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ABSTRACT 

Advancements in Sugar include 1) parameterizable netlists, 
2) nonlinear frequency response analysis, 3) subnets, 4) 
improved MNA, 5) reduced order modeling, and 6) a more 
accurate nonlinear beam model. Examples of these features 
include the simulation of a two-axis mirror with over 10,000 
degrees of freedom, the reduced order modeling applied of an 
electrostatic gap actuator, the parameterized deflection space 
of a thermal actuator and serpentine flexure, and the 
nonlinear response of a fixed-fixed beam.  
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simulation. 

 

1 INTRODUCTION 

As we witness the unfolding of the micromachine revolution, 
microelectromechanical systems are moving from simple 
single function devices to elaborate systems with complex 
characteristics. However, MEMS designers are continually 
bumping up against the limits of finite element analysis due to 
the ceiling imposed by computer processing power. Despite 
the number of CAD products available, some designers still 
find it easier to approximate design solutions by hand rather 
than delve into the rigorous details of the software.  
 
Sugar [1] was created to investigate remedies to the above 
problems. To alleviate computer processing and memory 
requirements we have shown that the number of equations 
that described many designs can be greatly reduced using 
modified nodal analysis while still maintaining accuracy within 
fabrication limits [2]. The test cases included the warping of 
an ADXL05 accelerometer due to residual stress and strain 
gradients, process variation analysis where the possible 
displacement distributions and worst case scenarios were 
predicted, the transient response of a gyroscope in an 
accelerated frame of reference, electrical currents induced by 
multimode resonators, and thermal actuation to name a few.  
 
We have also demonstrated that MNA systems can be further 
reduced by a reduced order modeling method based on 

Krylov subspaces and numerical accuracy improved by 
scaling schemes [3]. Similar promising research in this area 
includes network analysis [4-5] and macromodeling [5-6].  
 
User-friendliness is a major obstacle for both the CAD 
developer and the CAD user due to the inherent multiphysics 
nature of MEMS, e.g. electronics + mechanics + fluidics + 
thermal + etc. For the ease of use we chose to exploit the 
popular MatlabTM software. This familiar open-code 
environment invites modifications, features, and additional 
remedies from users.  
 
Addressing the needs listed above, this paper shows 
progress toward effectively raising the “computational 
ceiling.” What is gained is the ability to simulate much larger 
systems faster. To show that sophisticated system design 
can made simple we demonstrate how complex designs, 
which may consist of thousands of components, can be 
reduce down to just a few lines of netlist text with the aid of 
parameterized subnets. Lastly, mechanical nonlinearity has 
gained substantial interest with the MEMS designer and has 
been historically problematic in lumped structural analysis. 
We present recent results for a new nonlinear beam model.  
 

2 MULTI-DOMAIN REPRESENTATION 

It is well known that the dynamics of many physical 
processes can be described by a system of second order 
ODEs of the form (1). For a purely mechanical system, the 
matrices M, D, and K are identified with mass, damping, and 
stiffness. The vectors q and F are the state and excitation.  
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Modified nodal analysis, as used in SpiceTM, has proven to 
be effective for matrix circuit analysis. Sugar extends the use 
of MNA to the special case of multi-energy domains inherent 
to MEMS. To formulate an MNA equation, elements of the 
domains are resolved into three groups. The first group 
contains elements that have a natural nodal analysis 
representation and whose sates do not need to appear in the 
MNA solution vector. The second group consists of elements 



that do not have a nodal analysis representation or whose 
states are to appear in the MNA solution vector. Independent 
sources live in the third group. The MNA equation is 
assembled as follows. Group 1 states enter the MNA matrix in 
terms of their admittance. Group 2 states are entered as 
components in the solution vector, which add a constraint 
equation (CE) to the system. For example, the mechanical 
MNA representation of (1) is  
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For electronics we have  
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In MEMS, equation (2) and (3) are coupled. E.g. voltage 
differences in (3) generate nodal forces in (2); at the same 
time, displacements in (2) change capacitances in (3).  
 
Combining (2) and (3) into a single equation (4), the complete 
first order system is given by (5). 
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where G is the conductance matrix, Gmna is the multidomain 
MNA matrix, X� is the solution vector, X is the state vector, A 
& B are coupling matrices, C is capacitance, V is voltage, W 
is time-integral of V, and Q is charge [1]. 
 
The following example demonstrates the coupling of 
electronic, mechanic, and electrostatic domains. The results 
of static and transient pull-in are provided in Figures 1-4.  
 
 

 
 
 
 
 
 

 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 

Figure 1: As a voltage difference is applied across the gap
(capacitor), nodal forces and moments are generated. The
flexible beams are also modeled as electronic resistors. Air
between the structure and substrate provide viscous
damping. 

Figure 2: gap displacement of node c, versus voltage 
across gap. *Due to a finite iterative step in the DC
solver, the pull-in point is not shown as vertical. 

Figure 3: Pull-in voltage versus beam length L. w = 
1.74um, h = 2.003um, Young’s modulus = 165GPa. 

Figure 4: Two transient responses of pull-in. (1) A
smooth voltage ramp pulls in at 2/3 -gap distance. (2) An
abrupt stepped ramp induces oscillation. Note the
nonlinear period due to increasing electrostatic forces. 

gap 

V(t) = smooth ramp 

V(t) = stepped ramp 

gap [µµµµm] 

Voltage [V] 

Pull-in 
Voltage 

Length L [µµµµm] 

(1) 
(2) 

DC Pull-in * 

L, w 



Krylov subspace methods are emerging numerical techniques 
for reduced-order modeling of large-scale dynamical systems.  
They have lead to a major breakthrough in the field; see, for 
example, the survey paper [8] and the references therein. The 
need and challenges of reduced order modeling techniques 
for simulating MEMS devices are discussed in [9]. Details 
concerning the formulation of reduced-order modeling in 
Sugar can be found in [3]. Figures 5 shows a superimposed 
reduced-order simulation over our general transient solver. 
The voltage ramps from 5V at t=10µs to 12V at t=500µs, and 
then drops to 0V. Relative errors of the reduced models of 
order n=2 and n=6 are shown in Figure 6. The order of the 
original system is N = 30. Using a SUN 440MHz Ultra 10, the 
simulation times where 2s, 428s and 28ks respectively using 
the Matlab ode15s, stiff ODE solver. 
 

 
 
 
 
 
 
 

 
 
 

3 SUBNETS & PARAMETERIZATION 

Figure 7A shows a laterally actuated high aspect ratio 
torsionally suspended micromirror [10]. It consists of a circular 
mirror (center) and several hundred comb-drive fingers that 
supply the lateral force necessary to rotate the mirror out of 
plane. Figure 7B shows a view from the side. A close-up of a 

hinge assembly is given in Figure 7C. The comb-drive array 
generates a load on the hinge. This load is applied below the 
axes of rotation, thus producing a moment that results in out-
of-plane rotation of the circular mirror. Compliance in the 
structure also produces an undesired lateral displacement.  
 
As modeled in Sugar this device has 10,026 degrees of 
freedom and 4,118 beam elements. The complex interplay of 
the hinge assembly alone makes hand analysis difficult. 
Likewise, large systems can hinder CAD users because the 
increased occurrence of design errors. A solution to both 
problems is the use of subnets, which can reduce large 
netlists down to just a few lines of text. In Figure 7A, the 
comb-drive array, center ring, and hinges are subnets. Each 
subnet occupies a single line of netlist text. For versatility, 
subnets may be parameterized, contain simple mathematical 
operations, and nested loops.  
 

 
 
 

 
 
 
 

 
 
 
 
 
 
 
 

Figure 5: Reduced order modeling simulation (6th order)
superimposed onto our general transient solver (30th order)
qualitatively demonstrates accuracy. The lower
dimensionality of the reduced order system decreased the
simulation time by a factor 1/60. 

Figure 6: Relative errors of reduced-order modeling for a 2nd 
order (top) and 6th order model (bottom).  

Figure 7: Simulation of a torsional micromirror. 7A and 7B 
show a slightly exaggerated deflection of the out-of-plane tilt 
of the center mirror. 7C shows the complicated hinge
assembly. DC simulation of this 10,000 degree of freedom
device takes just under 2 minutes using a PIII-800MHz. After 
subnets are defined, the netlists is just 17 lines of code. 
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Variations in geometry and material properties may also be 
imposed at the Matlab command line instead of inside the 
netlist. In this manner, changing the number of comb-drive 
fingers, the width of the torsional hinges, or the Young’s 
modulus in the above design becomes trivial. This allows the 
parameters to be swept to characterize their sensitivity. 
Figure 8 shows the primary mode shape of a serpentine 
flexure. The frequency of this mode is governed by the 
effective stiffness along the y-axis and the effective mass, 
which includes the heavy center square and small 
contributions from the meandering springs. If there are size 
constraints imposed on a device, it becomes necessary to 
examine different geometry’s while still maintaining certain 
performance properties. Figure 9 shows level curves of 
effective stiffness as a function of width and length of the 
serpentine flexure. The axes represent changes in length and 
width from fabricated dimensions given in [11].  

 

 
 
 
 
 
 
 

 
 
 
 
 
 
It is often customary to optimize performance by 
adjusting material properties or geometry. Figure 10 
shows the simulated deflection of a thermal actuator. 
The geometry and average beam temperature were 
measured by [11]. Before actuation the device is 

horizontal. As current passes through the beams, the 
slender beam heats up more than the thick beam due 
to a smaller cross-section, which results in higher 
resistance. This generates a larger thermal expansion 
of the slender beam, causing the tip to deflect 
downward. The small gap spacing encourages this 
deflection; yet the restoring spring force of the beams 
oppose it. Figure 11 explores the space of the 
deflected tip by pitting the gap g against the beam 
width w. Here it is assumed that the temperatures 
remain. 
 

 
 
 
 
 
 

 
 

 
 
 
 

4 NONLINEAR RESPONSE 

Linear beams have been well characterized [2,11]. The use 
of linear beam models in designs has been widely preferred 
over nonlinear beams since they are easier to analyze. But 
linear models are typically valid for only small deflections. 
For MEMS that are subject to large deflections or extremely 

Figure 9: ∆L versus ∆w, producing level curves of stiffness 
for the serpentine flexure. For fabricated dimensions, the
simulated stiffness of 0.0146N/m exactly matches FEA and
is within 1.2% of the measured stiffness [11]. 

w=1.8u 
Lb,a 

Figure 8: Modal analysis of a serpentine flexure. Primary
mode results: Experimental 2697Hz [11], Finite Element
Analysis 3032Hz, Sugar 3032Hz. Sugar matches FEA;
however, both simulations overestimate primary resonance
due to the absence of damping during simulation. 

Figure 11: Tip deflection ∆Y as a function of change in gap 
space ∆g and change in width ∆w.  This design space 
reveals where geometry may be optimized for maximum 
deflection, given the limits of the process design rules. 

K=0.0013N/m 

K=0.0146N/m 

K=0.27N/m 

∆∆∆∆L 
[µµµµm] 

∆∆∆∆w [µµµµm] 

Figure 10: Thermal actuator. In the real device there’s a heat
distribution along the hot and cold arms, however, averaging 
the temperature along the beam produces the same overall
linear thermal expansion. SUGAR is within 0.5% of the
measured deflection [12]. 
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sensitive devices such as accelerometers and gyroscopes 
[13], approximations using small deflection theory may no 
longer hold.  

The first results1 of an improved nonlinear beam model are 
given here. Figure 12 shows the deflection of a beam 
constrained at the end nodes. All relevant terms are defined 
as well. As a force is applied to the center node, there is an 
increased stiffening of the beam primarily due to its change in 
length. In contrast, the stiffness of linear models remains 
constant during deflection, Figure 13. 

 

 

 

 

 

 

If curvature is small, the moment at any position along the 
nonlinear beam in Figure 12 is 
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By applying suitable boundary conditions to (6), it can be 
shown [1] that the governing nodal equations are 
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1 This model is currently in the developmental stage. 
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Equations (7) – (10) are nondimensionalize for generality. 
They represent the nodal axial force (7), transverse force (8), 
deflection (9), and moment (10). A plot of (7) – (10) is 
provided in Figure 14. Choosing λ for (7) and plugging that 
value in to equations (8) – (10) generates them.  Dividing (8) 
by (9) gives the nonlinear stiffness.  

        

 

 

 

For an improved nonlinear model, we fit a cubic equation to 
these results. Since such a fit is only valid within a finite 
range of deflection we use a piecewise continuous form (11), 
where Klin is the constant linear stiffness used in our linear 
beam model, and Knl,i is the nonlinear stiffness for the ith 
range of deflection. 

3
,0 qKqKF inllin +=   (11) 

Using this method we are able agree with the entire range of 
theory to the desired accuracy, Figure 14. 

To obtain a nonlinear frequency response we currently 
decouple the system equation [14] and use the method of 
multiple scales [15] on a particular degree of freedom. For a 
cubic equation driven near primary resonance by a 
sinusoidal excitation of the form F(t) = F0 cos(ωt), the 
detuning is given by, [1] 
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Figure 12: Nonlinear beam quantities defined. See
equations (6) – (10). 

Figure 13: Contrasting a linear deflection against a 
nonlinear deflection for the same applied force. The 
restoring force of nonlinear beams is approximately cubic 
in displacement; the stiffness of the linear beam stays 
constant during displacement. 

Fy 

Nonlinear beam 

Linear 

Figure 14: Plots of nonlinear node quantities in 
nondimensional units for a fixed-fixed beam. The plot shows 
the nonlinear & linear force, moment, and stiffness as
functions of deflection. 
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where the primes denote said quantities divided by an 
effective mass. The + and – in (12) correspond to the stable 
(upper branch) and semi-unstable (lower branch) curve in 
Figure 15. This multivaluedness is responsible for the jump 
phenomena often seen in nonlinear structures. The central 
backbone to the curve in Figure 15 is given by the first term in 
(12). The maximum amplitude at peak resonance can be 
shown [1] to be  
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which is independent of Knl. Sugar demonstrates that the 
effect of the Knl nonlinearity is to bend the amplitude curve 
and distort the phase curve causing the multivalued regions, 
Figures 15 and 16.  
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Figure 16: Phase plot. 
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Figure 15: Nonlinear frequency response curve shows
maximum displacement as a function of frequency
detuning. 
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