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Abstract. Motivated by a recent numerical observation we show that in one dimensional
scattering a barrier separating the interaction region from infinity implies approximate
symmetry of bound and antibound states. We also outline the numerical procedure used
for an efficient computation of one dimensional resonances.
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1. Introduction and Statement of the Theorem

The simplest model of scattering/quantum resonances comes from considering
compactly supported potentials on the real line,

V (x)∈R, |V (x)|≤C, V (x)=0 for |x |> L , (1)

and the corresponding Schrödinger operators,

HV
def= −∂2

x + V (x), (2)

on R, or on [0,∞) with Dirichlet or Neumann boundary conditions.
The resonances or scattering poles of HV are defined as the poles of the mero-

morphic continuation of the resolvent, RV (λ)= (HV −λ2)−1, from Imλ>0, to C.
Except for the poles at λ for which λ2 are eigenvalues of HV , RV (λ) is bounded
on L2 for Imλ>0. Its Schwartz kernel, that is the Green function, continues mer-
omorphically across the continuous spectrum corresponding to R. Its poles are the
resonances of HV .

An illustration based on the numerical codes of [4] is given in Figure 1. The
poles on the positive imaginary axis correspond to the bound states of HV , and
the poles on the negative are called antibound states. Note that they appear to be
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Figure 1. The (color coded) correspondence between classical dynamics and the distribu-
tion of resonances. The C1 potential and its resonances are obtained using spline-
pot(40*[0,1,-2,1,0],[-2,-1,0,1,2]) from [4].

exactly symmetric with the bound states. In this note we prove a simple theorem
inspired by numerical experiments using [4]:

THEOREM. Consider the Dirichlet (or Neumann) boundary condition on [0,∞) and
a compactly supported piecewise continuous potential V0, supp V0 ⊂[0, A). Let V1>

0, B> A, and put

V (x)= V0(x)+1l[A,B](x)V1 .

Then the bound and antibound states of Hq2V with moduli greater than some fixed
k0>0 are symmetric modulo errors of size e−cq , q →∞.

Equivalently we can consider the semiclassical problem

(−(h∂x )
2 + V (x))u(x)= z(h)u(x) ,

for which the conclusion of the theorem says that bound and antibound states
with moduli greater than hk0 are symmetric modulo exponentially small errors,
exp(−c/h), as h →0.

We think of 1l[A,B](x)V1 as a barrier separating the potential in the interac-
tion region, V0(x), from infinity. The same results hold on the line but the proof
becomes slightly more cumbersome to write. In Figure 2 we show an example of
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Figure 2. Potentials with bounds and antibound states shown in Figure 3.

potentials V0, W = V11l[A,B], and V = V0 + W . It is quite possible that using more
sophisticated methods—see for instance [10] and [15] — more general barriers can
be considered. Our goal here was to present a simple new result discovered by a
numerical observation. It is easy to see ([17] and Section 2 below) that for the
problem on the half line the bound and antibound states are never exactly sym-
metric. Yet, in a presence of a mild barrier, they are symmetric within numerical
accuracy of a computation: the exponential convergence is indeed very rapid. This
is illustrated in Figure 3: we plots of imaginary parts of bounds states and nega-
tives of the imaginary parts of antibound states for q2V (x) as a function of q2.
The difference between the two pictures is striking. As expected the bound states
are not much affected by the presence of W but the antibound states change dra-
matically and in the presence of a barrier become nearly symmetric (this is a curi-
ous pseudospectral effect). The high lying states of V0 also exhibit the symmetry
— experiments show that it is always so, even when there is no barrier, and it
improves for more regular potentials.

The study of resonances/scattering poles in one dimension has a long tradition
going back to origins of quantum mechanics, see for instance [13]. Perhaps the
first study of their distribution was conducted by Regge [16]. For mathematical
results in one dimension see [1,6,8,9,11,14,17,20], and many other articles. Con-
cerning antibound states, Hitrik [9] showed (using a Riccati equation approach
which we also find useful in Section 2) that for positive compactly supported
potentials, there are no antibound states in the semiclassical limit. That of course
corresponds to our result since there are no bound states either. Simon [17]
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Figure 3. Imaginary parts, λ, of bounds states (corresponding to eigenvalues at −λ2), and
negatives of the imaginary parts of antibound states of q2V0, and of q2(V0 +W ), as functions
of q2.

showed that for a half line problem existence of n bound states implies the exis-
tence of n − 1 antibound states. Since the set of resonances of an even potential
is the union of Dirichlet and Neumann resonances of the half line problem, this
means that having n bounds states implies the existence of 2n −2 antibound states.
As can be checked using [4] this is often optimal for negative potentials but never
for potentials with a barrier.

Our note is organized as follows: in Section 2 we give an elementary proof of
the theorem and in Section 3 we describe the ideas behind the computation of res-
onances in one dimensions. The MATLAB codes based on that section are available
at [4].

2. Proof of the Theorem

We will prove the theorem for A =1 and B =2 – the general case is identical. We
consider transfer operators for solutions of Hq2V + k2:
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M0(k) : [u(0),u′(0)] �→[u(1),u′(1)]
which depends only on V0, q, and k, and

M1(k) : [u(1),u′(1)] �→[u(2),u′(2)]] ,
which is completely explicit since we know V1:

M1(k)= 1
k1

(
k1 cosh k1 sinh k1

k2
1 sinh k1 k1 cosh k1

)
, k1 =

√
k2 +q2V1> k +q/C . (3)

As in the code described in Section 3, ik, k>0, is a bound state if and only if

M1(k)◦ M0(k) [0,1]= [α,−kα] ,
for some α, and −ik is an antibound state if and only if

M1(k)◦ M0(k) [0,1]= [β, kβ] ,
for some β (note that same k will never do for both, so they are never exactly sym-
metric).

The conditions for a bound (−) and an antibound state (+) then become (note
that the left-hand side depends on k and q only, and not on ±):

u′(1)
u(1)

=−k1
1−β±(k) exp(−2k1)

1+β±(k) exp(−2k1)
, β±(k)= 1± k/k1

1∓ k/k1
. (4)

In fact, putting v(k) def= u′(1)/u(1), we use (3) to obtain the following equations
for bound/antibound states:

± k

k1

(
k1(1+ e−2k1)+v(k)(1− e−2k1)

)
= k1(1− e−2k1)+v(k)(1+ e−2k1) ,

or

k1

(
± k

k1
(1+ e−2k1)− (1− e−2k1)

)
=v(k)

(
1+ e−2k1 ∓ k

k1
(1− e−2k1)

)
,

from which (4) follows.
The behavior of v(k) as k varies is well known: it is monotonic between −∞

and ∞ where ∞ correspond to k2 which are Dirichlet eigenvalues of Hq2V0
on

[0,1]. But the equations for ± are the same up to exponentially small errors!
More precisely, suppose that

u′′ = (k2 + V (x))u , u(0)=0, u′(0)=1 ,

u =u(x, k). Consider

v(x, k)
def= u′(x, k)/u(x, k) .
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Then v satisfies the Riccati equation

v′ = k2 + V −v2 .

Denote differentiation with respect to k by v̇. We get the following equation for
v̇:

v̇′ =2k −2vv̇ ,

which we can solve by the method of integrating factor. Noting that u(x)2v̇(x)|x=0

=0 (from the boundary conditions) we get

v̇(x, k)= 2k

u(x, k)2

x∫
0

u(y, k)2dy

and in particular we get an expression for the derivative of the Dirichlet to
Neumann map:

v̇(1, k)= 2k

u(1, k)2

1∫
0

u(y, k)2dy

which we can estimate from below as follows.
Since we assumed that supp V ⊂[0,1), for some ε >0 we have

u(x, k)= Aexk + Be−xk , 1− ε < x ≤1

Then

v(1, k)= k
α−1
α+1

, α
def= A

B
e2k ,

and using the same notation,

v̇(1, k)≥ 2k

u(1, k)2

1∫
1−ε

u(x, k)2dx

= α2(1− e−2kε)+ e2kε(1− e−2kε)+4εkα

(α+1)2

≥ (1− δ)(α+1)2 + δe2kε/C

(α+1)2

≥ 1− δ , k ≥ k0(ε, δ) , (5)

for any δ>0.
We recall that the condition (4) for being a bound (−) or an antibound (+)

state was

v(1, k±)=
(

k2± +q2V1

) 1
2
(1+ g±(k±,q))
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where g± =O(e−cq). Put

F(k)
def= v(1, k)

(k2 +q2V1)
1
2

−1 ,

so that F(k±)= g±(k±,q)= O(e−cq). Once we show that Ḟ(k) �= 0, we will know
that the roots of F are stable, and by standard theory, small perturbations to the
equation lead only to small perturbations to the roots.

More precisely, we use (5) to estimate

Ḟ(k)= v̇(1, k)(k2 +q2V1)− kv(1, k)

(k2 +q2V1)
3
2

≥ (1− δ)(α+1)2(k2 +q2V1)− k2(α2 −1)

(k2 +q2V1)
3
2 (α+1)2

≥ δ

k
, k> k0(ε, δ) ,

provided that δ is taken small enough depending on V1> 0. Hence, by the mean
value theorem there exists some 0< s<1, such that

|k+ − k−|= |F(k+)− F(k−)|
|Ḟ((1− s)k+ + sk−)|

≤ Ce−2cq((1− s)k+ + sk−)/δ
≤ e−cq , k±> k0 , q>q0 .

Note that we used the fact that k± are necessarily bounded by Cq.
Replacing the explicit solutions by WKB approximations might give a more

general result.

3. Numerical Computation of Resonances in One Dimension

In this section we describe the ideas behind the codes, squarepot.m and
splinepot.m, used to produce Figures 1 and 3. These MATLAB codes are avail-
able at [4].

If the support of V is contained in a compact interval [−L , L], we can com-
pute both resonance solutions and ordinary eigenvalues of the Schrödinger prob-
lem, (HV −λ2)u =0, by writing appropriate boundary conditions at ±L:

(HV −λ2)u =0 for x ∈ (−L , L),
(∂x + iλ)u =0 at x = L ,
(∂x − iλ)u =0 at x =−L .

(6)
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In terms of λ, this is a quadratic eigenvalue problem. We can introduce a new var-
iable ψ=λu to convert this problem to a linear eigenvalue problem in two fields:

HV u −λψ=0 for x ∈ (−L , L),
λu −ψ=0 for x ∈[−L , L],
(∂x − iλ)u =0 at x = L ,
(∂x + iλ)u =0 at x =−L .

(7)

We now discretize the boundary and domain operators to get a finite-dimensional
generalized eigenvalue problem. For small discretizations with up to a few
hundred unknowns, we can solve this generalized eigenvalue problem using
MATLAB’s eig command, which uses the dense eigensolvers in LAPACK [2].
For larger discretizations, we use MATLAB’s eigs to call ARPACK, a standard
Arnoldi-based iterative eigensolver [12].

For the calculations shown in this note, we used a high-order pseudospectral
collocation method to discretize the operators [5,19]. We partition the support
interval [−L , L] into subintervals, and approximate u by a high-order polynomial
on each subinterval. At the Chebyshev points on the interior of each subinterval,
we insist that the domain differential equations be satisfied exactly, while at the
junctions between neighboring intervals, we insist that the solution u and the first
derivative ∂x u must both be continuous. Assuming that the potential is smooth
except possibly at the endpoints of the subintervals, the collocation scheme we
use is spectrally accurate; that is, the error asymptotically decreases faster than
any algebraic function of the order of the collocation scheme. As a simple check
on the accuracy of the computed eigenvalues of (7), we increase the order of
the method by 50%, recompute the eigenvalues, and compare the results obtained
from the coarser and the finer discretization.

We can write the analogue of (6) in higher dimensions, with a Dirichlet-to-
Neumann(DtN) map – or some approximation to a DtN map — in place of the
boundary conditions at ±L. In more than one space dimension, this boundary
map ceases to be a linear function of λ, and so we cannot easily convert the prob-
lem into a linear eigenvalue problem. Researchers are studying these more compli-
cated nonlinear eigenvalue problems for a variety of engineering problems [3]. Many
of these problems involve resonances in models of elastic, acoustic, or electromag-
netic resonators with radiation losses.

For comparison, we will also discuss other methods for computing resonances.
They are essential for effective codes for higher dimensional problems for which
analogues of (6) are unavailable or become more complicated.

Often, resonances are computed by changing the equation so that it is no longer
posed on all of R, but instead is posed on some interval (−M,M) with homo-
geneous Dirichlet or Neumann boundary conditions. For example, if the support
of V lies strictly within the interval (−L , L), we might add a complex absorb-
ing potential outside of (−L , L), or we might scale the coordinate system into
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the complex plane by the method of perfectly matched layers.1 The change to the
equation should be designed so that the modified equation mimics the behavior of
the original problem in the range (−L , L).

To be more concrete, suppose that we modify the equation on the interval
(L ,M) so that we still have a nonsingular, second-order, ordinary differential
equation in x whose coefficients depend on λ. Now we specify two linearly inde-
pendent solutions γ+(x, λ) and γ−(x, λ) on (L ,M) which satisfy the modified
domain equation together with the initial conditions

γ+(L , λ)=1, ∂xγ+(L , λ)= iλ
γ−(L , λ)=1, ∂xγ−(L , λ)=−iλ.

(8)

These initial conditions are consistent with the conditions for outgoing and incom-
ing waves on (L − ε, L). Now suppose that γ (x, λ) satisfies the differential equa-
tion on (L ,M), and also the boundary condition γ (M, λ)=0. Then

γ (x, λ)= c (γ+(x, λ)+ργ−(x, λ)) (9)

where c is an arbitrary constant and

ρ(λ)
def= −γ+(M, λ)

γ−(M, λ)
is a constant whose amplitude reflects how well the equation on (L ,M) serves to
absorb outgoing waves. We can therefore convert the condition at x = M to a con-
dition at x = L. Subsituting (8) into (9), we have

∂xγ (L)− iλ

(
1−ρ(λ)
1+ρ(λ)

)
γ (L)=0,

which, for regions of the complex plane where |ρ(λ)| is small, can be treated as a
perturbation of the exact outgoing wave condition at L.

In summary, by changing the Schrödinger equation outside the interval (−L , L),
imposing homogeneous Dirichlet boundary conditions at ±M , and then transport-
ing the conditions at ±M to conditions at ±L, we arrive at the equations

(HV −λ2)û =0 for x ∈ (−L , L),
(∂x + i λ̂)û =0 at x = L ,
(∂x − i λ̂)û =0 at x =−L .

(10)

where

λ̂
def= λ

(
1−ρ(λ)
1+ρ(λ)

)
.

For values of λ where |ρ(λ)|�1, (6) and (10) may be treated each as a perturba-
tion of the other. We note that ρ(λ) and β±(k) exp(−2k1) of (4) play similar roles

1See [7] for a comparison of that method with the complex scaling method described, for
instance, in [18].
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in the two situations. However, the smallness of ρ(λ) is achieved through elliptic-
ity due to the complex deformation, and the smallness of β±(k) exp(−2k1) is due
to the presence of a real barrier, V11l[0,1].

The relation between outgoing wave boundary conditions and wave behavior at
the boundary of a bounded absorber is useful for applications and experiments
as well as for calculations. Experiments to observe acoustic (or electromagnetic)
resonances and scattering are generally conducted in anechoic chambers, which
are lined with baffles of sound-absorbing material. These baffles prevent incoming
reflected waves from interfering with the experiment. Just as one can mimic the
“radiation-only” property of an infinite domain with a finite absorber, models set
in infinite domains are often approximations of models over a large finite domain
in which the medium through which waves propagate is slightly dissipative.
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