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ABSTRACT

SUGAR is a nodal analysis package for 3D MEMS
simulation that owes its heritage and its name to the
SPICE family of circuit simulation. SUGAR has under-
gone the stage of proof-of-concept which showed that
nodal analysis was in fact just as accurate and much
faster than �nite element simulation on many MEMS
problems. The upcoming major release of SUGAR is
version 2.0, which includes a number of new features,
such as 3D beam and gap elements, thermal expansion,
linearly and rotationally accelerating frames, and user-
de�ned models.

In this paper, we introduce two new numerical tech-
niques and tools to be incorporated in the future release
of SUGAR, namely scaling schemes to remedy arti�-
cial ill-conditioning and Krylov subspace based reduced-
order modeling techniques for e�cient transient analysis
of dynamical systems.
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1 Introduction

The potential impact of simulation, veri�cation and
synthesis tools to MEMS design, fabrication and appli-
cations is hard to overstate [8], [7]. There are a large
number of e�orts to bring such tools to the market.
SUGAR is one of such e�orts and it is a modi�ed nodal
analysis package for 3D MEMS simulation that owes
its heritage and its name to the SPICE family of inte-
grated circuit simulation [4], [3]. It is an open source
package. SUGAR has undergone the stage of proof-of-
concept which showed that nodal analysis was in fact
just as accurate and much faster than �nite element
simulation on many MEMS problems. The upcoming
release of SUGAR is version 2.0, which includes a num-
ber of new features, such as 3D beam and gap elements,
thermal expansion, linearly and rotationally accelerat-
ing frames, and user-de�ned models.

In this paper, we will introduce two new numerical
techniques to be incorporated in the future release of
SUGAR, namely scaling schemes to remedy arti�cial ill-
conditioning and reduced-order modeling techniques for
e�cient transient analysis of dynamical systems.

The coe�cients of the system matrices for the ODEs
used in SUGAR vary across several orders of magnitude.
This poor scaling causes the system to be arti�cially ill-
conditioned, so that when an ODE solver and Lanczos
process involve solutions to linear systems associating
with these matrices they get undeservedly inaccurate re-
sults. Large errors from solving these linear systems con-
taminate the numerical solution to the ODE, so that the
ODE solver must take very small time steps to resolve
illusory high-frequency vibrations. To cope with scaling
di�culties, we transform the system using two diagonal
matrices, or equilibrate it, and remove ill-conditioning
associated with poor scaling.

The basic idea of reduced-order modeling of a dy-
namical system is to replace the original system by an
approximating system with much smaller state-space di-
mension. An accurate and e�ective reduced-order model
can be applied for steady state analysis, transient anal-
ysis and sensitivity analysis. As a result, it can signi�-
cantly reduce design time and allow for aggressive design
strategies. Such a computational prototyping tool will
let designers try \what-if" experiments in hours instead
of days. Krylov subspace methods are emerging numer-
ical techniques for reduced-order modeling of large scale
dynamical systems. They have led to a major break-
through in the �eld. In this part of work, we will demon-
strate how to use Krylov subspace-based reduced-order
modeling techniques for transient analysis of the non-
linear ODE systems arising from the SUGAR simula-
tion. We have achieved a factor of 60 speedup for the
transient analysis of an electrostatic beam gap-closing
actuator device.

2 Simulation Model and Case Study

Currently, SUGAR uses the following matrix repre-
sentation of the transient dynamics equation [3]:

M �q +D _q +Kq = F (t; q) (1)

where q is a state vector of length N . M , D and K
are the N �N system matrices, which are analogous to
the mass, damping, and sti�ness in a purely mechanical
systems. F (t; q) is the N � 1 excitation vector for the
system. It is a function of time and state. We can write



F (t; q) = Bu(t; q), where B is an N � p input inu-
ence array to indicate the position input excitation, and
u(t; q) is the input excitation source including nonlinear
electrostatic force.

Furthermore, system (1) can be rewritten as the fol-
lowing multi-input and multi-output (MIMO) form�

M �q +D _q +Kq = Bu(t; q)
y = LT q;

(2)

where y(t) is the output of the system, and L is N �
m output inuence array and is chosen to extract the
components of state vector of interest. The equation (2)
can be equivalently cast in the following form(

C _x+Gx = bBu(t; x)
y = bLTx (3)

where

x =

�
q
_q

�
; bB =

�
B
0

�
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�
L
0

�
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C =

�
D M
I 0

�
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�
K 0
0 �I

�
The system (3) is similar to well-studied linear time-
invariant MIMO systems (in that case, u(t; q) is u(t),
independent of q). We can try to bene�t from tech-
niques developed for the linear MIMO systems, and ex-
ploit the idea of so-called \nonlinear dynamics using lin-
ear modes" as in [1].

We use a simple electrostatic beam actuator shown
in Fig. 1 as an example throughout this paper. The
top actuator plates are 5�m wide and 100�m long at
the end of a exure 2� wide and 100�m long. We use
a parallel plate approximation to the electrostatic force
F (t; q) = Bu(t; q), where B has ones the in the compo-
nents corresponding to the displacement in y direction
of nodes b and c, and

u(t; q) = �
1

4
�0A

v(t)2

gap(q)2
;

�0 is permittivity of free space, and A is the area of the
plate. All structures are fabricated in a 2�m polysilicon
layer; M and K use the material properties of this layer,
D is based on simple Couette damping, and is propor-
tional to M . L selects the y displacement of the node
c. While this model may not be highly physically ac-
curate, it serves to illustrate our techniques. For more
detail about modeling of the electrostatic beam actua-
tor, see [3].

3 Scaling

The nonzero coe�cients of the matrix C in our exam-
ple vary across 40 decimal orders of magnitude, causing

Figure 1: electrostatic beam actuator

C to be very poorly scaled. Consequently, C has an
enormous 2-norm condition number of around 7:7 �1023.
While such a large condition number does not guaran-
tee that a particular linear system involving C will be
inaccurately solved, it does raise suspicion, and renders
many of the standard error bounds ine�ective. Since
we solve linear systems involving C when forming the
Krylov subspaces for the Lanczos procedure and at each
step of the ODE solver, these large condition numbers
cause concern us.

There are several standard techniques for dealing
with ill-scaled problems [6]. The simplest is equilibra-
tion, which involves multiplying C on the left by a diag-
onal matrix which scales each row of the matrix to have
unit norm. Multiplying the matrix by diagonal matrices
on both the left and the right can improve the condition
number even further, but undoing the column scaling
subsequent to solving a linear problem with C can undo
whatever bene�ts where conferred by the column scal-
ing. Another technique which often remedies the e�ects
of ill-scaling is iterative re�nement, which involves com-
puting the residual r = b�Cx̂ for the computed solution
x, solving a linear system to �nd the approximate error
C(x � x̂) = r, and then adding the approximate error
to obtain a corrected solution.

4 Reduced-Order Modeling

Krylov subspace methods are emerging numerical
techniques for reduced-order modeling of large scale dy-
namical systems. They have led to a major breakthrough
in the �eld, see the survey paper [5] and the references
therein. The need and challenges of reduced-order mod-
eling techniques for simulating MEMS devices are pre-
sented in [8], [7]. In this part of work, we will demon-
strate how to use Krylov subspace-based reduced-order
modeling techniques for transient analysis of the nonlin-



ear system (3).
The idea of nonlinear dynamics using linear modes is

presented in [1]. A selected set of eigenvectors (modes)
of the matrix M�1K are used and the damping term D
is neglected. In our approach, we use a Krylov-subspace
based technique for the reduced-order modeling, specif-
ically, the basis vectors of Krylov subspaces computed
via the e�cient Lanczos process are directly used with-
out the need of further computing for getting eigenvec-
tors (modes). The damping term is included in our ap-
proach.

The Krylov subspace based methods for reduced-
order modeling have two steps, namely, Lanczos or Arnoldi
procedure for generating the bases of the underlying
Krylov subspaces, and the model order reduction by co-
ordinate transformation using Krylov bases. We will use
Lanczos process here. For simplicity, we only present
the single vector Lanczos process, i.e., for the SISO
(p = m = 1) system of (3). For the detail of Lanc-
zos process including the multi-vector Lanczos process,
see [2, secs 7.8, 7.9 and 7.10].

Let A = �(G + s0C)
�1C and R = (G + s0C)

�1B,
where s0 is chosen to be an expansion close to the fre-
quency of interest. The governing equations of the Lanc-
zos process with A, R and L can be summarized com-
pactly in matrix form as follows:

AVn = VnTn + �n+1vn+1e
T

n
(4)

ATWn = Wn
~Tn + �n+1wn+1e

T

n
(5)

where Tn and ~Tn are tridiagonal matrices, and the columns
of N � n matrices Wn and Vn are called left and right
Lanczos vectors and span the so-called left and right
Krylov subspaces

Kn(A;R) = spanfR;AR; : : : ; An�1Rg

Kn(A
T ; L) = spanfL;ATL; : : : ; (AT )n�1Lg

and furthermore they satisfy the biorthogonality condi-
tion

WT

n
Vn = �n; WT

n
vn+1 = 0; V T

n
wn+1 = 0: (6)

where �n is a diagonal matrix. From (4) and (5), it
follows that

WT

n
AVn = �nTn (7)

We note that for the implementation of Lanczos process,
the matrix A is involved only in the form of matrix-
vector multiplication, hence the structure and sparsity
of A, and correspondingly the matrices M , D and K
can be exploited for memory saving and computational
e�ciency.

This Krylov-Lanczos process can be used as a build-
ing block for reduced-order modeling and applications
for steady-steady, transient and sensitivity analysis of
dynamical systems. In this paper, we will focus on how
to do transient analysis of the system (3).

Again, let A = �(G + s0C)
�1C and R = (G +

s0C)
�1B, then the equation (3) can be written as�

�A _x(t) + (I + s0A)x(t) = Ru(t; x);
y(t) = LTx(t);

Let Vn be the right Lanczos vectors generated by the
above Lanczos procedure, and let

x(t) � Vnz(t);

where z(t) is the new state vector of length n, then an
approximate dynamical system is�

�AVn _z(t) + (I + s0A)Vnz(t) = Ru(t; Vnz);
~y(t) = LTVnz(t):

Multiplying WT

n
from the left, we have�

�WT

n
AVn _z(t) +WT

n
(I + s0A)Vnz(t) =WT

n
Ru(t; Vnz);

~y(t) = LTVnz(t):

Therefore, by (7), it yields an n-th reduced-order model�
��nTn _z(t) + (�n + s0�nTn)z(t) = Bnu(t; Vnz);
~y(t) = LT

n
z(t):

(8)
where Bn =WT

n
R and Ln = V T

n
L.

As a result, instead of solving the original system (3)
of dimension N for y(t), one can solve the reduced-order
model (8) of dimension n for ~y as an approximation of
y(t). The strength of this approach derives from the fact
that the value of n is much less than N in many cases.
The constructed Krylov subspaces contain the necessary
information for the dominant modes to capture the dy-
namic response of the system.

5 Results and Discussion

For the case study of the gap-closing actuator de-
scribed in section 2, an initial voltage v(t) is applied
across the gap, which increase linearly in time. The
voltage v(t) rams from 5V at t = 10�sec to 12V at
t = 500�sec, and then release. The displacement in y
direction of the node c is selected to be observed. The
initial voltage step starts the device to resonate. As the
voltage increases at a linear rate, the gap decreases at
a nonlinear rate due to the electrostatic force increas-
ing proportionly to 1=gap(q)2. This force also causes
the period of oscillation to increase. Once the voltage
is removed, the actuator exponentially decays back to
equilibrium due to viscous air damping. These phe-
nomena are captured in numerical simulation. Fig. 2(a)
shows the displacement versus time. Fig. 3 show the
decays back to equilibrium. In Fig. 2(a), the displace-
ment curves of the original system and the reduced-order
models are overlapped. The accuracy of the reduced-
order model can be seen in Fig. 2(b). There relative
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Figure 2: (a) displacement vs. time of full and reduced-
order systems, (b) relative errors of reduced-order sys-
tems

errors jy(t) � ~y(t)j=jy(t)j are plotted for the 2nd and
6th order of the reduced-order model. The order of the
original model is N = 30.

The solution of the original full system for time do-
main from 0 to 10�3 second took 28533 seconds. How-
ever, the construction of the 2nd and 6th order system
and the solution of the reduced-order systems took 2
seconds and 428 seconds respectively. Therefore, with
the satisfactory accuracy of the 6th order system, we
have achieved a factor of 60 speedup for the transient
analysis of the electrostatic beam gap-closing actuator.

Although M , D and K are all symmetric positive
de�nite, they are ill-scaling and ill-conditioned. Let us
examine the matrix C in detail. The condition number
of the matrix C is 7:7 � 1023. Its largest singular value
is 1 and the smallest singular value is 1:3 � 10�24. With
row equilibration, the condition number is reduced to
8:2 � 109 and the largest and smallest singular values are
2:3 and 2:8 �10�10, respectively. Furthermore, with both
row and column equilibrations, we have a nearly perfect
conditioned matrix, with condition number 48, and the
largest and smallest singular values are 2:1 and 4:4�10�2,
respectively. The issue concerning to the ill-scaling and
arti�cial ill-conditioning are pointed out. The impact of
scaling and equilibration to the reduced-order modeling
methods and ODE solvers are still under investigation.

All numerical simulations were run on a SUN 440MHz
Ultra 10 workstation. Matlab is used as the computing
environment. The results of ODE solver ode15s is re-
ported in this paper.

In the future, we plan to develop a reduced-order
modeling technique for a more general case where the
right-hand side of equation (1) is a function of q, _q, and
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Figure 3: displacement vs. time, back to equilibrium,
using the 6th reduced-order model

t:
M �q +D _q +Kq = F (q; _q; t):

Here, the function F (q; _q; t) may also include the vari-
ations in M , D, and K matrices that depend on state
and time.
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