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Illustrative example: damped gap actuator

b = β

g−x

m

k

g

Nonlinear governing equation:

mx′′ +
β

g − x
x′ + kx −

αV 2

2(g − x)2
= 0 (1)

Linearized at equilibrium kx − αV 2

2(g−x)2 = 0:

m(∆x)′′ +
β

g − x
(∆x)′ + k

(

1 −
2x

g − x

)

(∆x) = 0 (2)
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Illustrative example: frequency behaviors
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Real parts of eigenvalues vs. displacement

Small deflection: overdamped

Moderate deflection: underdamped

x = g/3 − small: overdamped

x = g/3: loss of stability (bifurcation)
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Resonator design

Problem domain:

RF frequency microresonators for cell phone filters

High frequency, low amplitude – very linear

Questions:

How does resonant behavior change with shape?

How sensitive are modes to fabrication misalignments?
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Ring resonator
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                    Value = 2.66E+07 Hz.
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Ring resonator
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Computed shear mode frequencies
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Ring resonator

Studied shear mode vs ring radius and width

Estimated eigenvalue by predictor

Shifted subspace iteration to get values and vectors

Choose vector to maximize |q(sk)
T q(sk+1)|

Convergence criteria, step control based on
|q(sk)

T q(sk+1)|
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Checkerboard resonator
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Checkerboard resonator

9.27 MHz. 9.31 MHz.

9.34 MHz. 9.37 MHz.
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Checkerboard resonator
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Checkerboard resonator

Studied mode change vs amount of corner overlap

Discretization changes between steps

Identified modes by distance to target frequency

Manually directed computation so far
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Bifurcation analysis

Working to integrate CIS code into the MatCont
bifurcation analysis package

Evaluate test functions using projected matrices.

Use basis derivatives for projected versions of test
functions that use higher derivatives than the Jacobian.

Bifurcation location equations
Continuation of codimension 1 bifurcations
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Electrostatic actuator
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Electrostatic actuator

Large, undamped version of the 1-d example

Usually:
Compute equilibrium by nonlinear Gauss-Seidel
Use finite differences to apply Jacobian

We form the Jacobian for the fully coupled problem
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Related work

Moving frames on solution manifolds
(Rheinboldt)

Analytic SVD computation
(Bunse-Gerstner, Byers, Mehrman, Nichols)

Analytic null space computations and DAEs
(Kunkel, Mehrmann)

Smooth matrix decompositions
(Dieci, Eirola)

Bifurcation analysis
(Thummler, Beyn, Kless; Friedman, Dieci, Demmel)

Perturbation theory
(Kato; Stewart; Demmel)
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Overview of the math

For differentiable A : [0, 1] → R
n×n:

Eigenvalues are continuous functions.

While eigenvalues stay inside a contour Γ, the
correspondent subspace has a differentiable basis.

There’s more than one differentiable basis for a space.
Pick a unique basis by not letting vectors “spin.”
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Spaces and bases

Define the Stiefel manifold Stief(n, m) and the Grassman
manifold Grass(n, m) to be

Stief(n, m) := {Y ∈ R
n×m : Y T Y = I} (3)

Grass(n, m) := Stief(n, m)/ [Y ∼ Y U, U ∈ O(m)] (4)

Special cases:

Stief(n, n) is the set of orthogonal matrices O(n)

Stief(n, 1) is the unit sphere Sn−1 in R
n

Grass(n, 1) is the projective space Pn−1
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Tangents in R
n×m

Let Y0 ∈ Stief(n, m). Tangents satisfy:

0 = δ(Y T Y − I) (5)

= (δY )T Y0 + Y T
0 δY (6)

= 2 sym
(

Y T
0 δY

)

(7)

If Y ⊥
0 is a complementary orthonormal basis

δY =
[

Y0 Y ⊥
0

]

[

δYH

δYV

]

(8)

where YH ∈ R
m×m is skew, YV ∈ R

n−m×m
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Horizontal and vertical motion

The tangent space is divided into vertical directions that
change the space and horizontal directions that “spin” the
basis.
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Basis normalization

Suppose

Y : [0, 1] → Grass(n, m) is C1

Y0 ∈ Stief(n, m)

span(Y0) = Y(0)

Then there is a unique Y : [0, 1] → Stief(n, m) such that

Y (0) = Y0 (9)

Y(s) = span(Y (s)) (10)

Y (s)T Ẏ (s) = 0 (11)

The basis Y minimizes the arclength
∫ 1
0 ‖Ẏ (s)‖F ds.

Parameter-Dependent Eigencomputations and MEMS Applications – p.21/36



Continuous basis: algebraic version

Suppose A21(s0) = 0. Seek continuous Y (s), L(s)

[

A11(s) A12(s)

A21(s) A22(s)

] [

I

Y (s)

]

=

[

I

Y (s)

]

L(s) (12)

Eliminate L to get a generalized algebraic Riccati equation:

Y A11 − A22Y = A21 − Y A12Y (13)

If λ(A11(s0)) ∩ λ(A22(s0)) = ∅, then for s near s0, fixed point
iteration from Y0(s) = 0 converges uniformly.

Can also prove this with complex analysis or by an ODE.
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CIS algorithm

Compute continuous invariant subspace bases

Components:
Choose initial invariant subspace
Compute a continuation step
Normalize the solution
Adapt space and step size to improve convergence,
resolve features of interest
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Sparse considerations

Initialization and continuation step change in sparse
case

Need both the continued space and a few extra
eigenvalues

Use spectrally transformed IRAM to build a projection
basis

Possible better ways to build approximation basis:
Blocked methods
Re-use factorization for several steps
Higher-order rational spectral transformations
Start with bases from several previous steps
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Initialization: Bifurcation case
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Compute rightmost part of the spectrum

Include all unstable eigenvalues + a few stable ones

Don’t split clusters of eigenvalues
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Initialization: Mode tracking
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Reference: (3.8274 × 1015)

Computed: (2.7857 × 1016)

To initialize when spectrum interior is of interest:

Find eigenvalues near specified λtarget

Find modes near specified shape

Compute lots of modes, let user select
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Single continuation step

Input: Partial Schur form A(s)Q(s) = Q(s)T (s),
Q(s) ∈ Stief(n, m) for s = s1, . . . sk

Output: A(sk+1)Q(sk+1) = Q(sk+1)T (sk+1)

Steps:
Predict Q(sk+1)

Correct to get a basis for space at sk+1

Normalize the basis
Accept step, cut step size and retry, or quit

Note: We suppress the argument sk+1 when possible
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Newton-based selection

Apply Newton to find Q̂, T̂ such that

R =

[

AQ̂ − Q̂T̂

Q(sk)
T Q̂ − I

]

= 0

Start iteration at the predicted space

Can apply Newton directly or eliminate T first

Solve a Newton step by m linear solves with
[

A − T̂iiI Q̂

Q(sk)
T 0

]
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Eigenvalue-based selection

Compute (partial) Schur decomposition of A(sk+1)

Predict eigenvalue motion (can use values at sk)

Find m eigenvalues of A(sk+1) nearest predicted

Sort those eigenvalues to the front of the Schur form
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Eigenvector-based selection

Compute (partial) Schur decomposition of A(sk+1)

Compute unit eigenvectors that might be in space

Choose m vectors v that maximize ‖Q(sk)
T v‖

Sort Schur form accordingly
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Solution normalization

Continuous: minimize
∫ sk+1

sk
‖Q̇(s)‖F ds

Discrete: minimize ‖Q(sk) − Q(sk+1)‖F

Discrete version approximates continuous version to
O(h) global error

In case Q̂ already has orthonormal columns, have an
orthogonal Procrustes problem:

minimizeB∈O(m) ‖Q(sk) − Q̂B‖2

Can solve with a small SVD. Let Q(sk+1) = Q̂B.

The case Q(sk)
T Q̂ = I is similar
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Acceptance criteria

A priori step size bounds are too pessimistic

Derived posterior bound to check if the computed Q(sk+1)

is a continuous extension of Q(sk); have not tested

Both bounds involve bounds on the inverse of a
Sylvester operator

Use tolerances on
Residual error and iteration count in Newton
maxi minj |λi(sk) − λj(sk+1)| for continued eigenvalues
‖Q(sk+1) − Q(sk)‖
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Features

May need to adjust space if

Real parts of continued eigenvalues overlap the rest of
the spectrum (generic possibilities shown)

Eigenvalues cross imaginary axis (bifurcation)
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Global control

Attempt a step from sk to sk+1

If convergence failure, reinitialize at sk and retry

Check for interesting features (bifurcation or overlap)

If multiple features occur, cut step to resolve them

If one feature occurs, may choose to reinitialize space
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Conclusions

Algorithms for continuous invariant subspace
computation

Initial code base and a few examples

Code is partly integrated into MatCont
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Future work

Numerical mathematics:
Study discretization effects from coarse models
More intelligent formation of projection spaces
Comparison of subspace selection methods
Generalized and polynomial problems

Software:
Better integration with MatCont
Performance studies

Models:
Air-damped electrostatic actuators
Resonator models with radiation loss
Models coupled to circuitry
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