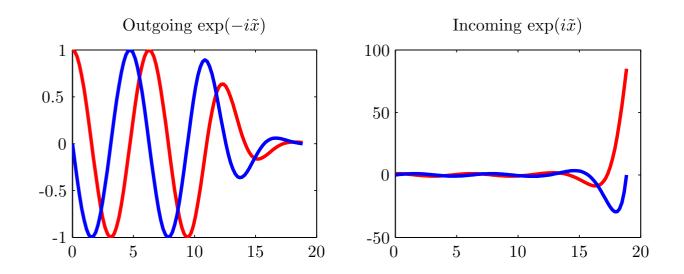


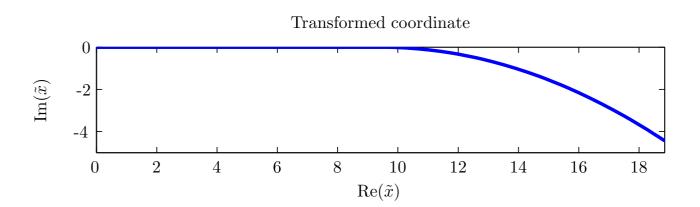












Clamp solution at transformed end to isolate outgoing wave.

$$\int_{\Omega} \epsilon(w) : \mathsf{C} : \epsilon(u) \, d\Omega - \omega^2 \int_{\Omega} \rho w \cdot u \, d\Omega = \int_{\Gamma} w \cdot t_n d\Gamma$$
$$\epsilon(u) = \left(\frac{\partial u}{\partial x}\right)^s$$

Start from standard weak form

$$\int_{\tilde{\Omega}} \tilde{\epsilon}(w) : \mathsf{C} : \tilde{\epsilon}(u) \, d\tilde{\Omega} - \omega^2 \int_{\tilde{\Omega}} \rho w \cdot u \, d\tilde{\Omega} = \int_{\Gamma} w \cdot t_n d\Gamma$$
$$\tilde{\epsilon}(u) = \left(\frac{\partial u}{\partial \tilde{x}}\right)^s = \left(\frac{\partial u}{\partial x}\Lambda^{-1}\right)^s$$

- Start from standard weak form
- Introduce transformed \tilde{x} with $\frac{\partial \tilde{x}}{\partial x} = \Lambda$

$$\int_{\Omega} \tilde{\epsilon}(w) : \mathsf{C} : \tilde{\epsilon}(u) \, J_{\Lambda} \, d\Omega - \omega^2 \int_{\Omega} \rho w \cdot u \, J_{\Lambda} \, d\Omega = \int_{\Gamma} w \cdot t_n \, d\Gamma$$

$$\tilde{\epsilon}(u) = \left(\frac{\partial u}{\partial \tilde{x}}\right)^s = \left(\frac{\partial u}{\partial x}\Lambda^{-1}\right)^s$$

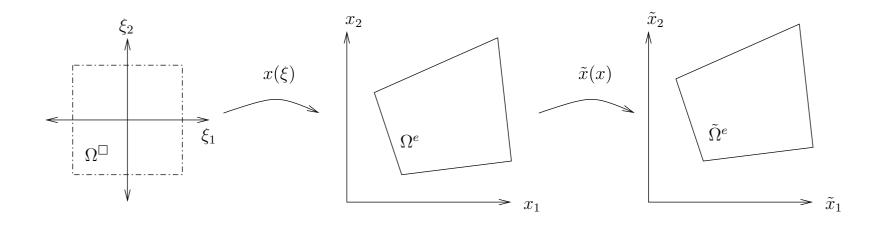
- Start from standard weak form
- Introduce transformed \tilde{x} with $\frac{\partial \tilde{x}}{\partial x} = \Lambda$
- Map back to reference system $(J_{\Lambda} = \det(\Lambda))$

$$\int_{\Omega} \tilde{\epsilon}(w) : \mathsf{C} : \tilde{\epsilon}(u) \, J_{\Lambda} \, d\Omega - \omega^2 \int_{\Omega} \rho w \cdot u \, J_{\Lambda} \, d\Omega = \int_{\Gamma} w \cdot t_n \, d\Gamma$$

$$\tilde{\epsilon}(u) = \left(\frac{\partial u}{\partial \tilde{x}}\right)^s = \left(\frac{\partial u}{\partial x}\Lambda^{-1}\right)^s$$

- Start from standard weak form
- Introduce transformed \tilde{x} with $\frac{\partial \tilde{x}}{\partial x} = \Lambda$
- Map back to reference system $(J_{\Lambda} = \det(\Lambda))$
- ullet All terms are symmetric in w and u

Finite element implementation



Combine PML and isoparametric mappings

$$\mathbf{k}^{e} = \int_{\Omega^{\square}} \tilde{\mathbf{B}}^{T} \mathbf{D} \tilde{\mathbf{B}} \tilde{J} d\Omega^{\square}$$

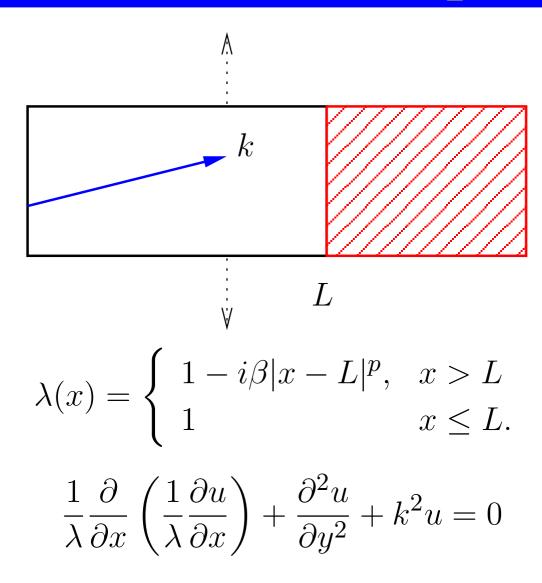
$$\mathbf{m}^{e} = \left(\int_{\Omega^{\square}} \rho \mathbf{N}^{T} \mathbf{N} \tilde{J} d\Omega^{\square} \right)$$

Matrices are complex symmetric

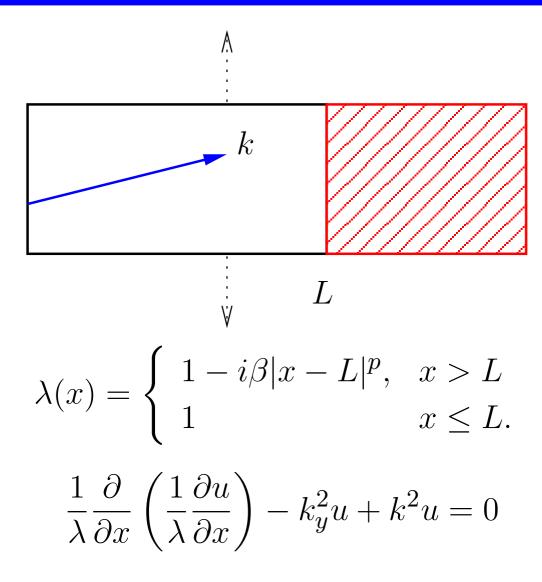
Outline

- Electromechanical resonators and RF MEMS
- Damping and quality of resonance
- Anchor losses and Perfectly Matched Layers
- Analysis of the discretized PMLs
 - A two-dimensional model problem
 - Analysis of discrete reflection
 - Choice of PML parameters
- Complex symmetry and structured model reduction
- Analysis of a disk resonator
- Conclusions

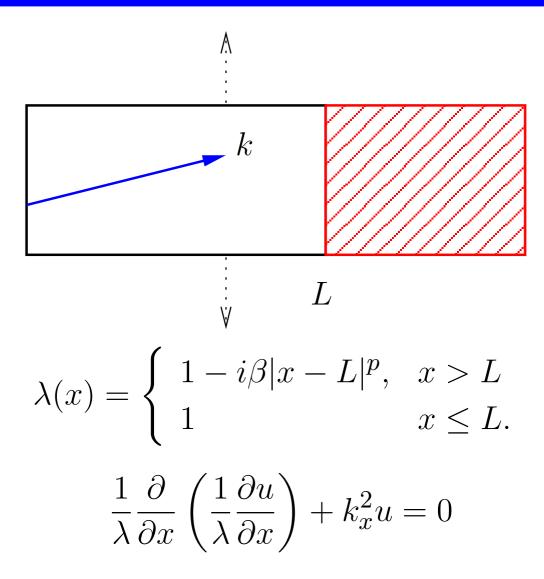
Continuum 2D model problem



Continuum 2D model problem

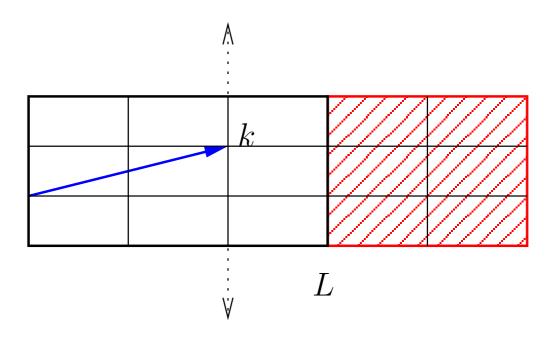


Continuum 2D model problem



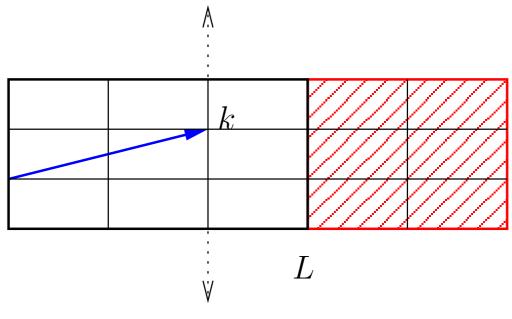
1D problem, reflection of $O(e^{-k_x\gamma})$

Discrete 2D model problem



- Discrete Fourier transform in y
- Solve numerically in x
- Project solution onto infinite space traveling modes
- Extension of Collino and Monk (1998)

Nondimensionalization



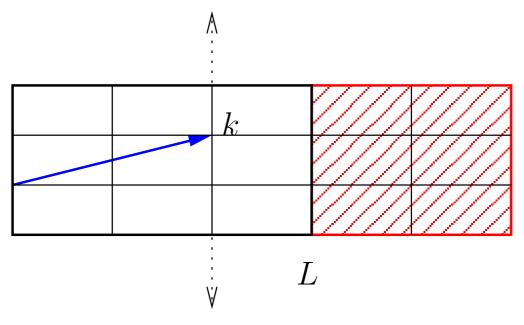
$$\lambda(x) = \begin{cases} 1 - i\beta |x - L|^p, & x > L \\ 1 & x \le L. \end{cases}$$

Rate of stretching: βh^p

Elements per wave: $(k_x h)^{-1}$ and $(k_y h)^{-1}$

Elements through the PML: N

Nondimensionalization



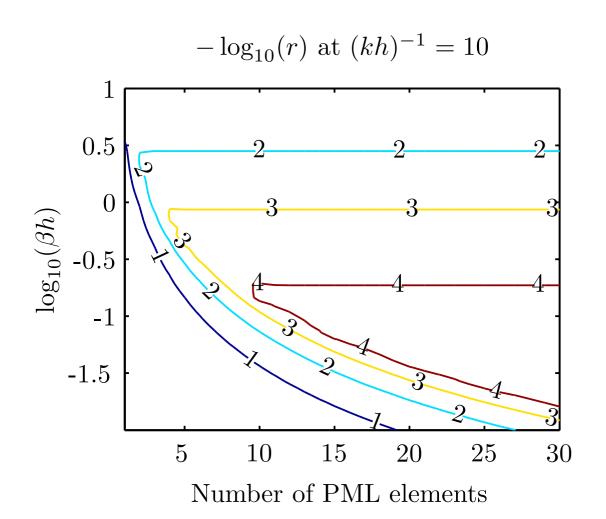
$$\lambda(x) = \begin{cases} 1 - i\beta |x - L|^p, & x > L \\ 1 & x \le L. \end{cases}$$

Rate of stretching: βh^p

Elements per wave: $(k_x h)^{-1}$ and $(k_y h)^{-1}$

Elements through the PML: N

Discrete reflection behavior



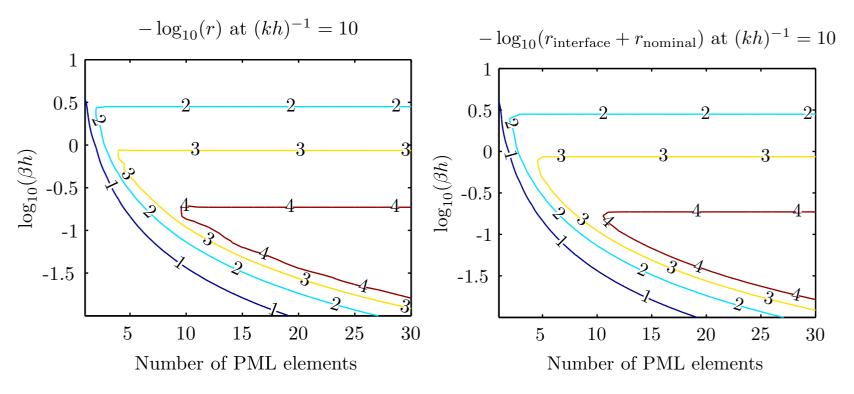
Quadratic elements, p = 1, $(k_x h)^{-1} = 10$

Discrete reflection decomposition

Model discrete reflection as two parts:

- Far-end reflection (clamping reflection)
 - Approximated well by continuum calculation
 - Grows as $(k_x h)^{-1}$ grows
- Interface reflection
 - Discrete effect: mesh does not resolve decay
 - Does not depend on N
 - Grows as $(k_x h)^{-1}$ shrinks

Discrete reflection behavior



Quadratic elements, p = 1, $(k_x h)^{-1} = 10$

- Model does well at predicting actual reflection
- Similar picture for other wavelengths, element types, stretch functions

Choosing PML parameters

- Discrete reflection dominated by
 - Interface reflection when k_x large
 - Far-end reflection when k_x small
- Heuristic for PML parameter choice
 - Choose an acceptable reflection level
 - ullet Choose eta based on interface reflection at $k_x^{
 m max}$
 - Choose length based on far-end reflection at k_x^{\min}

Outline

- Electromechanical resonators and RF MEMS
- Damping and quality of resonance
- Anchor losses and Perfectly Matched Layers
- Analysis of the discretized PMLs
- Complex symmetry and structured model reduction
 - Krylov subspace projections
 - Structure-preserving eigencomputations
 - Structure-preserving model reduction
- Analysis of a disk resonator
- Conclusions

Eigenvalues and model reduction

Want to know about the transfer function $H(\omega)$:

$$H(\omega) = p^T (K - \omega^2 M)^{-1} b$$

Can either

- Locate poles of H (eigenvalues of (K, M))
 - Determine $Q = \frac{|\omega|}{2\operatorname{Im}(\omega)}$
- Plot H in a frequency range (Bode plot)

Solve both problems with the same tool:

Krylov subspace projections

Projecting via Arnoldi

Build a Krylov subspace basis by shift-invert Arnoldi

- Choose shift σ in frequency range of interest
- Form and factor $K_{\text{shift}} = K \sigma^2 M$
- Use Arnoldi to build an orthonormal basis V for

$$\mathcal{K}_n = \text{span}\{u_0, K_{\text{shift}}^{-1}u_0, \dots, K_{\text{shift}}^{-(n-1)}u_0\}$$

Compute eigenvalues and reduced models from projection

- Compute eigenvalues from (V^*KV, V^*MV)
- ullet Approximate $H(\omega)$ by Galerkin projection

$$H(\omega) \approx (V^*p)^*(V^*KV - \omega^2V^*MV)^{-1}(V^*b)$$

Accurate eigenvalues

- Hermitian systems: Rayleigh-Ritz is optimal
 - Raleigh quotient is stationary at eigenvectors

$$\rho(v) = \frac{v^* K v}{v^* M v}$$

- First-order accurate eigenvectors second-order accurate eigenvalues
- Can we obtain optimal accuracy for PML eigenvalues?

Accurate eigenvalues

- PML matrices are complex symmetric
 - Modified RQ is stationary at eigenvectors

$$\theta(v) = \frac{v^T K v}{v^T M v}$$

- second-order accurate eigenvalues
- Hochstenbach and Arbenz, 2004

Accurate model reduction

- ullet Accurate eigenvalues from v and \overline{v} together
- Accurate model reduction in the same way
 - Build new projection basis from V:

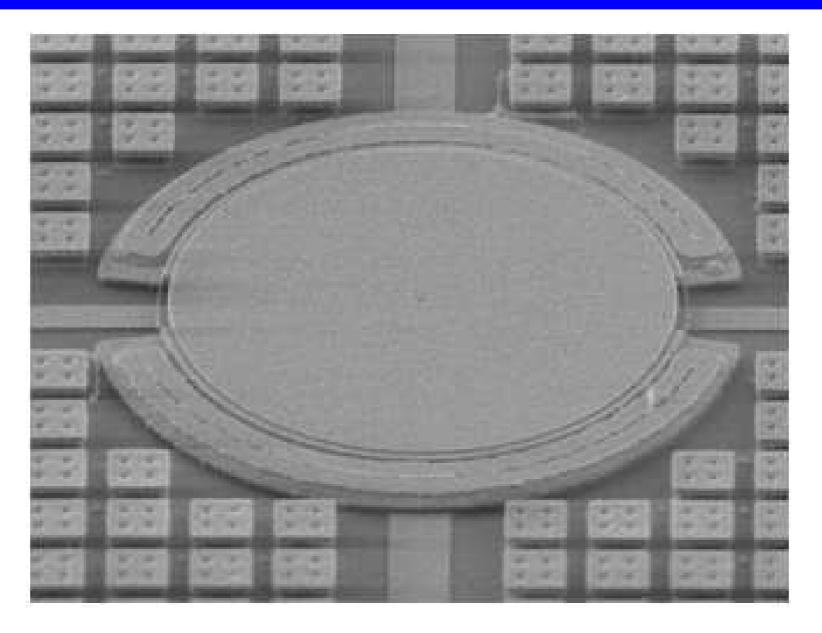
$$W = \operatorname{orth}[\operatorname{Re}(V), \operatorname{Im}(V)]$$

- $\operatorname{span}(W)$ contains both \mathcal{K}_n and $\bar{\mathcal{K}}_n$
 - ullet Double convergence vs projection with V
- W is a real-valued basis
 - Projected system remains complex symmetric

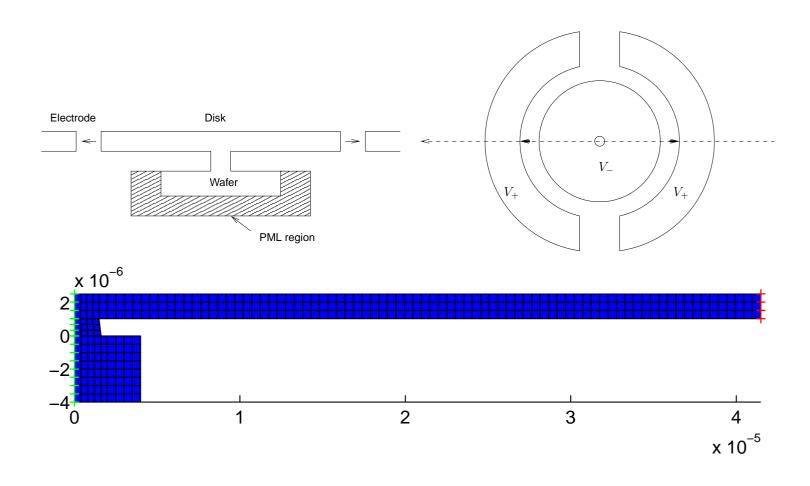
Outline

- Electromechanical resonators and RF MEMS
- Damping and quality of resonance
- Anchor losses and Perfectly Matched Layers
- Analysis of the discretized PMLs
- Complex symmetry and structured model reduction
- Analysis of a disk resonator
 - Accuracy of the numerics
 - Description of the loss mechanism
 - Sensitivity to fabrication variations
- Conclusions

Disk resonator simulations

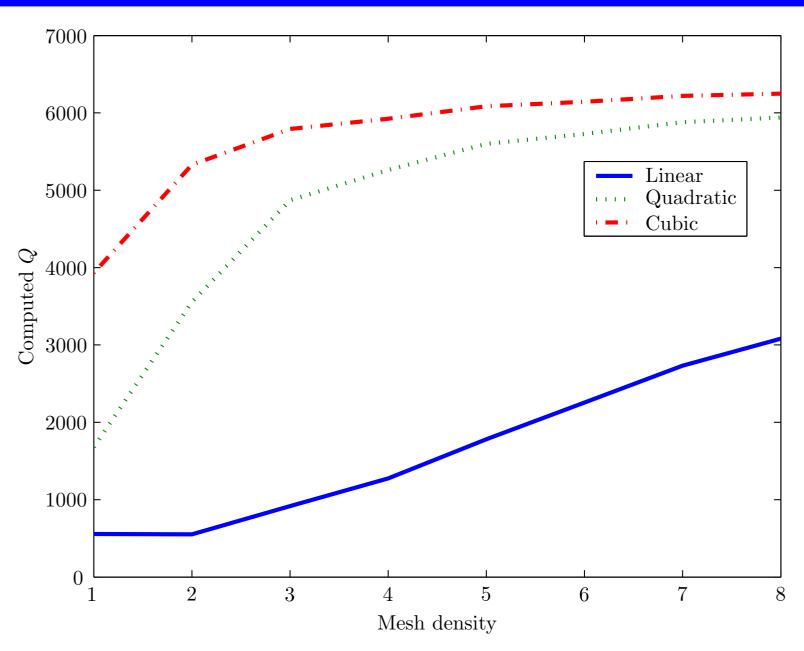


Disk resonator mesh

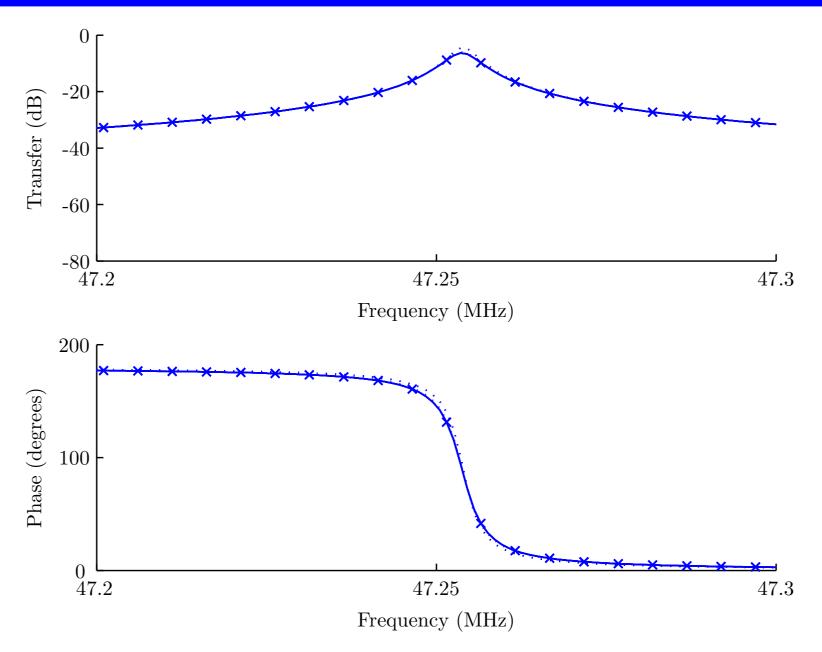


- Axisymmetric model with bicubic mesh
- About 10K nodal points in converged calculation

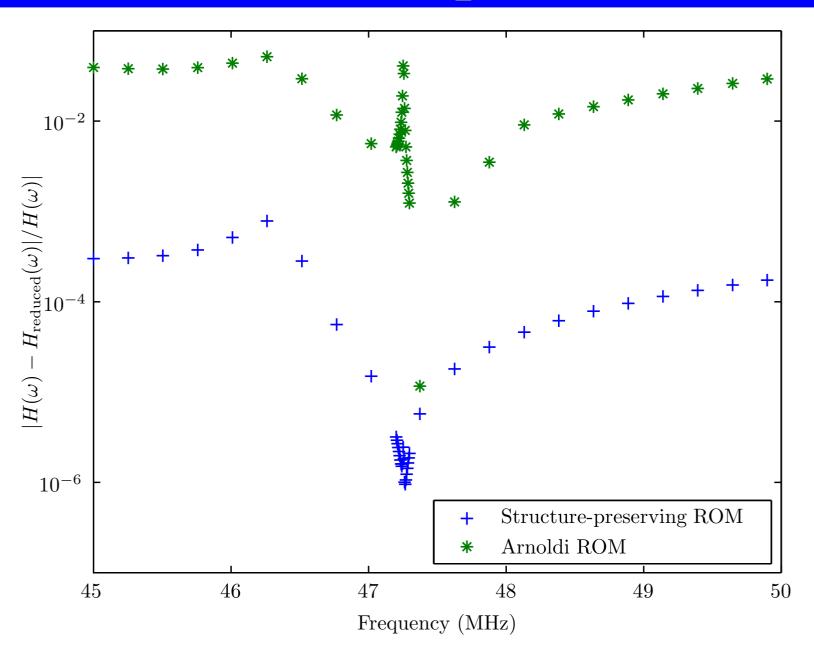
Mesh convergence



Model reduction performance

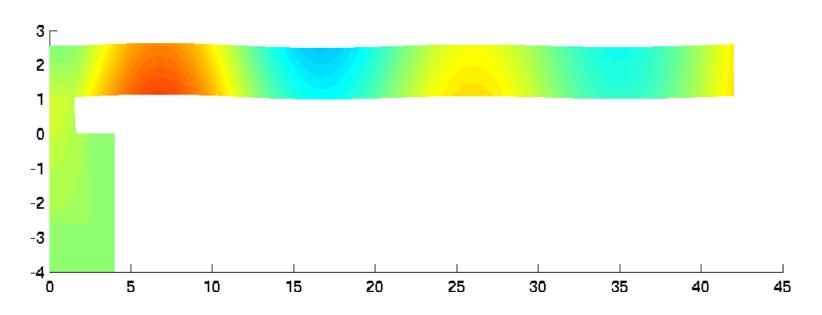


Model reduction performance

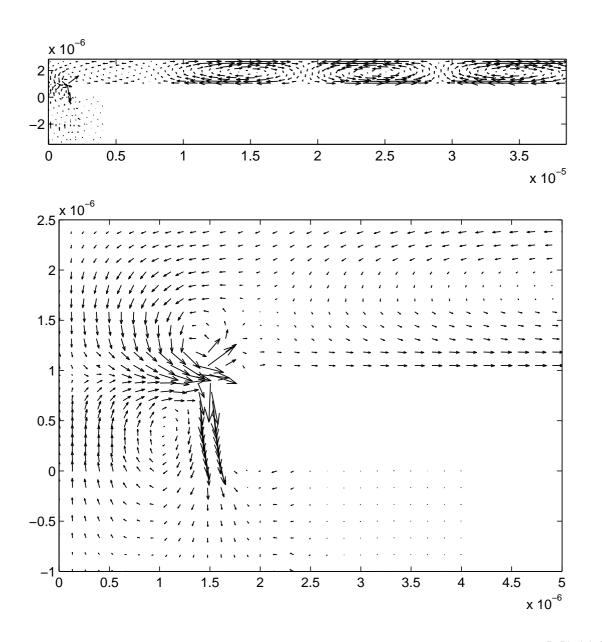


Response of the disk resonator

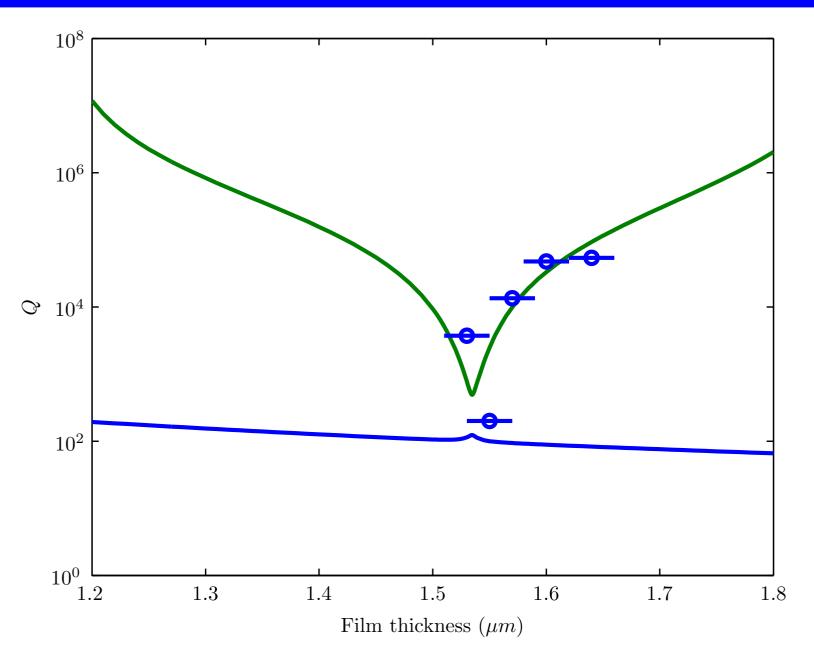




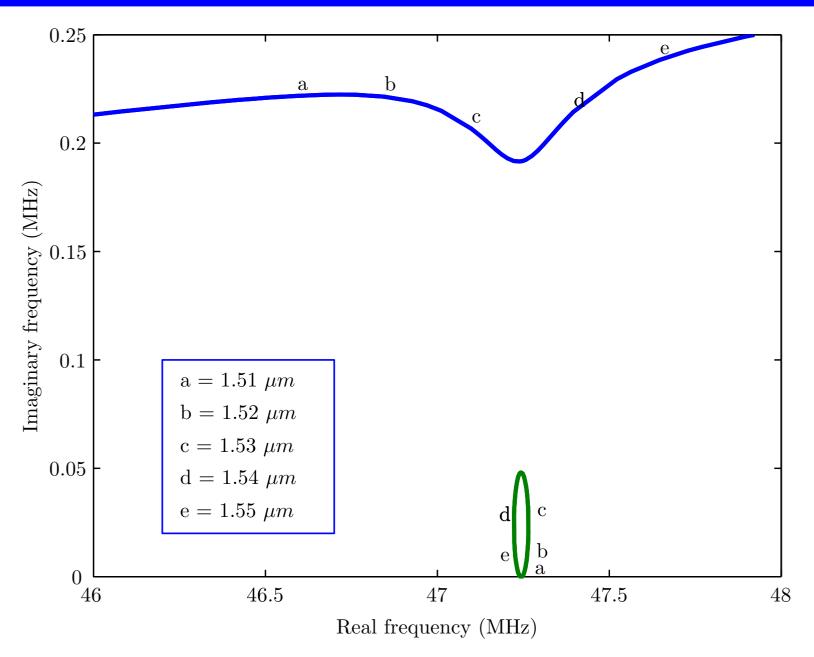
Time-averaged energy flux



Q variation



Explanation of Q variation



Conclusions

- MEMS damping is important and non-trivial
- Elastic PMLs work well for modeling anchor loss
 - Formulation fits naturally with mapped elements
 - Estimate multi-D performance with simple models
- Use complex symmetry to compute eigenvalues and reduced models
- Simulations show effects that hand analysis misses

Reference:

Bindel and Govindjee, "Elastic PMLs for resonator anchor loss simulation," *IJNME* (to appear).