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Preface

This is an incomplete draft of a text to accompany Cornell CS 6241: Numerical Methods for
Data Science. It is being written as we proceed through the Fall 2023 semester, using Quarto
as a typesetting system and Julia as the programming language for most of the computational
examples. Both the book draft and the course materials are available via GitHub, and I
welcome comments via email or pull request.

The course is designed for a target audience of beginning graduate students with a firm
foundation in linear algebra, probability and statistics, and multivariable calculus, along with
some background in numerical analysis. The focus is on numerical methods, with an eye to
how thoughtful design of numerical methods can help us solve problems of data science. I am
deliberately vague about what I mean by “data science,” but my hope is that students will
find this material useful whether they are interested in computational statistics, in data-driven
models from science and engineering, or in machine learning. Topically, the course is organized
into roughly six units, each of about two weeks:

1. Least squares and regression: direct and iterative linear and nonlinear least squares solvers
direct randomized approximations and preconditioning; Newton, Gauss-Newton, and
IRLS methods for nonlinear problems; regularization; robust regression.

2. Matrix and tensor data decompositions: direct methods, iterations, and randomized
approximations for SVD and related decomposition methods; nonlinear dimensionality
reduction; non-negative matrix factorization; tensor decompositions.

3. Low-dimensional structure in function approximation: active subspace / sloppy model ap-
proaches to identifying the most relevant parameters in high-dimensional input spaces and
model reduction approaches to identifying low-dimensional structure in high-dimensional
output spaces.

4. Kernel interpolation and Gaussian processes: statistical and deterministic interpretations
and error analysis for kernel interpolation; methods for dealing with ill-conditioned kernel
systems; and methods for scalable inference and kernel hyper-parameter learning.

5. Numerical methods for graph data: implication of different graph structures for linear
solvers; graph-based coordinate embedding methods; analysis methods based on matrix
functions; computation of centrality measures; and spectral methods for graph partitioning
and clustering.

6. Learning models of dynamics: system identification and auto-regressive model fitting;
Koopman theory; dynamic mode decomposition.
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The reader may have noticed that this list of topics is ambitious for a one-semester course
even for students with a strong numerical analysis background. In practice, students come
to this course from a variety of backgrounds and while they often have some grounding in
computational statistics, machine learning, etc, the majority have not had even a semester
introductory survey in numerical analysis, let alone a deeper dive. Hence, the long term goal of
this work is a textbook with two parts, which I tend to think of as “Numerical Methods applied
to Data Science” and “Numerical Methods for Data Science.” The plan is that the first part
should correspond to an undergraduate numerical methods survey covering the standard topics,
with example applications drawn from data science; and the second part should correspond
to more specialized methods. If things go according to plan, the result might be a book with
about three semesters worth of material taught, with some identified paths through it that
might correspond to reasonable one-semester course plans.
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1 Introduction

1.1 Overview and philosophy

The title of this course is “Numerical Methods for Data Science.” What does that mean? Before
we dive into the course technical material, let’s put things into context. I will not attempt to
completely define either “numerical methods” or “data science,” but will at least give some
thoughts on each.

Numerical methods are algorithms that solve problems of continuous mathematics: finding
solutions to systems of linear or nonlinear equations, minimizing or maximizing functions,
computing approximations to functions, simulating how systems of differential equations evolve
in time, and so forth. Numerical methods are used everywhere, and many mathematicians
and scientists focus on designing these methods, analyzing their properties, adapting them
to work well for specific types of problems, and implementing them to run fast on modern
computers. Scientific computing, also called Computational Science and Engineering (CSE),
is about applying numerical methods — as well as the algorithms and approaches of discrete
mathematics — to solve “real world” problems from some application field. Though different
researchers in scientific computing focus on different aspects, they share the interplay between
the domain expertise and modeling, mathematical analysis, and efficient computation.

I have read many descriptions of data science, and have not been satisfied by any of them.
The fashion now is to call oneself a data scientist and (if in a university) perhaps to start a
master’s program to train students to call themselves data scientists. There are books and web
sites and conferences devoted to data science; SIAM even has a journal on the Mathematics of
Data Science. But what is data science, really? Statisticians may claim that data science is a
modern rebranding of statistics. Computer scientists may reply that it is all about machine
learning1 and scalable algorithms for large data sets. Experts from various scientific fields
might claim the name of data science for work that combines statistics, novel algorithms, and
new sources of large scale data like modern telescopes or DNA sequencers. And from my biased
perspective, data science sounds a lot like scientific computing!

Though I am uncertain how data science should be defined, I am certain that a foundation of
numerical methods should be involved. Moreover, I am certain that advances in data science,
broadly construed, will drive research in numerical method design in new and interesting

1The statisticians could retort that machine learning is itself a modern rebranding of statistics, with some
justification.
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directions. In this course, we will explore some of the fundamental numerical methods for
optimization, numerical linear algebra, and function approximation, and see the role they play
in different styles of data analysis problems that are currently in fashion. In particular, we will
spend roughly two weeks each talking about

• Linear algebra and optimization concepts for ML.
• Latent factor models, factorizations, and analysis of matrix data.
• Low-dimensional structure in function approximation.
• Function approximation and kernel methods.
• Numerical methods for graph data analysis.
• Methods for learning models of dynamics.

You will not strictly need to have a prior numerical analysis course for this course, though it
will help (the same is true of prior ML coursework). But you should have a good grounding in
calculus, linear algebra, and probability, as well as some “mathematical maturity.”

1.2 Readings

In the next chapter, we give a lightning review of some background material, largely to remind
you of things you have forgotten, but also perhaps to fill in some things you may not have seen.
Nonetheless, I have never believed it is possible to have too many books, and there are many
references that you might find helpful along the way. All the texts mentioned here are either
openly available or can be accessed as electronic resources via many university libraries. I note
abbreviations for the books where there are actually assigned readings.

1.2.1 General Numerics

If you want to refresh your general numerical analysis chops and have fun doing it, I recommend
the Afternotes books by Pete Stewart. If you would like a more standard text that covers
most of the background relevant to this class, you may like Heath’s book (expanded for the
“SIAM Classics” edition). I was involved in a book on many of the same topics, together with
Jonathan Goodman at NYU. O’Leary’s book on Scientific Computing with Case Studies is
probably the closest of the lot to the topics of this course, with particularly relevant case
studies. And Higham’s Accuracy and Stability of Numerical Methods is a magesterial treatment
of all manner of error analysis (highly recommended, but perhaps not as a starting point).

• Afternotes on Numerical Analysis and Afternotes Goes to Graduate School, Stewart
• Scientific Computing: An Introductory Survey, Heath
• Principles of Scientific Computing, Bindel and Goodman
• Scientific Computing with Case Studies, O’Leary
• Accuracy and Stability of Numerical Algorithms, Higham
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1.2.2 Numerical Linear Algebra

I learned numerical linear algebra from Demmel’s book, and still tend to go to it as a reference
when I think about how to teach. Trefethen and Bau is another popular take, created from
when Trefethen taught at Cornell CS. Golub and Van Loan’s book on Matrix Computations
ought to be on your shelf if you decide to do this stuff professionally, but I also like the depth
of coverage in Stewart’s Matrix Algorithms (in two volumes). And Elden’s Matrix Methods in
Data Mining and Pattern Recognition is one of the closest books I’ve found to the spirit of this
course (or at least part of it).

• ALA: Applied Numerical Linear Algebra, Demmel
• Numerical Linear Algebra, Trefethen and Bau
• Matrix Algorithms, Vol 1 and Matrix Algorithms, Vol 2, Stewart
• Matrix Methods in Data Mining and Pattern Recognition, Elden

1.2.3 Numerical Optimization

My go-to book on numerical optimization is Nocedal and Wright, with the book by Gill, Murray,
and Wright as a close second (the two Wrights are unrelated). For the particular case of convex
optimization, the standard reference is Boyd and Vandeberghe. And given how much of data
fitting revolves around linear and nonlinear least squares problems, we also mention an old
favorite by Bjorck.

• NO: Numerical Optimization, Nocedal and Wright
• Practical Optimization, Gill, Murray, and Wright
• Convex Optimization, Boyd and Vandenberghe
• Numerical Methods for Least Squares Problems, Bjorck

1.2.4 Machine Learning and Statistics

This class is primarily about numerical methods, but the application (to tasks in statistics,
data science, and machine learning) is important to the shape of the methods. My favorite
book for background in this direction is Hastie, Tribshirani, and Friedman, but the first book I
picked up (and one I still think is good) was Bishop. And while you may decide not to read the
entirety of Wasserman’s book, I highly recommend at least reading the preface, and specifically
the “statistics/data mining dictionary”.

• ESL: Elements of Statistical Learning, Hastie, Tribshirani, and Friedman
• Pattern Recognition and Machine Learning, Bishop
• All of Statistics, Wasserman
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1.2.5 Math Background

If you want a quick refresher of “math I thought you knew” and prefer something beyond my
own notes, Garrett Thomas’s notes on “Mathematics for Machine Learning” are a good start.
If you want much, much more math for ML (and CS beyond ML), the book(?) by Gallier and
Quaintance will keep you busy for some time.

• Mathematics for Machine Learning, Thomas
• Much more math for CS and ML, Gallier and Quaintance

10

https://gwthomas.github.io/docs/math4ml.pdf
https://www.cis.upenn.edu/~jean/math-deep.pdf


Part I

Background Plus a Bit
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For this class, I assume you know the fundamentals of linear algebra, multivariable calculus,
and probability. You should also know how to write and debug simple programs in Julia2,
or know enough programming to pick it up. But there are some things you may never have
forgotten that you will need for this class, and there are other things that you might not have
learned. This section will describe some of these things.

2The examples in this book will be in Julia. If you are unfamiliar with Julia but familiar with MATLAB or
Octave, you should be able to read most of the code. The syntax may be slightly more mysterious if you
primarily program in some other language, but I will generally assume that you have the computational
maturity to figure things out.

(People often refer to “mathematical maturity” and mean enough facility with mathematical thinking that
a student can follow somewhat advanced material and learn any missing background with minimal assistance.
I am using “computational maturity” here to mean the analogous ability to fill in missing background when
it comes to coding.)
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2 Linear Algebra Background

In this class we will mostly consider vector spaces over the reals, though it is sometimes
necessary to also consider complex vector spaces. This overview of linear algebra will be
incomprehensibly fast for those not already basically familiar with the concepts. Nonetheless,
it is probably worth reading even if you have a strong linear algebra background, as some of
the concepts we employ (such as the “quasi-matrix” perspective or our take on canonical forms)
are not universally taught.

2.1 Vector spaces

Vectors are things that we can add together and scale in a way that is consistent with how
we usually think about those words. More formally, a vector space 𝒱 over a field 𝔽 (which we
will always take to be the real numbers ℝ or the complex numbers ℂ) is a set together with a
binary operation + ∶ 𝒱 × 𝒱 → 𝒱 (addition) and ⋅ ∶ 𝔽 × 𝒱 → 𝒱 (scalar multiplication) satisfying
the following axioms:

• Commutativity: ∀𝑢, 𝑣 ∈ 𝒱, 𝑢 + 𝑣 = 𝑣 + 𝑢
• Associativity: ∀𝑢, 𝑣 ∈ 𝒱, (𝑢 + 𝑣) + 𝑤 = 𝑢 + (𝑣 + 𝑤)
• Existence of additivity identity: ∃0 ∈ 𝒱 s.t. ∀𝑢 ∈ 𝒱, 𝑢 + 0 = 𝑢
• Existence of additive inverses: ∀𝑢 ∈ 𝒱, ∃ − 𝑢 ∈ 𝒱 s.t. 𝑢 + −𝑢 = 0
• Scalar multiply compatibility: ∀𝛼, 𝛽 ∈ 𝔽, 𝑣 ∈ 𝒱, (𝛼𝛽)𝑣 = 𝛼(𝛽𝑣)
• Scaling by 1: If 1 ∈ 𝔽 is the multiplicative identity, then ∀𝑣 ∈ 𝒱, 1𝑣 = 𝑣
• Distributivity for scalar addition: ∀𝛼, 𝛽 ∈ 𝔽, 𝑢 ∈ 𝒱, (𝛼 + 𝛽)𝑢 = 𝛼𝑢 + 𝛽𝑢
• Distributivity for vector addition: ∀𝛼 ∈ 𝔽, 𝑢, 𝑣 ∈ 𝒱, 𝛼(𝑢 + 𝑣) = 𝛼𝑢 + 𝛼𝑣

A subspace of a vector space is a set 𝒰 ⊂ 𝒱 that is closed under addition and scaling, making
𝒰 itself a vector space. The span of a set of vectors 𝒢 ⊂ 𝒱 is the smallest subspace containing
𝒢, i.e. everything that can be written as a linear combination of elements of 𝒢, i.e.

span(𝒢) = {𝑢 ∈ 𝒱 ∶ 𝑢 = ∑
𝑔∈𝒢

𝑔𝑐𝑔, 𝑐𝑔 ∈ 𝔽}

We say 𝒢 is a spanning set for a subspace 𝒰 if the span of 𝒢 is 𝒰.

Any subspace can be generated as the span of some generating set, but we place special
emphasis on the case when every element 𝒰 is a unique linear combination of 𝒢. In this case,

13



we say the elements of 𝒢 are linearly independent. A necessary and sufficient condition for
linear independence of 𝒢 ⊂ 𝒱 is that the vector 0 ∈ 𝒱 has the unique representation as a linear
combination

0 = ∑
𝑔∈𝒢

0𝑔.

If a spanning set is linear independent, it also has minimal cardinality.

If 𝒢 = {𝑣1, … , 𝑣𝑘} is a spanning set of minimal cardinality, then any element 𝑢 in the generated
set 𝒰 has a unique representation

𝑢 =
𝑘

∑
𝑗=1

𝑣𝑗𝑐𝑗

for coefficients 𝑐𝑗 ∈ 𝔽. In this case, we say the set 𝒢 is linearly independent.

A sum of two subspaces 𝒰 ⊂ 𝒱 and 𝒲 ⊂ 𝒱 is the set 𝒰 + 𝒲 ≡ {𝑢 + 𝑤 ∶ 𝑢 ∈ 𝒰, 𝑤 ∈ 𝒲}. We
say 𝒰 + 𝒲 is a direct sum if there is a unique decomposition of each element 𝑣 ∈ 𝒰 + 𝒲 as
𝑣 = 𝑢 + 𝑤 for 𝑢 ∈ 𝒰 and 𝑣 ∈ 𝒱. The sum 𝒰 + 𝒲 is a direct sum iff the unique decomposition
of 0 is as 0 + 0. Alternately, we can say that if 𝒢 and ℋ are linearly independent on their own,
then span(𝒢) + span(ℋ) is a direct sum iff 𝒢 ∪ ℋ is a linearly independent subset of 𝒱. When
we know a sum of subspaces is a direct sum, we often use the symbol ⊕ instead of +.

2.2 Examples

Some common examples of vector spaces include:

Dual spaces

For every vector space 𝒱 over a field 𝔽, there is an associated dual space1 of all2 linear maps
from 𝒱 into 𝔽

𝒱∗ = {𝑤∗ ∶ 𝒱 → 𝔽 s.t. 𝑤∗ is linear},

i.e. a dual vector (also called a linear functional) 𝑤∗ ∈ 𝒱∗ represent a map such that 𝑤∗(𝛼𝑣) =
𝛼(𝑤∗𝑣) and 𝑤∗(𝑢 + 𝑣) = 𝑤∗𝑢 + 𝑤∗𝑣 for all scalars 𝛼 ∈ 𝔽 and vectors 𝑢, 𝑣 ∈ 𝒱.

1When describing dual spaces, Prof. Kahan always used to look sternly over his glasses and pronounce: “Vector
spaces are like potato chips; you can never have only one.”

2We typically restrict our attention to continuous linear maps – or, in the case of a normed vector space, to
maps that are bounded. However, this distinction only matters when we are dealing with infinite-dimensional
spaces.
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Concrete spaces

Concrete vector spaces are just lists of elements of 𝔽 (real or complex numbers for this class),
which we conventionally arrange into a column3:

𝑐 = ⎡⎢
⎣

𝑐1
⋮

𝑐𝑛

⎤⎥
⎦

.

The vector space 𝔽𝑚 is useful both in its own right and because it is the main vector space
we represent in the computer. Any finite-dimensional vector space of dimension 𝑛 can be
represented as the image of 𝔽𝑛 under a basis map.

A vector in Julia directly represents a vector in 𝔽𝑛 as an array of floating point numbers laid
out sequentially in memory. Entries in a vector in Julia are separated by semicolons or commas;
if white space is used instead, the vector is interpreted as a row vector (an element of 𝔽1×𝑛).

# Example (column) vector

[1.0; 0.0; 2.5]

3-element Vector{Float64}:

1.0

0.0

2.5

# Example row vector

[1.0 2.0 3.0]

1×3 Matrix{Float64}:

1.0 2.0 3.0

Matrix spaces

A matrix 𝐴 ∈ 𝔽𝑚×𝑛 is a two-dimensional array of elements of 𝑎𝑖𝑗 ∈ 𝔽 (real or complex) with
row index 𝑖 ∈ [𝑚] and column index 𝑗 ∈ [𝑛]4. While matrices can be seen as just a special
type of concrete vector space where we use two integer indices rather than one, they are most
usefully interpreted as representations of linear maps between vector spaces (or other types of
maps discussed later in this chapter).

3In statistics, concrete vectors are frequently arranged as rows by default; the column-oriented perspective we
use is common in numerical computing.

4We use [𝑛] for natural numbers 𝑛 to denote the index set {1, 2, … , 𝑛}.
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A matrix in Julia directly represents a vector in 𝔽𝑚×𝑛 as an array of floating point numbers
laid out column-by-column in memory. The same memory can be interpreted as a vector of
length 𝑚𝑛 where the entries are laid out in column-major order.

# Example of a 2-by-3 matrix

[1.0 3.0 5.0;

2.0 4.0 6.0]

2×3 Matrix{Float64}:

1.0 3.0 5.0

2.0 4.0 6.0

# Flatten a 2-by-3 matrix into a length 6 vector

let

A = [1.0 3.0 5.0;

2.0 4.0 6.0]

A[:]

end

6-element Vector{Float64}:

1.0

2.0

3.0

4.0

5.0

6.0

Polynomial spaces

The polynomial space 𝒫𝑑 consists of all univariate polynomials of degree at most 𝑑:

𝒫𝑑 = {
𝑑

∑
𝑗=0

𝑐𝑗𝑥𝑗 ∶ 𝑐𝑗 ∈ 𝔽} .

Polynomial spaces are very useful in applications, but they are also highly useful pedagogically
as examples of familiar finite-dimensional vector spaces other than the concrete spaces 𝔽𝑛.

Polynomials in Julia can be represented as objects from Polynomials.jl, a library that directly
supports vector algebra with polynomials along with differentiation, integration, and root-
finding.
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let

p = Polynomial([1, 0, 2]) # Represent 1 + 2x^2

q = Polynomial([4, 5]) # Represent 4 + 5x

s = p + q # This should represent 5 + 5x + 2x^2

s, s(2) # Show s and evaluation at x = 2

end

(Polynomial(5 + 5*x + 2*x^2), 23)

Alternately, we may choose to write polynomials in Julia directly as functions. In this case,
Julia does not know about addition and scalar multiplication, which must be implemented
directly. So while we cannot write q = 2*p, for example, we are fine defining q(x) = 2*p(x).

let

p(x) = 1.0 + x^2/2

xs = range(-1.0, 1.0, length=100)

plot(xs, p.(xs))

end
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Linear maps

The space ℒ(𝒰, 𝒱) is the space of all5 linear maps between vector spaces 𝒰 and 𝒱:

ℒ(𝒰, 𝒱) = {𝐿 ∶ 𝒰 → 𝒱 s.t. 𝐿 is linear}.

The dual space 𝒱∗ = ℒ(𝒱, 𝔽) is an important special case.

𝑘-times differentiable functions

We will frequently care about the vector space of 𝑘-times continuously differentiable functions
from a domain Ω ⊂ 𝔽𝑛 into 𝔽. Unlike all our other examples, this is an infinite-dimensional
vector space. Finite-dimensional vector spaces have a number of nice properties that infinite-
dimensional vector spaces (like 𝒞𝑘(Ω, 𝔽)) often lack. The technical details of infinite-dimensional
vector spaces are the topic of functional analysis courses. We will largely elide these details,
but there are a few points later in the class where it will be necessary to deal with such
annoyances.

2.3 Quasimatrices

A column-wise quasi-matrix is an ordered list of vectors 𝑣1, … , 𝑣𝑘 ∈ 𝒱 written as

𝑉 = [𝑣1 … 𝑣𝑘] .

We refer to the vectors 𝑣𝑗 as the columns of the quasi-matrix. The primary use of quasi-matrices
is to give us a compact notation for writing linear combinations of the columns; for a coefficient
vector 𝑐 ∈ 𝔽𝑘, we write

𝑉 𝑐 ≡
𝑘

∑
𝑗=1

𝑣𝑗𝑐𝑗.

Following this notation, we will use the symbol 𝑉 to refer either to the quasi-matrix or to the
induced linear mapping from 𝔽𝑛 to 𝒱. The range space of 𝑉 is simply the span of the columns;
we will refer to this space as either ℛ(𝑉 ) or as span(𝑉 ).

In a row-wise quasi-matrix, we write a list of dual vectors 𝑤∗
1, … , 𝑤∗

𝑘 ∈ 𝒱∗ as

𝑊 ∗ = ⎡⎢
⎣

𝑤∗
1
⋮

𝑤∗
𝑘

⎤⎥
⎦

5If 𝒰 and 𝒱 are normed vector spaces, we restrict our attention to all bounded linear maps. This is a distinction
that only matters in the infinite dimensional setting, so if you only care about finite-dimensional spaces, you
may promptly forget about this footnote.
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A row-wise quasi-matrix gives us a compact notation for writing a concrete vector of linear
functionals applied to a vector, i.e.

𝑐 = 𝑊 ∗𝑣 means 𝑐𝑗 = 𝑤∗
𝑗𝑣.

As with column-wise quasi-matrices, we will refer interchangeably to a row-wise quasi-matrix
𝑊 ∗ and the induced linear map from 𝒱 → 𝔽𝑘.

A matrix 𝐴 ∈ 𝔽𝑚×𝑛 can be interpreted as either a column-wise quasi-matrix (where the columns
of 𝐴 are viewed as vectors in 𝔽𝑚) or as a row-wise quasi-matrix (where the rows of 𝐴 are
viewed as row vectors in (𝔽𝑛)∗).

2.4 Bases

We deal with vectors from two perspectives:

• Abstract: A vector is an object that can be scaled or added to other vectors.
• Concrete: A vector is a column of numbers.

We map between the abstract and concrete pictures of (finite-dimensional) vector spaces using
a basis.

A basis quasi-matrix6 for a vector space 𝒱 is a quasi-matrix 𝑉 with linearly independent columns
that spans 𝒱 (the number of columns is the dimension of 𝒱). The basis quasi-matrix represents
an invertible linear map from 𝔽𝑛 to 𝒱. We write 𝑉 −1 to denote the inverse map, which we
think of as a row-wise quasi-matrix. The rows in 𝑉 −1 form a basis for the dual space 𝒱∗; this
basis is called the dual basis to 𝑉. We note that the composition 𝑉 −1𝑉 is an identity map on
the concrete space 𝔽𝑛, while 𝑉 𝑉 −1 is the identity map on the abstract space 𝒱.

When 𝑊 and 𝑉 are two separate bases for the same space, the change of basis matrix 𝐴 = 𝑊 −1𝑉
tells us how to transform the coefficients in the 𝑉 basis into coefficients in the 𝑊 basis. That is,
if we write 𝑣 ∈ 𝒱 as 𝑣 = 𝑉 𝑐 = 𝑊𝑑, we have

𝑣 = 𝑉 𝑐 (2.1)
𝑑 = 𝑊 −1𝑣 (2.2)
𝑑 = 𝑊 −1𝑉 𝑐 = 𝐴𝑐. (2.3)

Using distributivity, we can interpret 𝐴 column-wise: the columns of 𝐴 represent the vectors
𝑣1, … , 𝑣𝑛 written in terms of the 𝑊 basis

𝑑 = 𝑊 −1𝑣 = 𝑊 −1 (
𝑛

∑
𝑗=1

𝑣𝑗𝑐𝑗) =
𝑛

∑
𝑗=1

(𝑊 −1𝑣𝑗)𝑐𝑗 = 𝐴𝑐.

6In most linear algebra texts, we talk about a basis set of 𝒱, i.e. a linearly independent spanning set (with no
particular ordering). Using a quasi-matrix instead of a set just means we also pick an ordering, which we
generally do in computation anyhow.
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The 𝐴 matrix must also be invertible, and the matrix 𝐴−1 = 𝑉 −1𝑊 represents the linear
mapping from the 𝑊 basis coefficients back to the 𝑉 basis coefficients, and the columns of 𝐴−1

represent the vectors 𝑤1, … , 𝑤𝑛 written in terms of the 𝑉 basis.

Example: Polynomial bases

For example, the power basis of the vector space 𝒫𝑑 of polynomials of degree at most 𝑑 in
one variable is the basis of 𝑑 + 1 monomials [𝑥0 𝑥1 𝑥2 … 𝑥𝑑]. Using this basis, we might
concretely represent a polynomial 𝑝(𝑥) = 1 + 𝑥2/2 ∈ 𝒫2 as

𝑝(𝑥) = [1 𝑥 𝑥2] ⎡⎢
⎣

1
0

0.5
⎤⎥
⎦

.

For numerical purposes, we often prefer the Chebyshev bases for 𝒫𝑑, with basis vectors given
by

𝑇0(𝑥) = 1 (2.4)
𝑇1(𝑥) = 𝑥 (2.5)

𝑇𝑘+1(𝑥) = 2𝑥𝑇𝑘(𝑥) − 𝑇𝑘−1(𝑥), for 𝑘 ≥ 1 (2.6)

With respect to this basis, we might concretely represent 𝑝(𝑥) = 1 + 𝑥2/2 ∈ 𝒫2 as

𝑝(𝑥) = [𝑇0(𝑥) 𝑇1(𝑥) 𝑇2(𝑥)] ⎡⎢
⎣

1.25
0

0.25
⎤⎥
⎦

.

For a given degree 𝑑, let us denote the power basis and the Chebyshev bases as

𝑃 = [𝑥0 𝑥1 … 𝑥𝑑] (2.7)
𝑇 = [𝑇0(𝑥) 𝑇1(𝑋) … 𝑇𝑑(𝑥)] (2.8)

The three-term recurrence relationship between the Chebyshev polynomials lets us write a
simple computation for the matrix representing 𝑃 −1𝑇 mapping from Chebyshev coefficients to
coefficients in the power basis.

function cheb2power(d)

A = zeros(d+1, d+1)

A[1,1] = 1.0 # First column represents T_0 in power basis

if d > 1 A[2,2] = 1.0 end # Second column represents T_1 in power basis

for j = 2:d

# Compute representation of T_{j+1} = 2*x*T_{j} - T_{j-1}

A[2:d+1,j+1] = 2*A[1:d,j] # Multiplication by x shifts power basis coefficients
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A[:,j+1] -= A[:,j-1] # Subtract off the T_{j-1} coefficients

end

return UpperTriangular(A)

end

cheb2power (generic function with 1 method)

The 3-by-3 matrix representing the map from the Chebyshev coefficients to power coefficients
can be computed by cheb2power(2).

cheb2power(2)

3×3 UpperTriangular{Float64, Matrix{Float64}}:

1.0 0.0 -1.0

⋅ 1.0 0.0

⋅ ⋅ 2.0

Hence, we have

𝑇 (𝑥) = 𝑃(𝑥) ⎡⎢
⎣

1 0 −1
0 1 0
0 0 2

⎤⎥
⎦

or, reading column-by-column,

𝑇0(𝑥) = 𝑥0 (2.9)
𝑇1(𝑥) = 𝑥1 (2.10)
𝑇2(𝑥) = 2𝑥2 − 𝑥0 (2.11)

This matrix is upper triangular ; that is, all entries below the main diagonal are zero. Intuitively,
we expect this because 𝑇𝑗(𝑥) is a degree 𝑗 polynomial, so the maximum monomial involved is
𝑥𝑗.

To convert a vector of coefficients in the power basis into a vector of Chebyshev coefficients, we
solve a linear system involving 𝐴 = 𝑃 −1𝑇. We prefer not to form the 𝐴−1 explicitly; instead,
we solve a linear system using the backslash operator.

let

A = cheb2power(2) # Compute Chebyshev -> power basis coefficient mapping

A\[1.0; 0.0; 0.5] # Solve for the Chebyshev coefficients for our example

end
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3-element Vector{Float64}:

1.25

0.0

0.25

2.5 Norms

A norm ‖ ⋅ ‖ provides a way to measure the lengths of vectors. Norms are characterized by
three properties for any scalar 𝛼 and vectors 𝑢, 𝑣:

Positive definiteness ‖𝑣‖ ≥ 0; and ‖𝑣‖ = 0 iff 𝑣 = 0
Homogeneity ‖𝛼𝑣‖ = |𝛼|‖𝑣‖
Subadditivity (aka triangle inequality) ‖𝑢 + 𝑣‖ ≤ ‖𝑢‖ + ‖𝑣‖

All norms are equivalent on finite dimensional spaces7; that is, if ‖ ⋅ ‖ and ‖ ⋅ ‖∗ are two different
norms on a finite-dimensional space 𝒱, then there exist positive real constants 𝑐, 𝐶 such that
for all 𝑣 ∈ 𝒱

𝑐‖𝑣‖ ≤ ‖𝑣‖∗ ≤ 𝐶‖𝑣‖.

However, the constants may be rather large!

In normed infinite-dimensional spaces, we often insist that the space be complete with respect
to the norm – that is, if we have a Cauchy sequence in the space, it must converge. Such spaces
are called Banach spaces.

Norms on concrete spaces

The three most common vector norms we work with for the spaces ℝ𝑛 and ℂ𝑛 are

Euclidean norm (aka 2-norm) ‖𝑣‖2 = √∑𝑛
𝑗=1 |𝑣𝑗|2

Max norm (aka sup norm, ∞-norm) ‖𝑣‖∞ = max𝑗 |𝑣𝑗|
1-norm ‖𝑣‖1 = ∑𝑛

𝑗=1 |𝑣𝑗|

These norms are all implemented in the Julia LinearAlgebra package:

let

x = [3; 4]

norm(x,Inf), norm(x,2), norm(x,1)

end

7On infinite dimensional spaces, norms are not all equivalent.
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(4.0, 5.0, 7.0)

Many other norms can be related to one of these three norms. For example, we can frequently
connect these norms to other norms by scaling: for any norm ‖ ⋅ ‖ and any invertible matrix 𝐴,
the function ‖ ⋅ ‖∗ given by ‖𝑣‖∗ = ‖𝐴𝑣‖ is also a norm.

Norms on polynomials

We define similar norms for more general vector spaces. For example, for the polynomial spaces
𝒫𝑑 on a finite interval (say [−1, 1]), we have three common norms analogous to the norms on
ℝ𝑛 and ℂ𝑛:

Euclidean norm (aka 2-norm) ‖𝑝‖2 = √∫1
−1

|𝑝(𝑥)|2 𝑑𝑥
Max norm (aka sup norm, ∞-norm) ‖𝑝‖∞ = max−1≤𝑥≤1 |𝑝(𝑥)|
1-norm ‖𝑝‖1 = ∫1

−1
|𝑝(𝑥)| 𝑑𝑥

It is worth noting that these norms are not equivalent to applying the same norms to a vector
of coefficients8! Unfortunately, the Polynomials.jl library does not implement these norms,
though it is not so difficult to do so9.

Consistency and induced norms

Suppose 𝒰 and 𝒱 are normed vector spaces. A norm on ℒ(𝒰, 𝒱) is consistent with the norms
on 𝒰 and 𝒱 (or submultiplicative) if for all 𝑢 ∈ 𝒰 and 𝐿 ∈ ℒ(𝒰, 𝒱),

‖𝐿𝑢‖𝒱 ≤ ‖𝐿‖‖𝑢‖𝒰.

The induced norm on ℒ(𝒰, 𝒱) is the tightest norm such that consistency holds

‖𝐿‖ℒ(𝒰,𝒱) = sup
0≠𝑢∈𝒰

‖𝐿𝑢‖𝒱
‖𝑢‖𝒰

= sup
𝑢∈𝒰∶‖𝑢‖𝒰=1

‖𝐿𝑢‖𝒱.

A particularly important special case is the induced norm on the dual space 𝒱∗ = ℒ(𝒱, 𝔽)
where 𝒱 is a field over 𝔽.

8There is a basis of polynomials (the normalized Legendre polynomials) for which applying the 𝐿2 norm (the
Euclidean norm described here) to a polynomial 𝑝 ∈ 𝒫𝑑 is equivalent to applying the 𝐿2 norm to the vector
of coefficients. But this is a special case.

9This is a good exercise for the interested student!
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For matrices in ℝ𝑚×𝑛 and ℂ𝑚×𝑛, the induced 1-norm and max-norm are simple to compute:

‖𝐴‖∞ = max
𝑖∈[𝑚]

𝑛
∑
𝑗=1

|𝑎𝑖𝑗|; (2.12)

‖𝐴‖1 = max
𝑗∈[𝑛]

𝑚
∑
𝑖=1

|𝑎𝑖𝑗|. (2.13)

The norm induced by the Euclidean norm on vector spaces (sometimes called the spectral norm)
is rather more complicated to compute, and is given by the largest singular value of 𝐴. We
describe this below. Fortunately, the Frobenius norm is simple to compute and is consistent
with the Euclidean norm, even if it is not induced by it. The Frobenius norm is given by

‖𝐴‖𝐹 = √∑
𝑖,𝑗

|𝑎𝑖𝑗|2.

In Julia, the norm function computes a vector norm for a vector or for a matrix flattened into a
vector. For example:

let

A = [1.0 3.0;

2.0 4.0]

# These are equivalent to computing norms of x = [1; 2; 3; 4]

norm(A,Inf), norm(A,2), norm(A,1)

end

(4.0, 5.477225575051661, 10.0)

These are all legitimate vector norms, but only norm(A,2) (which computes the Frobenius norm)
even gives a consistent norm. To compute induced norms, we need the opnorm function

let

A = [1.0 3.0;

2.0 4.0]

# These are equivalent to computing norms of x = [1; 2; 3; 4]

opnorm(A,Inf), opnorm(A,2), opnorm(A,1)

end

(6.0, 5.464985704219042, 7.0)
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2.6 Inner products

An inner product ⟨⋅, ⋅⟩ is a function from two vectors into the real numbers (or complex numbers
for complex vector space). It satisfies the following properties for all vectors 𝑢, 𝑣, 𝑤 and scalars
𝛼

Positive definiteness ⟨𝑣, 𝑣⟩ ≥ 0 and ⟨𝑣, 𝑣⟩ = 0 iff 𝑣 = 0
Linearity in the first slot ⟨𝑢 + 𝑣, 𝑤⟩ = ⟨𝑢, 𝑤⟩ + ⟨𝑣, 𝑤⟩ and ⟨𝛼𝑢, 𝑤⟩ = 𝛼⟨𝑢, 𝑤⟩
Symmetry (or Hermitian-ness) ⟨𝑢, 𝑣⟩ = ⟨𝑣, 𝑢⟩

where the overbar in the last case corresponds to complex conjugation (for complex vector
spaces). Every inner product defines a corresponding norm

‖𝑣‖ = √⟨𝑣, 𝑣⟩.

The inner product and associated norm satisfy the Cauchy-Schwarz inequality

|⟨𝑢, 𝑣⟩| ≤ ‖𝑢‖‖𝑣‖.

In the real case, we are also able to recover the inner product given the norm

⟨𝑢, 𝑣⟩ = 1
2

(‖𝑢 + 𝑣‖2 − ‖𝑢‖2 − ‖𝑣‖2).

In the complex case, this formula only gives the real part of the inner product.

A Hilbert space is an inner-product space that is complete under the associated norm (i.e. all
Cauchy sequences converge). All finite-dimensional inner-product spaces are Hilbert spaces, as
are the infinite-dimensional inner-product spaces that we find most interesting. If 𝒱 is a Hilbert
space, the Riesz representation theorem tells us that every (continuous10) linear functional
𝑓 ∈ 𝒱∗ can be written in terms of an inner product with a unique 𝑤 ∈ 𝒱:

𝑓(𝑣) = ⟨𝑣, 𝑤⟩.

The map gives us a linear isomorphism (in the real case) or antilinear isomorphism (in the
complex case) between 𝒱 and 𝒱∗.

Where norms give a notion of length, inner products also give a notion of angle. If 𝑢 and 𝑣 are
nonzero vectors, the angle 𝜃 between them satisfies

cos(𝜃) = ⟨𝑢, 𝑣⟩
‖𝑢‖‖𝑣‖

.

Apart from its geometric significance, this “cosine similarity” between vectors plays an important
role in many data science and machine learning applications.
10All linear functionals are continuous in a finite-dimensional vector space; this makes a difference only in

infinite-dimensional spaces.
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Inner products on concrete spaces

The standard inner product on ℂ𝑛 (also called the dot product) is

⟨𝑥, 𝑦⟩ = 𝑦∗𝑥 =
𝑛

∑
𝑗=1

𝑥𝑗 ̄𝑦𝑗.

In this case, the Riesz map from the column vector 𝑦 to the functional (row vector) 𝑦∗ is just
given by the conjugate transpose operation.

For the standard inner product, we have not only the Cauchy-Schwarz inequality, but also the
very useful inequality11

|⟨𝑥, 𝑦⟩| ≤ ‖𝑥‖1‖𝑦‖∞

But the standard inner product is not the only inner product, just as the standard Euclidean
norm is not the only Euclidean norm! In general, if 𝑀 ∈ ℂ𝑛×𝑛 is Hermitian (or symmetric in
the real case) and positive definite (i.e. 𝑥∗𝑀𝑥 ≥ 0 with equality iff 𝑥 = 0), then

⟨𝑥, 𝑦⟩𝑀 = 𝑦∗𝑀𝑥

is an inner product. In fact, all possible inner products on ℂ𝑚 can be written in this way.
Alternately, every symmetric positive definite matrix may be written in many ways as 𝑀 = 𝐴∗𝐴,
giving us a representation in terms of the standard inner product composed with a linear
transformation:

⟨𝑥, 𝑦⟩𝑀 = (𝐴𝑥) ⋅ (𝐴𝑦).

Inner products on polynomials

As before, it is useful to consider inner products on 𝒫𝑑 as well as on ℝ𝑛 and ℂ𝑛. The standard
inner product (𝐿2 inner product) on 𝒫𝑑 over an interval [−1, 1], for example, is given by

⟨𝑝, 𝑞⟩ = ∫
1

−1
𝑝(𝑥)𝑞(𝑥) 𝑑𝑥.

In an inner product space, two vectors are said to be orthogonal if their inner product is zero.
A set of vectors are orthonormal if they are mutually orthogonal and each vector has unit
length in the Euclidean norm. Orthonormal bases are particularly convenient. In ℝ𝑛 (or ℂ𝑛)
with the standard inner product, the standard basis [𝑒1 𝑒2 … 𝑒𝑛] (where 𝑒𝑘 is the vector of

11This is a special case of the Hölder inequality, which states that |⟨𝑥, 𝑦⟩| ≤ ‖𝑥‖𝑝‖𝑦‖𝑞 for the so-called ℓ𝑝 norms
when 1/𝑝 + 1/𝑞 = 1.
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all zeros except for a one in the 𝑘th position) is orthonormal. In 𝒫𝑑 with the 𝐿2 inner product
on [−1, 1], the Legendre polynomials form orthogonal bases; these are given by

𝑃0(𝑥) = 1 (2.14)
𝑃1(𝑥) = 𝑥 (2.15)

(𝑛 + 1)𝑃𝑛+1(𝑥) = (2𝑛 + 1)𝑥𝑃𝑛(𝑥) − 𝑛𝑃𝑛−1(𝑥). (2.16)

The Legendre polynomials have Euclidean length of

‖𝑃𝑛(𝑥)‖ = √ 2
2𝑛 + 1

;

the normalized Legendre polynomials are scaled to unit length, and so form an orthonormal
basis

𝑄𝑛(𝑥) = √2𝑛 + 1
2

𝑃𝑛(𝑥).

Gram-Schmidt

Let 𝑋 be a basis quasi-matrix for an 𝑛-dimensional space 𝒱. The Gram-Schmidt orthonormal-
ization process gives us a way of constructing an orthonormal basis 𝑄 for 𝒱 such that for all
𝑘 ≤ 𝑛

span({𝑥1, … , 𝑥𝑘}) = span({𝑞1, … , 𝑞𝑘}).

The classical construction is usually written as

̃𝑞𝑘 = 𝑥𝑘 −
𝑘−1
∑
𝑗=1

𝑞𝑗⟨𝑥𝑘, 𝑞𝑗⟩ (2.17)

𝑞𝑘 = ̃𝑞𝑘/‖ ̃𝑞𝑘‖. (2.18)

Let 𝑟𝑗𝑘 = ⟨𝑥𝑘, 𝑞𝑗⟩ for 𝑗 < 𝑘 and 𝑟𝑘𝑘 = ‖�̃�𝑘‖; then the Gram-Schimdt construction can be
re-interpreted as a factorization of the quasi-matrix 𝑋:

𝑋 = 𝑄𝑅

where 𝑅 is the upper triangular matrix with coefficients computed in the Gram-Schimdt
construction. This factorization is sometimes called the QR factorization of the (quasi)matrix
𝑋.

For numerical comptuation, the classical Gram-Schmidt process is rarely used. However the
QR factorization, computed using different algorithms, is broadly useful.
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2.7 Maps and matrices

There are a variety of types of maps that are of interest in linear algebra, all of which have
matrix representations under appropriate choices of bases. These include

• Linear maps between two different vector spaces 𝒰 and 𝒱.
• Linear operators mapping a vector space 𝒱 to itself.
• Bilinear forms mapping 𝒰 × 𝒱 → 𝔽, which are linear in each argument independently.

These are most frequently used when 𝔽 = ℝ. An important special case is symmetric
bilinear forms 𝑎 ∶ 𝒱 × 𝒱 → 𝔽 such that 𝑎(𝑢, 𝑣) = 𝑎(𝑣, 𝑢).

• Sesquilinear forms mapping 𝒰×𝒱 → ℂ that are linear in the first argument and antilinear
in the second argument. An important special case is Hermitian forms 𝑎 ∶ 𝒱 × 𝒱 → ℂ
such that 𝑎(𝑢, 𝑣) = 𝑎(𝑣, 𝑢).

• Quadratic forms mapping 𝒱 → ℝ. These are homogeneous of degree 2, i.e. if 𝜙 ∶ 𝒱 → ℝ
is a quadratic form, then 𝜙(𝛼𝑣) = |𝛼|2𝜙(𝑣).

Bilinear forms (over a real space) and sesquilinear forms (over an complex space) can be also
be thought of as linear or antilinear maps into the dual space, i.e.

𝑣 ∈ 𝒱 ↦ 𝑤∗ ∈ 𝒰∗ via 𝑤∗𝑢 = 𝑎(𝑢, 𝑣).

In an inner product space, we can define a linear map from 𝒱 to 𝒰∗ by composing this map
with the map from 𝒰∗ to 𝒰 via the Riesz representation theorem.

Each of these types of linear algebraic objects can be represented as a matrix via a choice of
basis. Suppose 𝑈 and 𝑉 are basis quasi-matrices for the vector spaces 𝒰 and 𝒱 with 𝑢 = 𝑈𝑐
and 𝑣 = 𝑉 𝑑. Then we have the following matrix representations

• Linear maps: If 𝐿 ∶ 𝒰 → 𝒱 and 𝑣 = 𝐿𝑢 then 𝑑 = 𝐴𝑐 where 𝐴 = 𝑉 −1𝐿𝑈.
• Linear operators: If 𝐿 ∶ 𝒱 → 𝒱, we have only a single basis, and the matrix representation

is 𝐴 = 𝑉 −1𝐿𝑉.
• Bilinear forms: If 𝑎 ∶ 𝒰 × 𝒱 is a bilinear form, then 𝑎(𝑢, 𝑣) = 𝑑𝑇𝐴𝑐 where the matrix

element 𝑎𝑖𝑗 = 𝑎(𝑢𝑗, 𝑣𝑖) is an evaluation of the form on a pair of basis vectors. For
symmetric bilinear forms, the matrix representation is also symmetric (i.e. 𝐴 = 𝐴𝑇).

• Sesquilinear forms: If 𝑎 ∶ 𝒰 × 𝒱 is a bilinear form, then 𝑎(𝑢, 𝑣) = 𝑑∗𝐴𝑐 where the matrix
element 𝑎𝑖𝑗 = 𝑎(𝑢𝑗, 𝑣𝑖) is an evaluation of the form on a pair of basis vectors. For
Hermitian bilinear forms, the matrix representation is also Hermitian (i.e. 𝐴 = 𝐴∗).

• Quadratic forms: If 𝜙 ∶ 𝒱 → ℝ is a quadratic form, then 𝜙(𝑣) = 𝑑∗𝐴𝑑. The matrix 𝐴 is
Hermitian. The real part of 𝑎𝑗𝑘 is (𝜙(𝑣𝑗 + 𝑣𝑘) − 𝜙(𝑣𝑗) − 𝜙(𝑣𝑘))/2 and the imaginary part
is (𝜙(𝑣𝑗 − 𝑖𝑣𝑘) − 𝜙(𝑣𝑗) − 𝜙(𝑣𝑘))/2.

Matrix representations of the same linear operator with respect to different bases are said to
be similar. Changing from the basis 𝑉 to a basis 𝑉 𝑋 (where 𝑋 is invertible) transforms the
matrix representation 𝐴 to 𝑋−1𝐴𝑋; this is called a similarity transformation. Similar matrices
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have the same eigenvalues, because the eigenvalues are a basis-independent property of linear
operators.

Matrix representations of the same quadratic form (or Hermitian sesquilinear form) with respect
to different bases are said to be congruent. Changing from the basis 𝑉 to a basis 𝑉 𝑋 (where 𝑋
again is invertible) transforms the matrix representation 𝐴 to 𝑋∗𝐴𝑋; this is called a congruence
transformation. Congruent matrices share a property called Sylvester’s inertia, as this is a
basis-independent property of quadratic forms. We will have more to say about this shortly in
our discussion of canonical forms.

2.8 Block matrices

Now suppose that we are interested in a linear mapping 𝐿 ∶ 𝒰 → 𝒱 where the spaces have basis
quasi-matrices 𝑈 and 𝑉, respectively. Now partition the 𝑈 and 𝑉 bases into disjoint sets of
columns, written as

𝑈 = [𝑈1 𝑈2 … 𝑈𝑞] (2.19)
𝑉 = [𝑉1 𝑉2 … 𝑉𝑞] . (2.20)

The partitioning of the bases corresponds to a partitioning of the two spaces as a direct sum of
subspaces

𝒰 = 𝒰1 ⊕ 𝒰2 ⊕ … ⊕ 𝒰𝑞 (2.21)
𝒱 = 𝒱1 ⊕ 𝒱2 ⊕ … ⊕ 𝒱𝑝 (2.22)

If 𝐴 = 𝑉 −1𝐿𝑈 is the matrix representing 𝐿 with respect to the 𝑈 and 𝑉 bases, then together
with the partitioning of the bases comes a partitioning of 𝐴 into blocks:

𝐴 =
⎡
⎢
⎢
⎣

𝐴11 𝐴12 … 𝐴1𝑞
𝐴21 𝐴22 … 𝐴2𝑞

⋮ ⋮ ⋱ ⋮
𝐴𝑝1 𝐴𝑝2 … 𝐴𝑝𝑞

⎤
⎥
⎥
⎦

(2.23)

where each submatrix 𝐴𝑖𝑗 corresponds to the “piece” of the mapping 𝐿 from the 𝒰𝑗 contribution
to 𝑢 to the 𝒱𝑖 contribution to 𝐿𝑢.

We can similarly partition matrices associated with other types of maps. In the case of operators
and quadratic forms (or symmetric or Hermitian forms), sensible partitionings of the associated
matrices generally yield diagonal blocks.
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2.9 Schur complements

Suppose 𝐿 ∶ 𝒰 → 𝒰 is an operator on a vector space and 𝒰 = 𝒰1 ⊕ 𝒰2 is a decomposition of 𝒰
into a direct sum of subspaces. Then we have the block representation of the operator as

𝐿 = [𝐿11 𝐿12
𝐿21 𝐿22

] .

If 𝐿 is invertible, we can similarly write the inverse in block form as

𝐿−1 = [𝑀11 𝑀12
𝑀21 𝑀22

]

Assuming 𝐿11 is invertible, we can write the block factorization:

𝐿 = [ 𝐼 0
𝐿21𝐿−1

11 𝐼] [𝐿11 𝐿12
0 𝐿22 − 𝐿21𝐿−1

11 𝐿12
] ,

and by forward and backward substitution we have that 𝑀22 = 𝑆−1 where

𝑆 = 𝐿22 − 𝐿21𝐿−1
11 𝐿12

is the Schur complement of 𝐿11 in 𝐿.

Because they arise naturally in the process of algorithms like Gaussian elimination, Schur
complements play an important role in numerical methods for solving linear systems. But
Schur complements are also important in various non-numerical settings, such as in Bayesian
statistics, where conditioning a multivariate Gaussian prior on linear measurements yields a
multivariate Gaussian posterior distribution whose covariance is a Schur complement in the
prior covariance.

2.10 The canonical forms

We start with abstract vector spaces and functions on them, but we compute with bases and
matrices. The matrix associated with a linear algebra function always depends on the choice of
basis, and so we ask: what basis would make the matrix as simple as possible? This simplest
possible matrix representation is known as a canonical form. For computational purposes, we
often want to restrict ourselves to orthonormal bases; therefore, for each type of function, we
list two flavors of canonical forms – those associated with a general choice of basis and those
associated with orthonormal bases. If we start with a matrix representation of some function
on concrete vector spaces, we can also think of the canonical forms as matrix factorizations.
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Linear maps

Suppose 𝐿 ∶ 𝒱 → 𝒰 is a linear map between two different vector spaces with dim(𝒱) = 𝑛 and
dim(𝒰) = 𝑚.

General bases

Suppose we decompose 𝒰 = 𝒰1 ⊕ 𝒰2 where 𝒰1 = range(𝐿), and we decompose 𝒱 = 𝒱1 ⊕
𝒱2 where 𝒱2 = null(𝐿). Then for any associated choice of bases, we have a block matrix
representation of the form

[𝐴11 0
0 0] .

where 𝐴11 ∈ ℂ𝑟×𝑟 is an invertible matrix. For appropriate choices of bases, we have the block
matrix representation

[𝐼𝑟×𝑟 0
0 0] .

That is, the canonical for a linear map between two different spaces can be described just by
one number: the rank 𝑟 (from which we can also determine the null space dimension 𝑛 − 𝑟).
We can also write this as the (quasi)matrix factorization

𝐿 = [𝑈1 𝑈2] [𝐼 0
0 0] [𝑉1 𝑉2]−1

Orthonormal bases

If we restrict ourselves to orthonormal bases, we can still get the same general block form
by decomposing 𝑈 into the range space and its orthogonal complement and decomposing 𝑉
into the null space and its orthogonal complement. However, we cannot get all the way to a
representation of the leading block as an identity matrix – the best we can do is to get to a
diagonal matrix with positive entries. Using the fact that the inverse of a unitary matrix is
given by its conjugate transpose (or the Riesz map of the columns, in the more general case),
we have the factorization

𝐿 = [𝑈1 𝑈2] [Σ11 0
0 0] [𝑉1 𝑉2]∗ = 𝑈1Σ11𝑉 ∗

1 ,

where the 𝑟-by-𝑟 matrix Σ11 has diagonal entries 𝜎1 ≥ 𝜎2 ≥ … ≥ 𝜎𝑟 > 0. The diagonals of the
matrix are known as the singular values of the map, with associated bases of singular vectors.
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Linear operators

Now suppose 𝐿 ∶ 𝒱 → 𝒱. This case is different from the linear map because we only get to
choose one basis, rather than two.

General bases

Over the complex numbers, we can choose a basis 𝑋 that usually renders the matrix for 𝐿
diagonal (and gives us something nearly diagonal otherwise):

𝐿 = 𝑋𝐽𝑋−1, 𝐽 =
⎡
⎢
⎢
⎣

𝐽𝜆1

𝐽𝜆2

𝐽𝜆3

⋱

⎤
⎥
⎥
⎦

,

where the submatrices 𝐽𝜆 are Jordan blocks of the form

𝐽𝜆 =
⎡
⎢
⎢
⎢
⎣

𝜆 1
𝜆 1

⋱ ⋱
𝜆 1

𝜆

⎤
⎥
⎥
⎥
⎦

.

The columns of the basis 𝑋 are eigenvectors or generalized eigenvectors. This is known as the
Jordan canonical form. Most matrices are diagonalizable, so that all the Jordan blocks are
1-by-1 and we have a complete basis of eigenvectors.

Orthonormal bases

Over the complex numbers, we can choose an orthonormal basis 𝑈 that gives us an upper
triangular matrix

𝐿 = 𝑈𝑇 𝑈 ∗,

where the diagonal elements 𝑡𝑗𝑗 are eigenvalues of 𝐿. This is known as the (complex) Schur
canonical form of 𝐿. In this basis, the columns no longer correspond to eigenvectors. However,
each prefix of columns 𝑢1, … 𝑢𝑘 spans an invariant subspace of 𝐿; that is 𝐿 maps this space
into itself.

If we restrict ourselves to the reals, we have the real Schur form of 𝐿. This is close to the
complex Schur form except that we insist on real basis vectors and 𝑇 is block upper triangular,
with some 2-by-2 blocks corresponding to complex conjugate pairs of eigenvalues.
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Quadratic forms

Now suppose 𝜙 ∶ 𝒱 → ℝ is a quadratic form.

General bases

For every quadratic form, there is a basis which we can write in partitioned form as

𝑉 = [𝑉+ 𝑉− 𝑉0]

such that we have the block matrix representation

𝜙(𝑉 𝑐) = ⎡⎢
⎣

𝑐+
𝑐−
𝑐0

⎤⎥
⎦

∗

⎡⎢
⎣

𝐼
−𝐼

0
⎤⎥
⎦

⎡⎢
⎣

𝑐+
𝑐−
𝑐0

⎤⎥
⎦

Let 𝜈+, 𝜈−, and 𝜈0 be the number of columns in the three parts of the basis. The triple
𝜈 = (𝜈+, 𝜈−, 𝜈0) is called Sylvester’s inertia (or sometimes the metric signature) for the
quadratic form, and characterizes the form in much the same way that the rank characterizes a
linear map. Geometrically, Sylvester’s inertia describes the number of directions of positive
curvature, negative curvature, and zero curvature for the bowl or saddle described by the
quadratic form. A quadratic form is positive definite if 𝜈+ = 𝑛, positive semi-definite if
𝜈+ + 𝜈0 = 𝑛, negative definite if 𝜈− = 𝑛, and negative semi-definite if 𝜈 − +𝜈0 = 𝑛. A quadratic
form with both 𝜈+ and 𝜈− nonzero is strongly indefinite (also sometimes called a saddle).

If 𝐴 is the representation of 𝜙 under some arbitrary basis 𝑊 and 𝑊 = 𝑉 𝑋, we have the
factorization

𝐴 = 𝑋∗ ⎡⎢
⎣

𝐼
−𝐼

0
⎤⎥
⎦

𝑋;

in this case, we would say 𝐴 is congruent to the diagonal matrix described by the inertia.

Orthonormal bases

If we restrict our attention to orthonormal bases, the canonical form of the matrix representation
is a simple real diagonal matrix:

𝜙(𝑉 𝑐) = 𝑐∗Λ𝑐, Λ =
⎡
⎢
⎢
⎣

𝜆1
𝜆2

⋱
𝜆𝑛

⎤
⎥
⎥
⎦

where the eigenvalues 𝜆𝑗 are typically listed in descending order. The number of positive,
negative, and zero eigenvalues is given by Sylvester’s inertia.
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If 𝐴 is the representation of 𝜙 under some orthonormal basis 𝑊 and 𝑊 = 𝑉 𝑄∗ (where 𝑄 is a
unitary matrix, i.e. 𝑄∗𝑄 = 𝐼), then we have the factorization

𝐴 = 𝑄Λ𝑄∗;

in this case, we would say 𝐴 is related to Λ by a unitary congruence. A unitary congruence
is also a similarity transform, hinting at a rich relation between the interpretation of the
symmetric eigenvalue problem in terms of operators or in terms of quadratic forms.

Other functions

What of bilinear and sesquilinear forms? For these functions, the appropriate canonical
forms are essentially the same as those that we have already described. In the case of real
symmetric bilinear or complex Hermitian sesquilinear forms, there is an associated quadratic
form 𝜙(𝑣) = 𝑎(𝑣, 𝑣), and the canonical form of the bilinear/sesquilinear form is the same as
the canonical form for the quadratic form. In the case of bilinear or sesquilinear forms on two
different spaces, the appropriate canonical form is the same as for a linear map.

2.11 Important invariants

The canonical forms of different maps that appear in linear algebra reveal important invariants
of the maps that do not depend on the specific matrix representation. These include the
rank of a linear map and the inertia of a quadratic form, but also the singular values and
the eigenvalues (and their geometric and algebraic multiplicities). However, sometimes we
want invariants that are simpler (and maybe easier to compute with than singular values and
eigenvalues). We might also want invariants that are continuous under small changes to the
map, which the rank, inertia, and eigenvalue multiplicities generally are not. In this section,
we review a few additional invariants that see common use.

Invariant norms

A matrix norm is said to be unitarily invariant if for any matrix 𝐴 and unitary matrices 𝑈 and
𝑉 of appropriate dimension, ‖𝐴‖ = ‖𝑈 ∗𝐴‖ = ‖𝐴𝑉 ‖. Such matrix norms characterize a linear
mapping between inner product spaces, independent of the specific orthonormal basis chosen.
Therefore, any unitarily invariant norm on a matrix space must depend only on the singular
values of the matrix.

The Schatten 𝑝-norm on a matrix space is defined in terms of the 𝑝-norm on the vector of
singular values, i.e.

(
𝑛

∑
𝑖=1

𝜎𝑝
𝑖 )

1/𝑝

.
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The three most frequently used Schatten norms are:

• 𝑝 = 2: The Frobenius norm ‖𝐴‖𝐹 = √∑𝑛
𝑖=1 𝜎2

𝑖 . The Frobenius norm can also be written

as the two-norm of the vector of coefficients, i.e. ‖𝐴‖𝐹 = √∑𝑖,𝑗 |𝑎𝑖𝑗|2.
• 𝑝 = ∞: The spectral norm ‖𝐴‖2 = 𝜎1. This is the same as the operator norm induced by

the vector 2-norm(s).
• 𝑝 = 1: The nuclear norm ‖𝐴‖∗ = ∑𝑛

𝑗=1 𝜎𝑗 (also sometimes called the trace norm). When
𝐴 is positive semi-definite, the nuclear norm is equal to tr(𝐴) = ∑𝑖 𝑎𝑖𝑖.

We often use the Frobenius norm to measure the distance between data matrices and the
spectral norm when considering the error in approximating a linear map. The nuclear norm
appears somewhat less frequently, but plays an important role in methods for finding low-rank
solutions to optimization problems over matrix spaces.

The Ky Fan 𝑘-norm on a matrix spaces is the sum of the largest 𝑘 singular values. The most
frequent examples are 𝑘 = 1 (the spectral norm) and 𝑘 = 𝑛 (the nuclear norm).

Stable rank

There are many times when we would like a low-rank approximate solution to some matrix
equation or optimization problem. However, this is computationally awkward, as the rank is
not a continuous function of the matrix entries! A useful continuous lower bound on the rank
of a matrix is the stable rank:

‖𝐴‖2
𝐹/‖𝐴2‖2 =

𝑛
∑
𝑗=1

( 𝜎𝑖
𝜎1

)
2

.

If the matrix 𝐴 has orthonormal columns (if tall and skinny) or rows (if short and fat), then the
stable rank agrees with the rank. Many of the bounds on randomized algorithms for low-rank
approximation of matrices are posed in terms of the stable rank.

Spectral invariants

Unitarily invariant norms and the stable rank can all be phrased in terms of singular values,
and so can be viewed as intrinsic properties of an underlying linear map between two inner
product spaces. It is also useful to consider spectral invariants of an operator from a vector
space to itself, which we can express in terms of the eigenvalues.

One invariant that occurs frequently is the spectral radius. If Λ(𝐴) denotes the spectrum of 𝐴,
then

𝜌(𝐴) = max
𝜆∈Λ(𝐴)

|𝜆|.
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Let 𝑣 be aany unit-length eigenvector associated with the largest modulus eigenvalue; then for
any consistent matrix norm,

‖𝐴‖ ≥ ‖𝐴𝑣‖ = ‖𝜆𝑣‖ = |𝜆| = 𝜌(𝐴).

Therefore, the spectral radius is bounded from above by any consistent matrix norm. Conversely,
at least in a finite-dimensional space, for any 𝜖 > 0 there exists a vector space norm such that
the associated operator norm satisfies

𝜌(𝐴) ≤ ‖𝐴‖ ≤ 𝜌(𝐴) + 𝜖.

We can actually get equality if no maximal modulus eigenvalue is associated with a nontrivial
Jordan block.

Many spectral invariants are expressed via the characteristic polynomial

𝑝(𝑧) =
𝑛

∏
𝑖=1

(𝑧 − 𝜆𝑖)

where the 𝜆𝑖 are the eigenvalues of the operator (with multiplicity). Written in the monomial
basis, the characteristic polynomial is

𝑝(𝑧) = 𝑧𝑛 − (∑
𝑖

𝜆𝑖) 𝑧𝑛−1 + … + (−1)𝑛 ∏
𝑖

𝜆𝑖 (2.24)

= 𝑧𝑛 − tr(𝐴) + … + (−1)𝑛 det(𝐴). (2.25)

The coefficients of the characteristic polynomial are symmetric polynomials of the eigenvalues
(i.e. polynomials of 𝑛 variables that are invariant under permutation of the inputs). By far
the most important of these are the trace tr(𝐴) and the determinant det(𝐴). Because the
eigenvalues of 𝑧𝐼 − 𝐴 are equal to 𝑧 − 𝜆𝑖, we can also write the characteristic polynomial in
terms of the determinant, i.e. 𝑝(𝑧) = det(𝑧𝐼 − 𝐴).

The trace and the determinant have a variety of useful properties. The trace is a linear function
of the entries of the matrix representation, and can be written as the diagonal sum, i.e.

tr(𝐴) = ∑
𝑖

𝑎𝑖𝑖.

When the dimensions make sense, the trace is invariant under cyclic permutations of matrix
products; that is, if 𝐴 ∈ ℂ𝑚×𝑛, 𝐵 ∈ ℂ𝑛×𝑝, 𝐶 ∈ ℂ𝑝×𝑚, we have

tr(𝐴𝐵𝐶) = ∑
𝑖,𝑗,𝑘

𝑎𝑖𝑗𝑏𝑗𝑘𝑐𝑘𝑖 = ∑
𝑖,𝑗,𝑘

𝑐𝑘𝑖𝑎𝑖𝑗𝑏𝑗𝑘 = tr(𝐶𝐴𝐵)

and similarly tr(𝐴𝐵𝐶) = tr(𝐵𝐶𝐴). On the matrix space ℂ𝑚×𝑛, we can define Frobenius inner
product (the analogue of the standard inner product) in terms of the trace:

⟨𝑋, 𝑌 ⟩𝐹 = ∑
𝑖,𝑗

𝑥𝑖𝑗𝑦∗
𝑖𝑗 = tr(𝑌 ∗𝑋) = tr(𝑋𝑌 ∗).
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The determinant is not linear, but it is a homomorphism from operators to the complex
numbers, i.e. det(𝐴𝐵) = det(𝐴) det(𝐵) and det(𝐼) = 1. The determinant also satisfies
det(𝐴∗) = det(𝐴)∗. Like the trace, the determinant can be written in terms of the entries
of the matrix representation without direct reference to the eigenvalues. Perhaps the most
common way that determinants are taught in introductory classes is with the Laplace formula
(or cofactor expansion)

det(𝐴) = ∑
𝑖

(−1)𝑖+1𝑎1𝑖𝑚1𝑖

where 𝑚1𝑖 is the determinant of the 𝑖th minor (the matrix with column 1 and row 𝑖 removed).
Unfortunately, naively using the Laplace formula to compute derivatives yields an 𝑂(𝑛!) time
algorithm, and alternate methods are usually used for 𝑛 larger than two or three.

Using the Laplace expansion, we find that the determinant of an upper triangular matrix 𝑈
(in which all subdiagonal elements are zero) is equal to the product of the diagonal entries,
i.e. det(𝑈) = ∏𝑛

𝑗=1 𝑢𝑗𝑗. The determinant of a lower triangular matrix is similarly the product
of the diagonal entries. Using these facts, we generally compute determinants12 by factoring
the matrix as a product of triangular or unitary matrices. Geometrically, these factorizations
correspond to using volume-preserving transformations (shear transforms or rotations) to
transform a parallelipiped defined by the columns of 𝐴 into an axis-aligned parallelipiped where
we can apply the generalization of “base times width times height” formulas from high school
geometry.

12Determinants are used to represent (signed) volumes, and it is appropriate to compute them in settings like the
change of variables formula for integration, or for transformation of probability distribution functions. Most
other applications of determinants from linear algebra (Cramer’s rule for solving linear systems, computation
of determinants to check for singularity, etc) are best avoided for numerical computation – they lead to
algorithms that are inefficient, unstable, or both.
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3 Calculus, Optimization, Analysis

I assume no refresher is needed for most single-variable calculus. But it is useful to have
some facts about multi-variable calculus and a few results from mathematical analysis at hand
when designing and analyzing numerical methods, and the reader may be forgiven for not
remembering all of this in the notation that I find most comfortable.

3.1 Multivariate differentiation

A function 𝑓 ∶ ℝ𝑛 → ℝ𝑚 as a directional derivative (sometimes called a Gateaux derivative) at
𝑥 in the direction 𝑢 if 𝑔(𝑠) = 𝑓(𝑥 + 𝑠𝑢) is differentiable at 𝑠 = 0. In this case, we define the
directional derivative

𝜕𝑓
𝜕𝑢

(𝑥) = 𝑑
𝑑𝑠

∣
𝑠=0

𝑓(𝑥 + 𝑠𝑢).

A function is Frechet differentiable if there is a linear function 𝑓 ′(𝑥) ∶ ℝ𝑛 → ℝ𝑚, called the
Frechet derivative or the Jacobian, such that for any direction 𝑢

𝑓(𝑥 + 𝑠𝑢) = 𝑓(𝑥) + 𝑠𝑓 ′(𝑥)𝑢 + 𝑟(𝑠),

where the remainder term 𝑟(𝑠) is 𝑜(𝑠), i.e. 𝑟(𝑠)/𝑠 → 0 as 𝑠 → 0. A Frechet differentiable
function clearly also has Gateaux derivatives in every direction, with

𝜕𝑓
𝜕𝑢

(𝑥) = 𝑓 ′(𝑥)𝑢.

If we assume an inner product, the gradient ∇𝑓(𝑥) is the unique vector such that

⟨𝑢, ∇𝑓(𝑥)⟩ = 𝑓 ′(𝑥)𝑢.

For ℂ𝑛 with the standard inner product, the gradient is just the conjugate transpose of the
derivative, but other inner products give other notions of gradients. The negative gradient
vector gives the direction of steepest descent with respect to the norm associated with the inner
product. In some cases, it is also interesting to consider the direction of steepest descent the
respect to other norms than Euclidean norms – e.g. the 1-norm.

The Frechet derivative of a function 𝑓 may itself be Frechet differentiable. That is, we may have
a linear function 𝑓″(𝑥) ∶ ℝ𝑛 → ℝ𝑛×𝑚 such that 𝑓 ′(𝑥 + 𝑠𝑢) = 𝑓 ′(𝑥) + 𝑠𝑓 ′(𝑥)𝑢 + 𝑜(𝑠). Rather
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than thinking of this as a linear map that produces linear maps, we generally think of 𝑓″(𝑥) as
a multilinear map that takes two vectors in ℝ𝑛 as input and yields a vector in ℝ𝑚 as output. If
𝑢 and 𝑣 are the input arguments, we can write the components of the output of this map as

(𝑓″(𝑥)[𝑢, 𝑣])𝑖 = ∑
𝑗,𝑘

𝑓𝑖,𝑗𝑘𝑢𝑗𝑣𝑘,

where we use the compact “indicial notation”

𝑓𝑖,𝑗𝑘 ≡ 𝜕2𝑓𝑖
𝜕𝑥𝑗𝜕𝑥𝑘

(𝑥).

When the partials are continuous near 𝑥, they commute, i.e. 𝑓𝑖,𝑗𝑘 = 𝑓𝑖,𝑘𝑗. It is sometimes
convenient to adopt the Einstein summation convention where we assume that repeated indices
in a product are meant to be summed, and drop the explicit symbol ∑𝑖,𝑗. For a function
𝜙 ∶ ℝ𝑛 → ℝ, the Hessian is the matrix 𝐻𝜙 of second partial derivatives [𝐻𝜙]𝑖𝑗 = 𝜙,𝑖𝑗. The
Hessian matrix is symmetric (or Hermitian, in the complex case) and naturally represents a
quadratic form.

A nice notational convention, sometimes called variational notation (as in “calculus of varia-
tions”) is to write

𝛿𝑓 = 𝑓 ′(𝑥)𝛿𝑢,

where 𝛿 should be interpreted as “first order change in,” so that a symbol like 𝛿𝑢 is interpreted
as a single object rather than a product of a scalar 𝛿 and the direction 𝑢. In introductory
calculus classes, this sometimes is called a total derivative or total differential, though there one
usually uses 𝑑 rather than 𝛿. There is a good reason for using 𝛿 in the calculus of variations,
though, so that’s typically what I do.

Chain rule

The chain rule tells us we can interchange linearization and composition of functions. If
𝑓 ∶ ℝ𝑛 → ℝ𝑚 and 𝑔 ∶ ℝ𝑝 → ℝ𝑛, then near a given 𝑦 = 𝑔(𝑥) and 𝑧 = 𝑓(𝑦) we have

𝑓(𝑔(𝑥 + 𝑠𝑢)) = 𝑓(𝑦 + 𝑠𝑔′(𝑥)𝑢 + 𝑜(𝑠)) (3.1)
= 𝑧 + 𝑠𝑓 ′(𝑦)𝑔′(𝑥)𝑢 + 𝑜(𝑠). (3.2)

Using variational notation,
𝛿𝑧 = 𝑓 ′(𝑦)𝛿𝑦, 𝛿𝑦 = 𝑔′(𝑥)𝛿𝑥.

or, putting things together,
𝛿𝑧 = 𝑓 ′(𝑦)𝑔′(𝑥)𝛿𝑥.

When we evaluate the composite function, the dependency between them means we generally
first compute 𝑥, then 𝑦, then 𝑧. But associativity makes it easy to also reorder the expression
as

𝛿𝑧 = (𝑓 ′(𝑦)𝑔′(𝑥)) 𝛿𝑥,
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i.e. we can compute the matrix 𝑓 ′(𝑦)𝑔′(𝑥) first, and then multiply by 𝛿𝑥. Because this
association proceeds “backwards” from the outputs to the inputs, it is sometimes called
“backpropagation.”

Another way of writing the same equation is to think of computing the gradient (in the standard
inner product):

𝛿𝑧 = ⟨𝛿𝑥, ∇(𝑓 ∘ 𝑔)⟩

where
∇𝑥(𝑓 ∘ 𝑔) = (𝑓 ′(𝑦)𝑔′(𝑥))𝑇 = 𝑔′(𝑥)𝑇𝑓 ′(𝑦)𝑇 = ∇𝑔(𝑥)∇𝑓(𝑦).

Implicit functions

Suppose 𝐹 ∶ ℝ𝑛 × ℝ𝑚 → ℝ𝑛 is continuously differentiable, and write the Jacobian in block form
as

𝐹 ′(𝑥, 𝑦) = [𝜕𝐹
𝜕𝑥

𝜕𝐹
𝜕𝑦 ] .

The implicit function theorem tells us that if 𝐹(𝑥0, 𝑦0) = 0 and 𝜕𝐹/𝜕𝑢 is nonsingular at (𝑥0, 𝑦0),
then in a neighborhood Ω containing 𝑦0 we can locally define a continuously differentiable
function 𝑔 ∶ ℝ𝑚 → ℝ𝑛 such that

𝑥0 = 𝑔(𝑦0) and 𝐹(𝑔(𝑦), 𝑦) = 0.

As long as it is defined, we can differentiate such a 𝑔 using the chain rule. For conciseness,
write 𝑢 = (𝑔(𝑦), 𝑦); then

𝜕𝐹
𝜕𝑥

(𝑢)𝑔′(𝑦) + 𝜕𝐹
𝜕𝑦

(𝑢) = 0,

and so

𝑔′(𝑦) = − (𝜕𝐹
𝜕𝑥

(𝑢))
−1

(𝜕𝐹
𝜕𝑦

(𝑢)) .

In variational notation, we would usually say that if 𝑥 = 𝑔(𝑦), we have the variational relation

𝜕𝐹
𝜕𝑥

𝛿𝑥 + 𝜕𝐹
𝜕𝑦

𝛿𝑦 = 0.

This variational notation often simplifies life, particularly if the arguments to 𝐹 are really
matrices.

As an example of using variational notation to represent differentiation of an implicit function,
consider the problem of differentiating 𝐴−1 with respect to every element of 𝐴. I would compute
this by thinking of the relation between a first-order change to 𝐴−1 (written 𝛿[𝐴−1]) and a
corresponding first-order change to 𝐴 (written 𝛿𝐴). Using the product rule and differentiating
the relation 𝐼 = 𝐴−1𝐴, we have

0 = 𝛿[𝐴−1𝐴] = 𝛿[𝐴−1]𝐴 + 𝐴−1𝛿𝐴.
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Rearranging a bit gives
𝛿[𝐴−1] = −𝐴−1[𝛿𝐴]𝐴−1.

One can do this computation element by element, but it’s harder to do it without the compu-
tation becoming horrible.

3.2 Taylor approximation

Single variable

If 𝑓 ∶ ℝ → ℝ is differentiable, then by the fundamental theorem of calculus, we have

𝑓(𝑥 + 𝑧) = 𝑓(𝑥) + ∫
𝑧

0
𝑓 ′(𝑠) 𝑑𝑠.

With two derivatives, we can integrate again to get

𝑓(𝑥 + 𝑧) = 𝑓(𝑥) + ∫
𝑧

0
(𝑓 ′(𝑥) + ∫

𝑠

0
𝑓″(𝑥 + 𝑡) 𝑑𝑡) 𝑑𝑠 (3.3)

= 𝑓(𝑥) + 𝑓 ′(𝑥)𝑧 + ∫
𝑧

0
∫

𝑠1

0
𝑓″(𝑥 + 𝑠2) 𝑑𝑠2 𝑑𝑠1 (3.4)

Continuing in this manner, for a 𝑘 + 1-times differentiable function, we have

𝑓(𝑥 + 𝑧) =
𝑘

∑
𝑗=0

1
𝑗!

𝑓 (𝑗)𝑧𝑗 + 𝑟(𝑧)

where
𝑟(𝑧) = ∫

𝑧

0
∫

𝑠1

0
… ∫

𝑠𝑘

0
𝑓 (𝑘+1)(𝑥 + 𝑠𝑘+1) 𝑑𝑠𝑘+1 … 𝑑𝑠2 𝑑𝑠1.

If 𝑓 has 𝑘 + 1 continuous derivatives (i.e. 𝑓 ∈ 𝐶𝑘+1), then we can apply the mean value theorem
to write the remainder as

𝑟(𝑧) = 1
(𝑘 + 1)!

𝑓 (𝑘+1)(𝑥 + 𝜉)𝑧𝑘+1

for some 𝜉 ∈ [𝑥, 𝑥 + 𝑧]; this is the Lagrange form of the remainder. Often, we do not care about
writing an exact formula for the remainder, and we will simply write

𝑟(𝑧) = 𝑜(𝑧𝑘)

if we are not assuming continuity of the 𝑘 + 1 derivative, or

𝑟(𝑧) = 𝑂(𝑧𝑘+1)

if we do assume continuity. Here we use little 𝑜 and big 𝑂 in the order notation sense:
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• 𝑟(𝑧) = 𝑜(𝑔(𝑧)) if for any 𝐶 > 0 there is an 𝜖 > 0 such that for all |𝑧| < 𝜖, |𝑟(𝑧)| ≤ 𝐶𝑔(𝑧).
Put differently, lim|𝑧|→0 𝑟(𝑧)/𝑔(𝑧) = 0.

• 𝑟(𝑧) = 𝑂(𝑔(𝑧)) if there is an 𝜖 > 0 and a constant 𝐶 > 0 such that for all |𝑧| < 𝜖,
|𝑟(𝑧)| ≤ 𝐶𝑔(𝑧).

We most frequently work with simple linear approximations, i.e.

𝑓(𝑥 + 𝑧) = 𝑓(𝑥) + 𝑓 ′(𝑥)𝑧 + 𝑂(𝑧2),

though sometimes we will work with the quadratic approximation

𝑓(𝑥 + 𝑧) = 𝑓(𝑥) + 𝑓 ′(𝑥)𝑧 + 1
2

𝑓″(𝑥)𝑧2 + 𝑂(𝑧3).

Multivariable case

In more than one space dimension, the basic picture of Taylor’s theorem remains the same. If
𝑓 ∶ ℝ𝑛 → ℝ𝑚, then

𝑓(𝑥 + 𝑧) = 𝑓(𝑥) + 𝑓 ′(𝑥)𝑧 + 𝑂(‖𝑧‖2)

where 𝑓 ′(𝑥) ∈ ℝ𝑚×𝑛 is the Jacobian matrix at 𝑥.

If 𝜙 ∶ ℝ𝑛 → ℝ, then

𝜙(𝑥 + 𝑧) = 𝜙(𝑧) + 𝜙′(𝑥)𝑧 + 1
2

𝑧𝑇𝜙″(𝑧)𝑧 + 𝑂(‖𝑧‖3).

The row vector 𝜙′(𝑥) ∈ ℝ1×𝑛 is the derivative of 𝜙. A point at which the derivative is zero is
a stationary point. The Hessian matrix 𝜙″(𝑧) is the matrix of second partial derivatives of 𝜙.
The Hessian represents a quadratic form, and the inertia of the form (the number of positive,
negative, and zero eigenvalues) can sometimes be used to tell us if a stationary point represents
a local minimum or maximum (the so-called second derivative test).

Low-order Taylor expansions of multivariate functions are notationally nice, and we will rarely
need to go beyond them. In the case that we do need to go further, we will use indicial notation
with the summation convention, e.g.

𝑓𝑖(𝑥 + 𝑢) = 𝑓𝑖(𝑥) + 𝑓𝑖,𝑗(𝑥)𝑢𝑗 + 1
2

𝑓𝑖,𝑗𝑘(𝑥)𝑢𝑗𝑢𝑘 + 1
6

𝑓𝑖,𝑗𝑘𝑙(𝑥)𝑢𝑗𝑢𝑘𝑢𝑙 + … .

Finite differencing

Suppose 𝑓 ∶ ℝ𝑛 → ℝ𝑚 is twice continuously differentiable. Then taking the Taylor expansion
with remainder

𝑓 ′(𝑥 + ℎ𝑢) = 𝑓 ′(𝑥) + ℎ𝑓 ′(𝑥)𝑢 + ℎ2

2
𝑓″(𝑥 + 𝜉𝑢)[𝑢, 𝑢],
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we have that
𝑓(𝑥 + ℎ𝑢) − 𝑓(𝑥)

ℎ
= 𝑓 ′(𝑥)𝑢 + ℎ

2
𝑓″(𝑥 + 𝜉𝑢)[𝑢, 𝑢] = 𝑓 ′(𝑥) + 𝑂(ℎ).

Therefore, we can approximate 𝑓 ′(𝑥)𝑢 by a finite difference. We can also use a centered finite
difference for higher order accuracy (assuming continuous third derivatives):

𝑓(𝑥 + ℎ𝑢) − 𝑓(𝑥 − ℎ𝑢)
2ℎ

= 𝑓 ′(𝑥) + ℎ2

6
𝑓‴(𝑥 + 𝜉𝑢)[𝑢, 𝑢, 𝑢] = 𝑓 ′(𝑥) + 𝑂(ℎ2).

Among other things, finite difference approximations are extremely useful when we want to
sanity check an analytical formula for a derivative.

Matrix series

Let 𝑓 ∶ ℂ → ℂ be represented near 0 by a power series

𝑓(𝑧) =
∞

∑
𝑗=0

𝑐𝑗𝑧𝑗,

and suppose that the series converges absolutely for |𝑧| < 𝜌𝑓. Let 𝐴 ∈ ℂ𝑛×𝑛 be a matrix such
that for some consistent norm, ‖𝐴‖ < 𝜌𝑓. By consistency of norms, for all 𝑗 ≥ 0,

‖𝐴𝑗‖ ≤ ‖𝐴‖𝑗,

and together with the triangle inequality, we have

∥
𝑛

∑
𝑗=𝑚

𝑐𝑗𝐴𝑗∥ ≤
𝑛

∑
𝑗=𝑚

|𝑐𝑗|‖𝐴‖𝑗.

Therefore, the partial sums of ∑∞
𝑗=0 𝑐𝑗𝐴𝑗 form a Cauchy sequence in the matrix space, and

must converge to some limit 𝑓(𝐴), with the bound

‖𝑓(𝐴)‖ ≤
∞

∑
𝑗=0

|𝑐𝑗|‖𝐴‖𝑗.

More broadly, if 𝑓 converges in an open set containing all the eigenvalues, then 𝑓(𝐴) converges.

Neumann series

We don’t need to remember a library of Taylor expansions, but it is useful to remember that
for real |𝛼| < 1, we have the geometric series

∞
∑
𝑗=0

𝛼𝑗 = (1 − 𝛼)−1.
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One of the most important matrix series is the Neumann series, which is the matrix gener-
alization of the geometric series. If ‖𝐴‖ < 1, then 𝐼 − 𝐴 is invertible and has the convergent
Neumann series

(𝐼 − 𝐴)−1 =
∞

∑
𝑗=0

𝐴𝑗.

Using the norm bounds described above, along with convergence of the Neumann series, we
have

‖(𝐼 − 𝐴)−1‖ ≤
∞

∑
𝑗=0

‖𝐴‖𝑗 = (1 − ‖𝐴‖)−1 .

3.3 Optimization

Derivative tests

Suppose 𝜙 ∶ ℝ𝑛 → ℝ is differentiable at 𝑥. Then

𝜙(𝑥 + 𝑠∇𝜙(𝑥)) = 𝜙(𝑥) + 𝑠‖𝜙′(𝑥)‖2 + 𝑟(𝑠), 𝑟(𝑠) = 𝑜(𝑠).

If 𝜙′(𝑥) is nonzero, then there is some 𝜖 > 0 so that for all 0 < 𝑠 < 𝜖,

𝜙(𝑥 − 𝑠∇𝜙(𝑥)) < 𝜙(𝑥) < 𝜙(𝑥 + 𝑠∇𝜙(𝑥)).

Hence, if 𝜙′(𝑥) is nonzero, then 𝑥 cannot be either a local minimizer or a local maximizer of 𝜙.
Taking the contrapositive: if 𝜙 is Frechet differentiable on all of ℝ𝑛, any local minimizer or
maximizer must occur at a stationary point, i.e. a point where the derivative is zero.

Suppose 𝜙 is twice differentiable near 𝑥, and that 𝑥 is a stationary point (so 𝜙(𝑥) = 0). Then

𝜙(𝑥 + 𝑢) = 𝜙(𝑥) + 1
2

𝑢𝑇𝜙″(𝑥)𝑢 + 𝑜(𝑠2).

Hence, near 𝑥 the dominant term in the Taylor expansion is the quadratic form associated with
the Hessian 𝜙″(𝑥). Analyzing the Hessian gives us the second derivative test:

• When the Hessian is positive definite, the quadratic term is positive for 𝑢 ≠ 0, and so the
stationary point is a strong local minimum.

• When the Hessian is negative definite, the quadratic term is negative for 𝑢 ≠ 0, and so
the stationary point is a strong local minimum.

• When the Hessian has both positive and negative eigenvalues (directions of positive and
negative curvature), the stationary point is neither a maximum nor a minimum, but a
saddle point.

• When the Hessian is positive semidefinite or negative semidefinite, it could be a local
minimum or a local maximum – but one needs to check higher order derivatives to be
sure.
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Equality constraints

Now suppose we want to minimize 𝜙 ∶ ℝ𝑛 → ℝ over Ω ⊂ ℝ𝑛 defined by equality constraints:

Ω = {𝑥 ∈ ℝ𝑛 ∶ ∀𝑖 ∈ [𝑚], 𝑐𝑖(𝑥) = 0}.

for some 𝑐 ∶ ℝ𝑛 → ℝ𝑚. We assume both 𝜙 and 𝑐 are continuously differentiable.

If 𝑐′(𝑥) is full (row) rank, then there is an (𝑛 − 𝑚)-dimensional space of tangent directions
to Ω at 𝑥, given by {𝛿𝑥 ∶ 𝑐′(𝑥)𝛿𝑥 = 0}. The point 𝑥 cannot be a minimum or maximum if
it obviously increases or decreases in one of these tangent directions; that is, a first-order
necessary condition for 𝑥 to be an extremum is that

𝑐′(𝑥)𝛿𝑥 = 0 ⟹ 𝜙′(𝑥)𝛿𝑥 = 0.

The row vectors of 𝑐′(𝑥) form a basis for all row vectors that satisfy this condition. That is, in
order for 𝜙′(𝑥) to satisfy the condition, we must be able to uniquely write 𝜙′(𝑥) as a linear
combination of the row vectors of 𝑐′(𝑥). Put differently, we require the (unique) coefficients 𝜆
so that

𝜙′(𝑥) +
𝑚

∑
𝑖=1

𝜆𝑖𝑐′
𝑖(𝑥) = 𝜙′(𝑥) + 𝜆𝑇𝑐′(𝑥) = 0.

The coefficients 𝜆𝑖 are known as Lagrange multipliers, and we can interpret this linear combi-
nation as the gradient of the Lagrangian function

𝐿(𝑥, 𝜆) = 𝜙(𝑥) + 𝜆𝑇𝑐(𝑥).

The stationarity of the Lagrangian gives us the analogue of the first derivative test in the
uncase. The analogue of the second derivative test looks at the quadratic form associated with
the Hessian 𝜙″ in directions that are consistent with the constraints. That is, suppose 𝑥∗ is
a stationary point for the Lagrangian with full rank 𝑐′(𝑥∗), and let 𝑈 be a basis for the null
space of 𝑐′(𝑥∗). Then

• We have a strong local minimum if 𝑈∗𝜙″(𝑥∗)𝑈 is positive definite.
• We have a strong local maximum if 𝑈 ∗𝜙″(𝑥∗)𝑈 is negative definite.
• We have a saddle if 𝑈 ∗𝜙″(𝑥∗)𝑈 is indefinite.

As before, we need to consider higher derivatives if we want to diagnose the case where
𝑈∗𝜙″(𝑥∗)𝑈 is positive or negative semidefinite.

Working with an explicit null space basis is often inconvenient, particularly for high-dimensional
problems with a small number of constraints. In this case, an alternate form of the second
derivative test involves looking at the bordered matrix which has the block form

𝐻 = [𝜙″(𝑥∗) 𝑐′(𝑥∗)𝑇

𝑐′(𝑥) 0 ] .

In this setting, the matrix 𝐻 is always indefinite, but we can write a version of the second
derivative test in terms of the inertia:
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• We have a strong local minimum if 𝐻 has 𝑛 − 𝑚 positive eigenvalues.
• We have a strong local maximum if 𝐻 has 𝑛 − 𝑚 negative eigenvalues.
• We have a saddle point if 𝐻 has at fewer than 𝑛 − 𝑚 positive eigenvalues and fewer than

𝑛 − 𝑚 negative eigenvalues.

KKT conditions

Now suppose that we seek to optimize 𝜙 ∶ Ω → ℝ where Ω is defined by equality and inequality
constraints:

Ω = {𝑥 ∈ ℝ𝑛 ∶ 𝑐𝑖(𝑥) = 0, 𝑖 ∈ ℰ and 𝑐𝑖(𝑥) ≤ 0, 𝑖 ∈ ℐ},

where ℰ and ℐ are index sets associated with equality and inequality constraints, respectively.
Now we define the augmented Lagrangian

𝐿(𝑥, 𝜆, 𝜇) = 𝜙(𝑥) + ∑
𝑖∈ℰ

𝜆𝑖𝑐𝑖(𝑥) + ∑
𝑖∈ℐ

𝜇𝑖𝑐𝑖(𝑥).

The Karush-Kuhn-Tucker (KKT) conditions are first-order conditions for 𝑥∗ to be a constrained
minimizer or maximizer:

∇𝑥𝐿(𝑥∗) = 0
𝑐𝑖(𝑥∗) = 0, 𝑖 ∈ ℰ equality constraints
𝑐𝑖(𝑥∗) ≤ 0, 𝑖 ∈ ℐ inequality constraints

𝜇𝑖 ≥ 0, 𝑖 ∈ ℐ non-negativity of multipliers
𝑐𝑖(𝑥∗)𝜇𝑖 = 0, 𝑖 ∈ ℐ complementary slackness

The satisfaction of the equality and inequality constraints is also called primal feasibility,
while the satisfaction of the non-negativity of the multipliers is called dual feasibility. We
say an inequality constraint is active when the associated inequality is actually zero. As with
the equality-constrained case, we need a condition on the constraints to avoid degeneracy,
sometimes called a constraint qualification condition. The most frequently used constraint
qualification condition is that the gradient of the active constraint terms should be linearly
independent (sometimes known as LICQ: Linearly Independent Constraint Qualification).

The second derivative test in the inequality constrained case is basically the same as the test in
the equality constrained case.

Physical interpretation

A physical picture is often a useful device for remembering the stationarity conditions for
optimization problems. In the unconstrained case, we can think about solving a minimization
problem by rolling a tiny ball down hill until it came to rest. If we wanted to solve a constrained
minimization problem, we could build a wall between the feasible and the infeasible region.
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A ball rolling into the wall can roll freely in directions tangent to the wall (or away from the
wall) if those directions were downhill; at a constrained miminizer, the force pulling the ball
downhill is perfectly balanced against an opposing force pushing into the feasible region in the
direction of the normal to the wall. If the feasible region is {𝑥 ∶ 𝑐(𝑥) ≤ 0}, the normal direction
pointing inward at a boundary point 𝑥∗ s.t.~𝑐(𝑥∗) = 0 is proportional to −∇𝑐(𝑥∗). Hence, if
𝑥∗ is a constrained minimum, we expect the sum of the “rolling downhill’ ’ force (−∇𝜙) and
something proportional to −∇𝑐(𝑥∗) to be zero:

−∇𝜙(𝑥∗) − 𝜇∇𝑐(𝑥∗) = 0.

The Lagrange multiplier 𝜇 in this picture represents the magnitude of the restoring force from
the wall balancing the tendency to roll downhill.

Convexity

A function 𝜙 ∶ ℝ𝑛 → ℝ is convex if for any distinct 𝑥, 𝑦 ∈ ℝ𝑛 and for all 𝛼 ∈ (0, 1)

𝜙 (𝛼𝑥 + (1 − 𝛼)𝑦) ≥ 𝛼𝜙(𝑥) + (1 − 𝛼)𝜙(𝑦).

We say 𝜙 is strictly convex if the inequality is strict.

A subset Ω ⊂ ℝ𝑛 (or, more generally, a subset of a vector space) is said to be convex if for any
𝑥, 𝑦 ∈ Ω and all 𝛼 ∈ (0, 1), the points 𝛼𝑥 + (1 − 𝛼)𝑦 lie in Ω. We say Ω is strictly convex if
the points 𝛼𝑥 + (1 − 𝛼)𝑦 lie in the interior of Ω. Convex sets are closed under intersection and
direct sum.

The definition of a convex set is arguably fundamental than the notion of a convex function,
as we often express arguments about the latter in terms of the former via the epigraph of the
function.
The epigraph (or supergraph of a function 𝜙 ∶ ℝ𝑛 → ℝ is the set on or above the graph of 𝑝ℎ𝑖,
i.e.

epi(𝜙) = {(𝑥, 𝑦) ∈ ℝ𝑛 × ℝ ∶ 𝑦 ≥ 𝑓(𝑥)}.

A function 𝜙 is convex iff the epigraph is a convex set.

If Ω is a convex set and 𝑥 ∈ Ω is a boundary point, then there is a supporting hyperplane at 𝑥
defined by a functional 𝑤∗ such that 𝑦 ∈ Ω ⟹ 𝑤∗(𝑦 − 𝑥) ≥ 0. In the case of a strictly convex
set, the equality can only hold when 𝑦 = 𝑥. For functions 𝜙, this means that there is some
dual vector 𝑤 such that for all 𝑧,

𝜙(𝑥 + 𝑧) ≥ 𝜙(𝑥) + 𝑤∗𝑧,

and for a strictly convex function, equality only holds when 𝑧 = 0. When 𝜙 is differentiable,
𝑤∗ = 𝜙′(𝑥). At points where 𝜙 is not differentiable, there will often be several possible choices
for 𝑤. The collection of such choices makes up the subgradient at 𝑥. For convex functions, we
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generalize the notion of a stationary point to mean “point 𝑥 at which the subgradient contains
zero, i.e. 𝜙(𝑥 + 𝑧) ≥ 𝜙(𝑥).”

Convex functions are particularly nice for optimization. A convex function does not need to
have a minimum or a maximum on a convex set (for example the exponential function on the
real line has neither). But if 𝜙 is convex and we consider optimization over a conves set Ω,
then

• an interior point is a minimizer iff it is a stationary point;
• all minimizers are global minimizers;
• the set of all minimizers is convex;

If 𝜙 is strictly convex, then there is at most one global minimizer.

For functions that are twice differentiable, convexity just means that the Hessian matrix is
positive semidefinite everywhere. But many important nonsmooth functions are also convex.
For example, norms must be convex, but cannot be differentiable.

3.4 Metric spaces

A metric space is a set Ω together with a distance function (or metric) 𝑑 satisfying for all
𝑥, 𝑦, 𝑧 ∈ Ω

• Symmetry: 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)
• Positive definiteness: 𝑑(𝑥, 𝑦) ≥ 0 with equality iff 𝑥 = 𝑦
• Triangle inequality: 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦)

Any normed vector space is also a metric space with the norm 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖. Also, any
subset of a metric space is a metric space. The topology associated with a metric space is
analogous to that of the reals: a subset 𝒰 ⊂ Ω is open if for any 𝑥 ∈ 𝒰 there is an 𝜖 > 0 such
that the ball 𝐵𝜖(𝑢) = {𝑣 ∈ Ω ∶ 𝑑(𝑣, 𝑢) < 𝜖} is contained within 𝒰.

A Cauchy sequence in a metric space is a sequence 𝑥1, 𝑥2, … such that for any 𝜖 > 0, points
far enough out in the sequence are all within 𝜖 of each other (i.e. ∀𝜖 > 0, ∃𝑁 ∶ ∀𝑗, 𝑘 ≥
𝑁, 𝑑(𝑥𝑗, 𝑥𝑘) < 𝜖). A metric space is complete if all Cauchy sequences converge. Any closed
subset of a complete metric space is itself complete.

A complete normed vector space is called a Banach space. Any finite-dimensional normed
vector space over a complete field like ℝ or ℂ is a Banach space. nfinite-dimensional normed
vector spaces over ℝ or ℂ do not always need to be complete, but most infinite-dimensional
normed vector spaces we use regularly are complete.

The metric space Ω is compact if any open cover of Ω has a finite subcover. In the case of
finite-dimensional normed vector spaces, any closed and bounded subset is compact (this is not
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true in infinite-dimensional normed vector spaces). One reason we care about compactness is
that any continuous function on a compact set achieves a minimum an maximum value.

3.5 Lipschitz constants

Suppose 𝑓 ∶ Ω ⊂ 𝒰 → 𝒱 is a map between metric spaces. We say 𝑓 is Lipschitz with constant
𝑀 if for all 𝑥, 𝑦 ∈ Ω,

𝑑(𝑓(𝑥), 𝑓(𝑦)) ≤ 𝑀𝑑(𝑥, 𝑦).

The concept of Lipschitz continuity is broadly useful in analysis.

If 𝒰 and 𝒱 are normed vector spaces and 𝑓 is continuously differentiable on Ω, any bound on
‖𝑓 ′(𝑥)‖ over Ω is a Lipschitz constant (and the tightest Lipschitz constant is sup𝑥∈Ω ‖𝑓 ′(𝑥)‖).
But a function can easily be Lipschitz even if it is not differentiable; for example, the absolute
value function on ℝ is Lipschitz with constant 1.

Having a Lipschitz constant is not as nice as having a derivative. However, we get some of the
same nice properties For example, if 𝑓 and 𝑔 are Lipschitz functions with constants 𝑀 and 𝑁
and the composition 𝑓 ∘ 𝑔 makes sense, then 𝑓 ∘ 𝑔 is Lipschitz with constant 𝑀𝑁. If 𝑓 + 𝑔 makes
sense, then it is Lipschitz with constant 𝑀 + 𝑁. If 𝑓 and 𝑔 are Lipschits and bounded and
the product ⟨𝑓, 𝑔⟩ makes sense, then ⟨𝑓, 𝑔⟩ is Lipschitz with constant 𝑀 max ‖𝑔‖ + 𝑁 max ‖𝑓‖.
And if 𝑓 is 𝑘-times continuously differentiable and the 𝑘th derivative has Lipschitz constant 𝑀,
then we have that the residual error in Taylor approximation through the 𝑘th degree term is
bounded by 𝑀𝑟𝑘+1/(𝑘 + 1)!, where 𝑟 is the distance from the center of the Taylor series.

3.6 Contraction mappings

A contraction mapping 𝐺 ∶ Ω → Ω is a Lipschitz function on a set Ω with constant 𝛼 < 1. We
sat the map 𝐺 is locally contractive near 𝑥 if it is Lipschitz with constant 𝛼 < 1 in some local
neighborhood of 𝑥. Contraction mappings are a useful tool both for showing the existence and
uniqueness of solutions to systems of equations (or optimization problems) and for constructing
algorithms to find such solutions.

Banach fixed point theorem

Assuming Ω is a closed subset of a Banach space1, then 𝐺 has a unique fixed point 𝑥∗ ∈ Ω,
i.e. a unique point such that 𝐺(𝑥∗) = 𝑥∗. This fact is variously called the contraction mapping
theorem and the Banach fixed point theorem. The proof is interesting because it is a construction

1The Banach fixed point theorem applies to any complete metric space. But all the examples in this class will
be closed subsets of Banach spaces, so we will stick to that setting.

49



that can be carried out numerically. Let 𝑥0 ∈ Ω be an arbitrary starting point, and consider
the fixed point iteration 𝑥𝑘+1 = 𝐺(𝑥𝑘). By contractivity,

‖𝑥𝑘+1 − 𝑥𝑘‖ = ‖𝐺(𝑥𝑘) − 𝐺(𝑥𝑘−1)‖ ≤ 𝛼‖𝑥𝑘 − 𝑥𝑘−1‖,

and by induction on this fact,

‖𝑥𝑘+1 − 𝑥𝑘‖ ≤ 𝛼𝑘‖𝑥1 − 𝑥0‖.

For any 𝑙 > 𝑘, we have

‖𝑥𝑙 − 𝑥𝑘‖ = ∥
𝑙−1
∑
𝑗=𝑘

(𝑥𝑗+1 − 𝑥𝑗)∥ (3.5)

≤
𝑙−1
∑
𝑗=𝑘

‖𝑥𝑗+1 − 𝑥𝑗‖ (3.6)

≤
𝑙−1
∑
𝑗=𝑘

𝛼𝑗‖𝑥1 − 𝑥0‖ (3.7)

≤ 𝛼𝑘 ‖𝑥1 − 𝑥0‖
1 − 𝛼

. (3.8)

Therefore, we have a Cauchy sequence that converges to a limit point 𝑥∗, which is the fixed
point. Uniqueness comes from the fact that if 𝑥∗ and 𝑥′

∗ are both fixed points in Ω, then

‖𝑥∗ − 𝑥′
∗‖ = ‖𝐺(𝑥∗) − 𝐺(𝑥′

∗)‖ ≤ 𝛼‖𝑥∗ − 𝑥′
∗‖,

which implies that ‖𝑥∗ − 𝑥′
∗‖ = 0, so 𝑥∗ = 𝑥′

∗. Moreover, at any given step 𝑘, we have the error
bound

‖𝑥𝑘 − 𝑥∗‖ ≤
‖𝑥𝑘+1 − 𝑥𝑘‖

1 − 𝛼
.

Local convergence

Now suppose that 𝐺 has a fixed point 𝑥∗, and ‖𝐺′(𝑥)‖ ≤ 𝛼 < 1 over some closed ball
�̄�𝜌(𝑥∗) = {𝑥 ∶ ‖𝑥 − 𝑥∗‖ ≤ 𝜌}. Then

∀𝑥 ∈ �̄�𝜌(𝑥∗), ‖𝐺(𝑥) − 𝑥∗‖ = ‖𝐺(𝑥) − 𝐺(𝑥∗)‖ ≤ 𝛼‖𝑥 − 𝑥∗‖ < ‖𝑥 − 𝑥∗‖

and so 𝐺 maps the ball into itself. Therefore, 𝐺 is a contraction mapping on �̄�𝜌(𝑥∗), and fixed
point iteration from any starting point in that ball will converge to the unique fixed point 𝑥∗
within the ball.

50



Preventing escape

The contraction mapping theorem is useful both for telling us that a fixed point exists and is
unique, and for giving us an iteration that converges to that fixed point. But sometimes it is
difficult to get global contractivity. If we know a fixed point exists, we have just shown that a
“local” notion of contractivity around that fixed point is enough. But what if we do not have
global contractivity and also are not sure that a fixed point exists? Fortunately, a condition
preventing “escape” from a local region of contractivity is sometimes good enough.

For example, suppose ‖𝐺′(𝑥0)‖ ≤ 𝛼 and 𝐺′ is Lipschitz with constant 𝑀. Consider the fixed
point iteration 𝑥𝑘+1 = 𝐺(𝑥𝑘) starting from 𝑥0, and let 𝑑1 = ‖𝑥1−𝑥0‖. Then if 𝛼′ = 𝛼+𝑀𝑑1 < 1,
we can show

• 𝐺 is Lipschitz with constant 𝛼′ on a ball of radius 𝑑1/(1 − 𝛼′) about 𝑥0.
• By an induction: The iterates satisfy ‖𝑥𝑘 − 𝑥0‖ ≤ 1−(𝛼′)𝑘

1−𝛼′ 𝑑1 < 𝑑1/(1 − 𝛼′), i.e. the iterates
stay in the ball; and therefore they continue to satisfy ‖𝑥𝑘+1 − 𝑥𝑘‖ ≤ (𝛼′)𝑘𝑑1.

Therefore in this situation as well, the iterates converge to a fixed point that is at most
𝑑1/(1 − 𝛼′) away from the starting point. As with the contractive mapping theorem, this is
enough for us to show that we can show by induction that the iteration remains within a
ball of radius 𝑑1/(1 − 𝛼′) around 𝑥0, that it converges to some 𝑥∗ in that ball, and that the
convergence is geometric with rate constant 𝛼.
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4 Probability Background

Monte Carlo methods involve computations done with the help of random numbers. To reason
about Monte Carlo methods, we need a little background in probability theory. I assume that
you have seen some probability theory before, and that this is just a reminder. If you need a
more thorough refresher, the book by Ross (2014) is a popular introductory text that covers
discrete and continuous problems, but not more general probability measures. Another good
undergraduate text by Chung and AitSahlia (2003) includes a little bit of measure theory.
Good graduate texts include the books by Billingsley (1995) and by Breiman (1992). If you
want a reminder that is more thorough than the one we give here, but less than a full textbook,
the treatment in (Deisenroth, Faisal, and Ong 2020) is a good starting point.

4.1 Probability basics

When we do an experiment, there are a variety of possible outcomes that could result. These
outcomes are described in terms of a sample space 𝑆. An event is a set 𝐴 ⊂ 𝑆.1 A probability
measure is a function 𝑃 mapping events to non-negative real numbers such that 𝑃(𝑆) = 1 and
𝑃(∪∞

𝑖=1𝐴𝑖) = ∑∞
𝑖=1 𝑃(𝐴𝑖) for any countable collection of pairwise disjoint events 𝐴𝑖.

Rather than work directly with the sample space, we usually consider random variables. A
random variable 𝑋 is a function on 𝑆.2 In the name of concise notation, we often suppress the
argument to 𝑋, writing expressions like {𝑋 ∈ 𝐴} to denote {𝑠 ∈ 𝑆 ∶ 𝑋(𝑠) ∈ 𝐴}.

For a discrete random variable, we write

𝑃{𝑋 ∈ 𝐴} = ∑
𝑥∈𝐴

𝑝𝑋(𝑥)

where 𝑝𝑋 is a probability mass function (pmf) which is everywhere between zero and one and
which sums to one when the sum is taken over all possible outcomes. Similarly, for a continuous

1When the sample space is uncountable, we cannot generally define probabilities for arbitrary subsets of 𝑆. We
therefore require events belong to a sigma algebra (also called a Borel field) ℬ; this class of sets must contain
the empty set and be closed under complement and countable union. A set in the sigma algebra is called a
measurable set.

2A random variable 𝑋 ∶ 𝑆 → 𝑇 must be measurable; that is, if 𝐴 is a measurable set in 𝑇, then {𝑋 ∈ 𝐴} =
{𝑠 ∈ 𝑆 ∶ 𝑋(𝑠) ∈ 𝐴} must also be measurable.
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random variable3, we write
𝑃{𝑋 ∈ 𝐴} = ∫

𝐴
𝑓𝑋(𝑥) 𝑑𝑥

where 𝑓𝑋(𝑥) is a probability density function (pdf). When the outcomes are integers or real
numbers, we sometimes also care about the cumulative distribution function (cdf)

𝐹𝑋(𝑥) = 𝑃{𝑋 ≤ 𝑥}

which we can get by summing the mass function or integrating the density function. The
cdf is a monotonically increasing functions with limiting values lim𝑥→−∞ 𝐹𝑋(𝑥) = 0 and
lim𝑥→∞ 𝐹𝑋(𝑥) = 1.

The expected value of a function 𝑔 of a random variable 𝑋 is

𝐸[𝑋] = ∫
Ω

𝑔(𝑥)𝑓𝑋(𝑥) 𝑑𝑥;

in the discrete case, the integral is replaced by a sum. The variance of 𝑋 is

Var[𝑋] = 𝐸[(𝑋 − 𝐸[𝑋])2] = 𝐸[𝑋2] − 𝐸[𝑋]2.

The standard deviation is the square root of the variance, and we can think of it as a measure
of how far, on average, 𝑋 is from its expected value.

Random variables 𝑋 and 𝑌 are independent if for general choices of events 𝐴 and 𝐵 we have
𝑃({𝑋 ∈ 𝐴} ∩ {𝑌 ∈ 𝐵}) = 𝑃{𝑋 ∈ 𝐴} ⋅ 𝑃{𝑌 ∈ 𝐵}. In simple Monte Carlo calculations, we
typically run repeated experiments that are independent and identically distributed (i.i.d.).
If 𝑋1, 𝑋2, … , 𝑋𝑁 are independently drawn from the same distribution (with finite mean and
variance), then by the central limit theorem, the sample mean

�̄� = 1
𝑁

𝑁
∑
𝑗=1

𝑋𝑗

is a random variable that is approximately normal (Gaussian) with mean 𝐸[𝑋] and variance
Var[𝑋]/

√
𝑁.

4.2 The Monte Carlo idea

Monte Carlo methods use random numbers to compute something that is not random. In the
abstract, we write some quantity of interest 𝐴 as

𝐴 = 𝐸𝑓[𝑉 (𝑋)],

3In order to have a probability density function, we technically want an absolutely continuous random variable.
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where 𝑋 is a collection of random variables whose joint distribution is 𝑓 (sometimes written
𝑋 ∼ 𝑓) and 𝑉 (𝑥) is some quantity determined by 𝑋. A Monte Carlo code generates many
samples 𝑋𝑘, 𝑘 = 1, … , 𝑁, from the distribution 𝑓, and then computes the approximate answer

𝐴 ≈ ̂𝐴𝑁 = 1
𝑁

𝑁
∑
𝑘=1

𝑉 (𝑋𝑘).

If the samples 𝑋𝑘 are independent, the error is roughly 𝜎/
√

𝑁, where 𝜎2 = var𝑓(𝑉 (𝑋)) is the
variance of the random variable 𝑉 (𝑋). If we don’t know the variance of 𝑉 (𝑋) analytically
(which is typically the case), we can use the estimate

�̂�2
𝑁 = 1

𝑁 − 1

𝑁
∑
𝑘=1

(𝑉 (𝑋𝑘) − 𝐴)2.

Sometimes we’re sloppy and divide by 𝑁; if 𝑁 is small enough that this makes a significant
data, we ideally should run more experiments! When we approximate 𝐴 by ̂𝐴𝑁, we call �̂�𝑁 an
“error bar”, since it describes a measure of the statistical error in our problem (the radius of a
symmetric 67% confidence interval). The error bars are not the same as error bounds, of course,
but they are useful for reasoning about the order of magnitude of the errors we expect to see.

Because statistical error is 𝑂(1/
√

𝑁), it tends to be very expensive to get high accuracy with
Monte Carlo methods. For some problems, though, particularly those in high dimensions,
Monte Carlo methods are the most practical choice. The basic idea of Monte Carlo is simple, if
expensive; much of the cleverness in Monte Carlo methods goes into variance reduction, which
at least reduces the constant in the 𝑂(1/

√
𝑁) expression. The good side of statistical error is

that it is usually at least possible to estimate its order of magnitude (via error bars).

4.3 Examples

Monte Carlo methods have relatively low accuracy compared to deterministic methods, but
they are particularly useful in a few cases:

1. Some problems are naturally probabilistic, and a Monte Carlo method may be an almost-
direct translation of the problem statement. If we don’t mind low accuracy, this can be a
very effective way to get a feel for the answer before diving into a more exact calculation
(which we might have to spend more time debugging). The standard advice is to only
use Monte Carlo for things that cannot be well managed by deterministic methods; this
sort of exploratory computation might be an exception.

2. The cost of deterministic methods often grows exponentially with the dimension of the
ambient space. This causes a problem when we’re interested in even moderately high
dimensions. For computing integrals in high-dimensional spaces (including the sort of
position-and-direction coordinates we need to describe particles in scattering problems
like the one in HW 3), a Monte Carlo method is often appropriate.
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3. Sometimes we are driven by data, and the data that we have is too huge to process all
at once. Sampling the data by Monte Carlo methods can be a very effective approach
in this case for the same reason it is effective for high-dimensional problems: the cost
depends on the number of samples we draw, and not on the size or dimension of the
underlying thing from which our samples are drawn.

4.4 Random number generation

In order to run Monte Carlo simulations, we need a source of pseudo-random numbers. One
could teach an entire class on how to produce pseudo-random number generators, but we will
simply state that it is a tricky business and you should use a well-designed library routine
for your day-to-day draws of random bits or of numbers that are uniformly distributed in the
interval [0, 1]. In Julia, you can use rand to get such uniformly distributed random samples
(and randn to get samples from a standard normal distribution). For our purposes, we simply
need to know how to turn such uniform sampling procedures into methods to sample from
other distributions. I know a handful of tricks for deriving new samplers; let’s investigate them
by example.

4.4.1 Bernoulli random variables

A Bernoulli random variable generates 1 (success) with probability 𝑝 and 0 (failure) with
probability 1 − 𝑝. In the problem du jour, we implicitly assumed that each question was a
Bernoulli trial with 𝑝 = 0.8. Generating a Bernoulli trial from a uniform sampler is relatively
simple; in Julia, we might write

bernoulli(p) = if rand() < p 1 else 0 end

bernoulli (generic function with 1 method)

Note that 𝑃{𝑈 < 𝑝} = ∫𝑝
0

1 𝑑𝑢 = 𝑝, so this sampler certainly has the right properties. Also
notice that we can compute a vector or matrix of Bernoulli trials simultaneously with one call
to rand, where the arguments give the output size.

4.4.2 Exponential random variables

An exponential random variable with rate parameter 𝜆 has the density function

𝑓(𝑥; 𝜆) = 𝜆𝑒−𝜆𝑥, 𝑥 ≥ 0
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and the cumulative distribution function

𝐹(𝑥; 𝜆) = 1 − 𝑒−𝜆𝑥.

Now, suppose that for a uniform sample 𝑈 we generate 𝑋 to satisfy 𝐹(𝑋; 𝜆) = 𝑈, i.e.

𝑋 = − 1
𝜆

log(1 − 𝑈).

Then
𝑃{𝑋 ≤ 𝑥} = 𝑃{𝐹(𝑋; 𝜆) ≤ 𝐹(𝑥; 𝜆)} = 𝑃{𝑈 ≤ 𝐹(𝑥; 𝜆)} = 𝐹(𝑥; 𝜆).

This inverse transformation trick works whenever we have a simple way to compute a cumulative
distribution function. In this particular case, we might also note that 𝑈 and 1 − 𝑈 have the
same distribution, so we could also use

𝑋′ = − 1
𝜆

log(𝑈).

rand_exp(λ) = -log(rand())/λ

rand_exp (generic function with 1 method)

4.4.3 Sampling from an empirical distribution

Suppose we have a histogram of results from some large number of real-world experiments.
If the outcomes of the experiments are integers in the range from 1 to 𝑚, we can define a
probability mass function where 𝑝(𝑗) is the fraction of the experiments that had outcome 𝑗.
There is a corresponding cumulative distribution function 𝐹(𝑗) = ∑𝑗

𝑖=1 𝑝(𝑗) that goes from
𝐹(0) = 0 to 𝐹(𝑚) = 1. To draw a sample from this distribution, we would again use the
inverse transformation trick: draw 𝑈 uniform between 0 and 1, then choose the smallest 𝑗 such
that 𝐹(𝑗) > 𝑈.

4.4.4 Sampling from the unit disk

Suppose we want to draw (𝑋, 𝑌 ) uniformly at random from the interior of the unit circle. One
way to do this is with polar coordinates: if 𝑈1 and 𝑈2 are uniform on (0, 1), we can generate
Θ = 2𝜋𝑈1 and 𝑅 = √𝑈2 (the cdf for 𝑅 should be 𝐹𝑅(𝑟) = 𝑟2 on [0, 1), so we can use the
inverse transformation trick from above). Then we could compute (𝑋, 𝑌 ) = 𝑅(sin Θ, cos Θ).
But suppose we didn’t know this, or suppose that we’re thinking of the disk as a proxy for
some more complicated set sitting inside the unit square. What other tactics could we use?

One simple idea is rejection sampling. The basic idea is

56



1. Draw a sample from an easy distribution 𝑔. In this case, we might use the uniform
distribution on [−1, 1]2 (i.e. 𝑔(𝑥, 𝑦) = 1/4 on [−1, 1]2 and zero elsewhere).

2. Accept the sample with probability that is a function of the sample values. In this case,
we have

𝑝(𝑥, 𝑦) = {
1, 𝑥2 + 𝑦2 < 1
0, otherwise.

In this case, we accept with probability one if 𝑋2 + 𝑌 2 < 1 and with probability zero
otherwise.

We then keep repeating until acceptance. The probability density associated with the accepted
values is then

𝑓(𝑥, 𝑦) = 1
𝑍

𝑔(𝑥, 𝑦)𝑝(𝑥, 𝑦)

where 𝑍 is some normalization constant chosen so that the acceptance probability is one. In
our case, this gives us a density that is a nonzero constant on the circle and zero elsewhere,
which is what we wanted.

A more geometric way of seeing rejection sampling is that we fit some shape that completely
surrounds the graph of our density function (in this case, that shape is a three-dimensional
box). We then draw uniformly at random from within that shape, and discard the samples
that do not fall under the graph of the density function. The probability that we succeed in
any given trial is equal to the fraction of the area inside the shape that lies underneath the
graph of the density function.

4.4.5 Distribution with an exponential tail

Let’s look at another example of rejection sampling. Suppose I wanted to sample from
𝑓(𝑥) = 𝐶−1𝑔(𝑥)𝑒−𝑥 on [0, ∞), where 𝐶 is some (possibly unknown) normalization constant
and 0 < 𝑔(𝑥) < 𝐺. Then I could compute samples from 𝑓 using the following procedure:

function sample_exp_tail(g, gmax)

p = 0.0

X = 0.0

while rand() > p

X = -log(rand())

p = g(x)/G

end

X

end

sample_exp_tail (generic function with 1 method)

57



The probability of success in this problem is the ratio of the area under the histogram for 𝑓 to
the area under 𝐺𝑒−𝑥, or 1/𝐺. The expected number of rounds until success is therefore 𝐺.

4.5 Variance reduction

The problem above is a simple example of Monte Carlo integration. We now want to see how
to make this simple example more efficient by reducing the variance of the estimator. We will
approach this in a few different ways.

4.5.1 Importance sampling

Let us consider the computation
√

2𝜋 = 2 ∫
∞

0
exp(−𝑥2/2) 𝑑𝑥.

Using the idea of the problem du jour, we could estimate
√

2𝜋 by drawing uniform samples on
[0, 𝐿] for 𝐿 large enough. But this estimator has rather high variance, and the variance gets
larger the larger 𝐿 is. This is intuitive in that most of the sample points don’t really matter to
the computation, since exp(−𝑥2/2) decays very quickly away from zero.

The integrand exp(−𝑥2/2) is largest near the origin, so we get the most contribution to our
integral when we have samples near zero. Therefore, it makes sense to use a method that
samples more frequently near the origin, rather than sampling uniformly over some large range
of 𝑥 values

√
2𝜋 = 2 ∫

∞

0

exp(−𝑥2/2)
exp(−𝑥)

exp(−𝑥) 𝑑𝑥 = 2𝐸[exp(−𝑋2/2)/ exp(−𝑋)]

where 𝑋 is an exponential random variable.

function zmean2(N=1000)

Y = -log.(rand(N))

fY = exp.(-Y.^2/2)

gY = exp.(-Y)/2

lY = fY./gY

mean(lY), std(lY)/sqrt(N)

end

μ, σ = zmean2()

μ-sqrt(2π), σ

(-0.0013493446051775493, 0.026315426386953576)

58



4.5.2 Control variates

I want to compute the expectation of 𝑙(𝑥) = exp(𝑥 − 𝑥2/2), but perhaps I’ve decided its too
hard. But I know that most of the interesting behavior is near the origin, so perhaps I can
approximate 𝑙(𝑥) by a polynomial over some interval close to zero. Let’s try just interpolating
by a quadratic at 𝑥 = 0, 𝑥 = 1, and 𝑥 = 2, and discarding everything past 𝑥 = 2:

ℎ(𝑥) = {
√

𝑒 − (
√

𝑒 − 1)(𝑥 − 1)2, 𝑥 ∈ [0, 2]
0, otherwise

.

While ℎ(𝑋) is not identical to 𝑙(𝑋), the two random variables surely are correlated. Furthermore,
we can compute 𝐸[ℎ(𝑋)] analytically; a somewhat tedious calculus exercise yields

𝐸[ℎ(𝑋)] =
√

𝑒(1 − 𝑒−2) − (
√

𝑒 − 1)(1 − 5𝑒−2).

The fact that ℎ(𝑋) and 𝑙(𝑋) should be correlated, together with the fact that we can compute
𝐸[ℎ(𝑋)] in closed form, makes ℎ(𝑋) an ideal candidate to serve as a control variate with which
we can construct a better estimator, as we shall now see.

First, note that
𝐸[𝑙(𝑋)] = 𝐸[𝑙(𝑋) − 𝑐ℎ(𝑋)] + 𝑐𝐸[ℎ(𝑋)].

So ̂𝑙𝑐(𝑋) = 𝑙(𝑋) − 𝑐ℎ(𝑋) + 𝑐𝐸[ℎ(𝑋)] has the same expected value that 𝑙(𝑋) does; but

Var[ ̂𝑙𝑐(𝑋)] = Var[𝑙(𝑋)] − 2𝑐 Cov[𝑙(𝑋), ℎ(𝑋)] + 𝑐2 Var[ℎ(𝑋)].

If we choose 𝑐∗ = Cov[𝑙(𝑋), ℎ(𝑋)]/ Var[ℎ(𝑋)], we have

Var[ ̂𝑙𝑐∗
(𝑋)] = Var[𝑙(𝑋)] (1 − corr[𝑙(𝑋), ℎ(𝑋)]2) .

If 𝑙(𝑋) and ℎ(𝑋) are highly correlated, then ̂𝑙𝑐∗
(𝑋) may have a much lower variance than 𝑙(𝑋).

Of course, computing the covariance analytically is hard, but we can always do it numerically.

function zmean3(N=1000)

e = exp(1.0)

Y = -log.(rand(N))

fY = exp.(-Y.^2/2)

gY = exp.(-Y)/2

lY = fY./gY

hY = (sqrt(e).-(sqrt(e)-1)*(Y.-1.0).^2) .* (Y.<2)

EhY = (sqrt(e)*(1-e^-2) - (sqrt(e)-1)*(1-5*e^-2))

cs = -sum((lY.-mean(lY)) .* (hY.-EhY))/sum((hY.-EhY).^2)

W = lY + cs*(hY.-EhY)

mean(W), std(W)/sqrt(N)

end
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μ, σ = zmean3()

μ-sqrt(2π), σ

(-0.0043801682373945106, 0.008297795910048079)

4.5.3 Antithetic variates

Now let’s turn to the problem of computing 𝜋/4 by throwing darts at [0, 1]2 and seeing what
fraction lie inside the unit circle. Note that if (𝑋𝑖, 𝑌𝑖) is a uniform random sample from the
square, then (1−𝑋𝑖, 1−𝑌𝑖) is a correlated sample. It turns out that if 𝜙 is the indicator for the
unit circle, then 𝜙(𝑋𝑖, 𝑌𝑖) and 𝜙(1−𝑋𝑖, 1−𝑌𝑖) have negative covariance; this makes sense, since
only one of them can be outside the unit circle (though both could be the same). Therefore,
the estimator 𝜙(𝑋, 𝑌 )/2 + 𝜙(1 − 𝑋, 1 − 𝑌 )/2 actually has lower variance than 𝜙(𝑋, 𝑌 ). This
is the method of antithetic variables.

function pi_mc(N=1000)

XY = rand(2,N)

XY2 = 1.0 .- XY

trials1 = [xyj[1]^2+xyj[2]^2 < 1 for xyj in eachcol(XY) ]

trials2 = [xyj[1]^2+xyj[2]^2 < 1 for xyj in eachcol(XY2)]

trials = (trials1+trials2)/2

mean(trials1), std(trials1)/sqrt(N), mean(trials), std(trials)/sqrt(N)

end

pi_mc()

(0.752, 0.013663187134877504, 0.762, 0.007900532793325948)
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5 CS Background

5.1 Order notation and performance

Just as we use big-O notation in calculus to denote a function (usually an error term) that goes
to zero at a controlled rate as the argument goes to zero, we use big-O notation in algorithm
analysis to denote a function (usually run time or memory usage) that grows at a controlled
rate as the argument goes to infinity. For instance, if we say that computing the dot product of
two length 𝑛 vectors is an 𝑂(𝑛) operation, we mean that the time to compute the dot products
of length greater than some fixed constant 𝑛0 is bounded by 𝐶𝑛 for some constant 𝐶. The
point of this sort of analysis is to understand how various algorithms scale with problem size
without worrying about all the details of implementation and architecture (which essentially
affect the constant 𝐶).

Most of the major factorizations of dense numerical linear algebra take 𝑂(𝑛3) time when applied
to square 𝑛 × 𝑛 matrices, though some building blocks (like multiplying a matrix by a vector
or scaling a vector) take 𝑂(𝑛2) or 𝑂(𝑛) time. We often write the algorithms for factorizations
that take 𝑂(𝑛3) time using block matrix notation so that we can build these factorizations
from a few well-tuned 𝑂(𝑛3) building blocks, the most important of which is matrix-matrix
multiplication.

5.2 Graph theory and sparse matrices

In sparse linear algebra, we consider matrices that can be represented by fewer than 𝑂(𝑛2)
parameters. That might mean most of the elements are zero (e.g.~as in a diagonal matrix), or
it might mean that there is some other low-complexity way of representing the matrix (e.g.~the
matrix might be a rank-1 matrix that can be represented as an outer product of two length 𝑛
vectors). We usually reserve the word “sparse” to mean matrices with few nonzeros, but it is
important to recognize that there are other data-sparse matrices in the world.

The graph of a sparse matrix 𝐴 ∈ ℝ𝑁×𝑁 consists of a set of 𝑁 vertices 𝒱 = {1, 2, … , 𝑁} and a
set of edges ℰ = {(𝑖, 𝑗) ∶ 𝑎𝑖𝑗 ≠ 0}. While the cost of general dense matrix operations usually
depends only on the sizes of the matrix involved, the cost of sparse matrix operations can be
highly dependent on the structure of the associated graph.
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6 Error Analysis Basics

6.1 Floating point

Most floating point numbers are essentially normalized scientific notation, but in binary. A
typical normalized number in double precision looks like

(1.𝑏1𝑏2𝑏3 … 𝑏52)2 × 2𝑒

where 𝑏1 … 𝑏52 are 52 bits of the significand that appear after the binary point. In addition to the
normalize representations, IEEE floating point includes subnormal numbers (the most important
of which is zero) that cannot be represented in normalized form; ±∞; and Not-a-Number
(NaN), used to represent the result of operations like 0/0.

The rule for floating point is that “basic” operations (addition, subtraction, multiplication, divi-
sion, and square root) should return the true result, correctly rounded. So a Julia statement

# Compute the sum of x and y (assuming they are exact)

z = x + y

actually computes ̂𝑧 = fl(𝑥+𝑦) where fl(⋅) is the operator that maps real numbers to the closest
floating point representation. For numbers that are in the normalized range (i.e. for which fl(𝑧)
is a normalized floating point number), the relative error in approximating 𝑧 by fl(𝑧) is smaller
in magnitude than machine epsilon; for double precision, 𝜖mach = 2−53 ≈ 1.1 × 10−16; that is,

̂𝑧 = 𝑧(1 + 𝛿), |𝛿| ≤ 𝜖mach.

We can model the effects of roundoff on a computation by writing a separate 𝛿 term for each
arithmetic operation in Julia; this is both incomplete (because it doesn’t handle non-normalized
numbers properly) and imprecise (because there is more structure to the errors than just the
bound of machine epsilon). Nonetheless, this is a useful way to reason about roundoff when
such reasoning is needed.

6.2 Sensitivity, conditioning, and types of error

In almost every sort of numerical computation, we need to think about errors. Errors in
numerical computations can come from many different sources, including:
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• Roundoff error from inexact computer arithmetic.
• Truncation error from approximate formulas.
• Termination of iterations.
• Statistical error.

There are also model errors that are related not to how accurately we solve a problem on the
computer, but to how accurately the problem we solve models the state of the world.

There are also several different ways we can think about errors. The most obvious is the
forward error : how close is our approximate answer to the correct answer? One can also look at
backward error : what is the smallest perturbation to the problem such that our approximation
is the true answer? Or there is residual error : how much do we fail to satisfy the defining
equations?

For each type of error, we have to decide whether we want to look at the absolute error or
the relative error. For vector quantities, we generally want the normwise absolute or relative
error, but often it’s critical to choose norms wisely. The condition number for a problem is
the relation between relative errors in the input (e.g. the right hand side in a linear system of
equations) and relative errors in the output (e.g. the solution to a linear system of equations).
Typically, we analyze the effect of roundoff on numerical methods by showing that the method
in floating point is backward stable (i.e. the effect of roundoffs lead to an error that is bounded
by some polynomial in the problem size times 𝜖mach) and separately trying to show that the
problem is well-conditioned (i.e. small backward error in the problem inputs translates to small
forward error in the problem outputs).

We are often concerned with first-order error analysis, i.e. error analysis based on a linearized
approximation to the true problem. First-order analysis is often adequate to understand the
effect of roundoff error or truncation of certain approximations. It may not always be enough
to understand the effect of large statistical fluctuations.
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7 Julia Fundamentals

Julia is a relatively young language initially released in 2012; the first releases of MATLAB
and Python were 1984 and 1991, respectively. It has become increasingly popular for scientific
computing and data science types of problems for its speed, simple MATLAB-like array syntax,
and support for a variety of programming paradigms. We will provide pointers to some resources
for getting started with Julia (or going further with Julia), but here we summarize some useful
things to remember for writing concise codes for this class.

7.1 Building matrices and vectors

Julia supports general multi-dimensional arrays. Though the behavior can be changed, by
default, these use one-based indexing (like MATLAB or Fortran, unlike Python or C/C++).
Indexing uses square brackets (unlike MATLAB), e.g.

x = v[1]

y = A[1,1]

By default, we think of a one-dimensional array as a column vector, and a two-dimensional
array as a matrix. We can do standard linear algebra operations like scaling (2*A), summing
like types of objects (v1+v2), and matrix multiplication {A*v}.

The expression

w = v'

represents the adjoint of the vector v with respect to the standard inner product (i.e. the
conjugate transpose). The tick operator also gives the (conjugate) transpose of a matrix. We
note that the tick operator in Julia does not actually copy any storage; it just gives us a
re-interpretation of the argument. This shows up, for example, if we write

let

v = [1, 2] # v is a 2-element Vector{Int64} containing [1, 2]

w = v' # w is a 1-2 adjoint(::Vector{Int64}) with eltype Int64

v[2] = 3 # Now v contains [1, 3] and w is the adjoint [1, 3]'
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end

3

Julia gives us several standard matrix and vector construction functions.

Z = zeros(n) # Length n vector of zeros

Z = zeros(n,n) # n-by-n matrix of zeros

b = rand(n) # Length n random vector of U[0,1] entries

e = ones(n) # Length n vector of ones

D = diagm(e) # Construct a diagonal matrix

e2 = diag(D) # Extract a matrix diagonal

The identity matrix in Julia is simply I. This is an abstract matrix with a size that can usually
be inferred from context. In the rare cases when you need a concrete instantiation of an identity
matrix, you can use Matrix(I, n, n).

7.2 Concatenating matrices and vectors

In addition to functions for constructing specific types of matrices and vectors, Julia lets
us put together matrices and vectors by horizontal and vertical concatenation. This works
with matrices just as well as with vectors! Spaces are used for horizontal concatenation and
semicolons for vertical concatenation.

y = [1; 2] # Length-2 vector

y = [1 2] # 1-by-2 matrix

M = [1 2; 3 4] # 2-by-2 matrix

M = [I A] # Horizontal matrix concatenation

M = [I; A] # Vertical matrix concatenation

Julia uses commas to separate elements of a list-like data type or an array. So [1, 2] and [1;

2] give us the same thing (a length 2 vector), but [I, A] gives us a list consisting of a uniform
scaling object and a matrix — not quite the same as horizontal matrix concatenation.
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7.3 Transpose and rearrangemenent

Julia lets us rearrange the data inside a matrix or vector in a variety of ways. In addition to
the usual transposition operation, we can also do “reshape” operations that let us interpret the
same data layout in computer memory in different ways.

# Reshape A to a vector, then back to a matrix

# Note: Julia is column-major

avec = reshape(A, prod(size(A)));

A = reshape(avec, n, n)

idx = randperm(n) # Random permutation of indices (need to use Random)

Ac = A[:,idx] # Permute columns of A

Ar = A[idx,:] # Permute rows of A

Ap = A[idx,idx] # Permute rows and columns

7.4 Submatrices, diagonals, and triangles

Julia lets us extract specific parts of a matrix, like the diagonal entries or the upper or lower
triangle. Some operations make separate copies of the data referenced:

A = randn(6,6) # 6-by-6 random matrix

A[1:3,1:3] # Leading 3-by-3 submatrix

A[1:2:end,:] # Rows 1, 3, 5

A[:,3:end] # Columns 3-6

Ad = diag(A) # Diagonal of A (as vector)

A1 = diag(A,1) # First superdiagonal

Au = triu(A) # Upper triangle

Al = tril(A) # Lower triangle

Other operations give a view of the matrix without making a copy of the contents, which can
be much faster:

A = randn(6,6) # 6-by-6 random matrix

view(A,1:3,1:3) # View of leading 3-by-3 submatrix

view(A,:,3:end) # View of columns 3-6

Au = UpperTriangular(A) # View of upper triangle

Al = LowerTriangular(A) # View of lower triangle
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7.5 Matrix and vector operations

Julia provides a variety of elementwise operations as well as linear algebraic operations. To
distinguish elementwise multiplication or division from matrix multiplication and linear solves
or least squares, we put a dot in front of the elementwise operations.

y = d.*x # Elementwise multiplication of vectors/matrices

y = x./d # Elementwise division

z = x + y # Add vectors/matrices

z = x .+ 1 # Add scalar to every element of a vector/matrix

y = A*x # Matrix times vector

y = x'*A # Vector times matrix

C = A*B # Matrix times matrix

# Don't use inv!

x = A\b # Solve Ax = b *or* least squares

y = b/A # Solve yA = b or least squares

7.6 Things best avoided

There are few good reasons to compute explicit matrix inverses or determinants in numerical
computations. Julia does provide these operations. But if you find yourself typing inv or det

in Julia, think long and hard. Is there an alternate formulation? Could you use the forward
slash or backslash operations for solving a linear system?
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