Parameter-Dependent Eigencomputations and MEMS Applications

David Bindel

UC Berkeley, CS Division

Outline

- Some applications
- Mathematical background
- Continuing invariant subspaces

Illustrative example: damped gap actuator

Nonlinear governing equation:

$$mx'' + \frac{\beta}{g - x}x' + kx - \frac{\alpha V^2}{2(g - x)^2} = 0$$
 (1)

Linearized at equilibrium $kx - \frac{\alpha V^2}{2(g-x)^2} = 0$:

$$m(\Delta x)'' + \frac{\beta}{q - x}(\Delta x)' + k\left(1 - \frac{2x}{q - x}\right)(\Delta x) = 0$$
 (2)

Illustrative example: frequency behaviors

Real parts of eigenvalues vs. displacement

- Small deflection: overdamped
- Moderate deflection: underdamped
- x = g/3 small: overdamped
- x = g/3: loss of stability (bifurcation)

Resonator design

Problem domain:

- RF frequency microresonators for cell phone filters
- High frequency, low amplitude very linear

Questions:

- How does resonant behavior change with shape?
- How sensitive are modes to fabrication misalignments?

Ring resonator

Ring resonator

Ring resonator

- Studied shear mode vs ring radius and width
- Estimated eigenvalue by predictor
- Shifted subspace iteration to get values and vectors
- Choose vector to maximize $|q(s_k)^T q(s_{k+1})|$
- Convergence criteria, step control based on $|q(s_k)^Tq(s_{k+1})|$

- Studied mode change vs amount of corner overlap
- Discretization changes between steps
- Identified modes by distance to target frequency
- Manually directed computation so far

Bifurcation analysis

- Working to integrate CIS code into the MatCont bifurcation analysis package
- Evaluate test functions using projected matrices.
- Use basis derivatives for projected versions of test functions that use higher derivatives than the Jacobian.
 - Bifurcation location equations
 - Continuation of codimension 1 bifurcations

Electrostatic actuator

Electrostatic actuator

- Large, undamped version of the 1-d example
- Usually:
 - Compute equilibrium by nonlinear Gauss-Seidel
 - Use finite differences to apply Jacobian
- We form the Jacobian for the fully coupled problem

Related work

- Moving frames on solution manifolds (Rheinboldt)
- Analytic SVD computation (Bunse-Gerstner, Byers, Mehrman, Nichols)
- Analytic null space computations and DAEs (Kunkel, Mehrmann)
- Smooth matrix decompositions (Dieci, Eirola)
- Bifurcation analysis
 (Thummler, Beyn, Kless; Friedman, Dieci, Demmel)
- Perturbation theory (Kato; Stewart; Demmel)

Overview of the math

For differentiable $A:[0,1]\to\mathbb{R}^{n\times n}$:

- Eigenvalues are continuous functions.
- While eigenvalues stay inside a contour Γ, the correspondent subspace has a differentiable basis.
- There's more than one differentiable basis for a space. Pick a unique basis by not letting vectors "spin."

Spaces and bases

Define the Stiefel manifold Stief(n, m) and the Grassman manifold Grass(n, m) to be

$$Stief(n,m) := \{ Y \in \mathbb{R}^{n \times m} : Y^T Y = I \}$$
(3)

$$Grass(n, m) := Stief(n, m) / [Y \sim YU, U \in O(m)]$$
 (4)

Special cases:

- Stief(n,n) is the set of orthogonal matrices O(n)
- Stief(n,1) is the unit sphere S_{n-1} in \mathbb{R}^n
- Grass(n, 1) is the projective space P_{n-1}

Tangents in $\mathbb{R}^{n \times m}$

Let $Y_0 \in \text{Stief}(n, m)$. Tangents satisfy:

$$0 = \delta(Y^T Y - I) \tag{5}$$

$$= (\delta Y)^T Y_0 + Y_0^T \delta Y \tag{6}$$

$$= 2\operatorname{sym}\left(Y_0^T \delta Y\right) \tag{7}$$

If Y_0^{\perp} is a complementary orthonormal basis

$$\delta Y = \begin{bmatrix} Y_0 & Y_0^{\perp} \end{bmatrix} \begin{bmatrix} \delta Y_H \\ \delta Y_V \end{bmatrix} \tag{8}$$

where $Y_H \in \mathbb{R}^{m \times m}$ is skew, $Y_V \in \mathbb{R}^{n-m \times m}$

Horizontal and vertical motion

The tangent space is divided into *vertical* directions that change the space and *horizontal* directions that "spin" the basis.

Basis normalization

Suppose

$$\mathcal{Y}: [0,1] \to \operatorname{Grass}(n,m)$$
 is C^1
 $Y_0 \in \operatorname{Stief}(n,m)$
 $\operatorname{span}(Y_0) = \mathcal{Y}(0)$

Then there is a unique $Y : [0,1] \to \text{Stief}(n,m)$ such that

$$Y(0) = Y_0$$
 (9)
 $\mathcal{Y}(s) = \operatorname{span}(Y(s))$ (10)

$$Y(s)^T \dot{Y}(s) = 0 \tag{11}$$

The basis Y minimizes the arclength $\int_0^1 |\dot{Y}(s)|_F ds$.

Continuous basis: algebraic version

Suppose $A_{21}(s_0) = 0$. Seek continuous Y(s), L(s)

$$\begin{bmatrix} A_{11}(s) & A_{12}(s) \\ A_{21}(s) & A_{22}(s) \end{bmatrix} \begin{bmatrix} I \\ Y(s) \end{bmatrix} = \begin{bmatrix} I \\ Y(s) \end{bmatrix} L(s)$$
 (12)

Eliminate *L* to get a generalized algebraic Riccati equation:

$$YA_{11} - A_{22}Y = A_{21} - YA_{12}Y (13)$$

If $\lambda(A_{11}(s_0)) \cap \lambda(A_{22}(s_0)) = \emptyset$, then for s near s_0 , fixed point iteration from $Y_0(s) = 0$ converges uniformly.

Can also prove this with complex analysis or by an ODE.

CIS algorithm

- Compute continuous invariant subspace bases
- Components:
 - Choose initial invariant subspace
 - Compute a continuation step
 - Normalize the solution
 - Adapt space and step size to improve convergence, resolve features of interest

Sparse considerations

- Initialization and continuation step change in sparse case
- Need both the continued space and a few extra eigenvalues
- Use spectrally transformed IRAM to build a projection basis
- Possible better ways to build approximation basis:
 - Blocked methods
 - Re-use factorization for several steps
 - Higher-order rational spectral transformations
 - Start with bases from several previous steps

Initialization: Bifurcation case

- Compute rightmost part of the spectrum
- Include all unstable eigenvalues + a few stable ones
- Don't split clusters of eigenvalues

Initialization: Mode tracking

Reference: (3.8274×10^{15})

Computed: (2.7857×10^{16})

To initialize when spectrum interior is of interest:

- Find eigenvalues near specified $\lambda_{\mathrm{target}}$
- Find modes near specified shape
- Compute lots of modes, let user select

Single continuation step

- Input: Partial Schur form A(s)Q(s) = Q(s)T(s), $Q(s) \in \text{Stief}(n,m)$ for $s = s_1, \dots s_k$
- Output: $A(s_{k+1})Q(s_{k+1}) = Q(s_{k+1})T(s_{k+1})$
- Steps:
 - Predict $Q(s_{k+1})$
 - Correct to get a basis for space at s_{k+1}
 - Normalize the basis
 - Accept step, cut step size and retry, or quit

Note: We suppress the argument s_{k+1} when possible

Newton-based selection

Apply Newton to find \hat{Q} , \hat{T} such that

$$R = \begin{bmatrix} A\hat{Q} - \hat{Q}\hat{T} \\ Q(s_k)^T \hat{Q} - I \end{bmatrix} = 0$$

- Start iteration at the predicted space
- Can apply Newton directly or eliminate T first
- Solve a Newton step by m linear solves with

$$\begin{bmatrix} A - \hat{T}_{ii}I & \hat{Q} \\ Q(s_k)^T & 0 \end{bmatrix}$$

Eigenvalue-based selection

- Compute (partial) Schur decomposition of $A(s_{k+1})$
- Predict eigenvalue motion (can use values at s_k)
- Find m eigenvalues of $A(s_{k+1})$ nearest predicted
- Sort those eigenvalues to the front of the Schur form

Eigenvector-based selection

- Compute (partial) Schur decomposition of $A(s_{k+1})$
- Compute unit eigenvectors that might be in space
- Choose m vectors v that maximize $||Q(s_k)^T v||$
- Sort Schur form accordingly

Solution normalization

- Continuous: minimize $\int_{s_k}^{s_{k+1}} \|\dot{Q}(s)\|_F \, ds$
- Discrete: minimize $||Q(s_k) Q(s_{k+1})||_F$
- Discrete version approximates continuous version to O(h) global error
- In case Q already has orthonormal columns, have an orthogonal Procrustes problem:

$$\operatorname{minimize}_{B \in O(m)} \|Q(s_k) - \hat{Q}B\|^2$$

Can solve with a small SVD. Let $Q(s_{k+1}) = \hat{Q}B$.

• The case $Q(s_k)^T \hat{Q} = I$ is similar

Acceptance criteria

- A priori step size bounds are too pessimistic
- Derived posterior bound to check if the computed $Q(s_{k+1})$ is a continuous extension of $Q(s_k)$; have not tested
- Both bounds involve bounds on the inverse of a Sylvester operator
- Use tolerances on
 - Residual error and iteration count in Newton
 - $\max_i \min_j |\lambda_i(s_k) \lambda_j(s_{k+1})|$ for continued eigenvalues
 - $||Q(s_{k+1}) Q(s_k)||$

Features

May need to adjust space if

- Real parts of continued eigenvalues overlap the rest of the spectrum (generic possibilities shown)
- Eigenvalues cross imaginary axis (bifurcation)

Global control

- Attempt a step from s_k to s_{k+1}
- If convergence failure, reinitialize at s_k and retry
- Check for interesting features (bifurcation or overlap)
- If multiple features occur, cut step to resolve them
- If one feature occurs, may choose to reinitialize space

Conclusions

- Algorithms for continuous invariant subspace computation
- Initial code base and a few examples
- Code is partly integrated into MatCont

Future work

- Numerical mathematics:
 - Study discretization effects from coarse models
 - More intelligent formation of projection spaces
 - Comparison of subspace selection methods
 - Generalized and polynomial problems

Software:

- Better integration with MatCont
- Performance studies

Models:

- Air-damped electrostatic actuators
- Resonator models with radiation loss
- Models coupled to circuitry