Bindel, Fall 2016 Matrix Computations (CS 6210)

Notes for 2016-11-28

Logistics
1. Today is the last lecture of new material — review on Wednesday.
2. Course evaluations posted today — remember to complete them!
3. Final exam will be posted Wednesday, 11/30; due 12/14.

4. Office hours this week: Tuesday 10-11, Wednesday 1:30-2:30. I will be
away Thursday-Friday.

1 Lanczos and Arnoldi eigensolvers

The standard ingredients in all the subspace methods we have described so far
are a choice of an approximation subspace (usually a Krylov subspace) and a
method for choosing an approximation from the space. In the most common
methods for large-scale eigensolvers, one uses a Krylov subspace together
with a Bubnov-Galerkin condition for choosing approximate eigenpairs; that
is, we choose v € V such that

r=(A—=\)dLV.

In the symmetric case, this is equivalent to finding a constrained stationary
point of the Rayleigh quotient (i.e. a 0 such that directional derivatives of
pa(0) are zero for any direction in the space). This approximation scheme
is known as the Rayleigh-Ritz method, and approximate eigenvectors and
eigenvalues obtained in this way are often called Ritz vectors and Ritz values.

In the Lanczos method for the symmetric eigenvalue problem, we compute
the Lanczos decomposition

AQm = Qme + 5QO+1€gw

and use it to compute the residual relation for an approximate pair (i, Qny)
by
r=(A—pl)Quny = Qum(Ty — pul)y + ﬂQOHe%y-
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The condition Q1 r = 0 gives us the projected problem
(Ton — pl)y = 0;
if we satisfy this condition, we have

T = BmGm+1Ym

and the residual norm (in the 2-norm) is |5,y |. Generalizing, if we compute

the eigendecomposition
T, =YOYT,

we have the collected approximations Z = @),,Y,, with residuals

1Az — 240kll2 = 1Bl lemyi]-

This is useful because, as we discussed before, in the symmetric case a small
residual error implies a small distance to the closest eigenvalue. This is also
useful because the residual error can be computed with no further matrix op-
erations — we need only to look at quantities that we would already compute
in the process of obtaining the tridiangonal coefficients and the corresponding
Ritz values.

The Arnoldi method for computing approximate eigenpairs similarly uses
the Galerkin condition together with the Arnoldi decomposition to express
an approximate partial Schur form. From the decomposition

AQy = QunH,y, + hm+1,QO+1€£7
we write a subspace residual for (Q,,Y,T) as
R=AQ.,Y — QYT = Qu(HyY —YT) 4 By 1 mGmi1€0
Forcing QT R = 0 gives the projected problem
H,Y =YT,

i.e. we seck a Schur decomposition of the (already Hessenberg) matrix H,,.
There are three main issues with the Lanczos and Arnoldi methods that
we need to address in practical situations.
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1. We must deal with forward instability, particularly in the case of the
Lanczos method. Unless we are careful to maintain orthogonality be-
tween the computed Lanczos basis vectors, the method derails. The re-
sult is not that we get bad approximate eigenpairs; indeed, the forward
instability is intimately tied to the very thing we want, which is conver-
gence of eigenpairs. The real problem is that we get the same eigenpairs
over and over again, a phenomenon known as “ghost” eigenvalue ap-
proximations. We deal with this issue by careful re-orthogonalization
(selective or complete).

2. Because of the cost of storing a Krylov basis and maintaining its or-
thogonality, we typically only want to approximate a few eigenpairs at
a time.

3. The Krylov subspace generated by A and some random start vector
contains iterates of the power method applied to any A (or to A — ol
for any shift o — the Krylov subspace is shift-invariant). This is at
least as good as power iteration for approximating the extremal parts
of the spectrum, and we can use the same Chebyshev-based games we
discussed before to give concrete (though typically pessimistic) con-
vergence bounds. But if eigenvalues cluster, or if we are interested in
eigenvalues that are not at the edge of the spectrum, then the conver-
gence in theory and in practice can be painfully slow.

We address these issues with two basic techniques, both of which we have
already seen in other contexts: spectral transformation and restarting.

2 Spectral transformation

We have dealt with the notion of spectral transformation before, when we
discussed the power iteration. The idea of spectral transformation is to work
not with A, but with some rational f(A) where f maps the eigenvalues of
interest to the outside of the spectrum. Usually f is a rational function;
common examples include

e Shift-invert: f(z) = (z — o)~!. Favors eigenvalues close to the shift o.
o Cayley: f(z) = (0 — z)(0 + 2)~1. This maps the left half plane to the

interior of the unit circle and the right half plane to the exterior; it is
commonly used in stability analysis.



Bindel, Fall 2016 Matrix Computations (CS 6210)

e Polynomial: Just what it sounds like.

In general, the shifted linear solves needed to carry out rational spectral
transformations (e.g. shift-invert and Cayley) must be computed to rather
high accuracy. Hence, we favor sparse direct methods. An alternate ap-
proach, similar to what we say when we briefly considered flexible GMRES,
is to break out of the confines of using a Krylov subspace; the most popular
variant here is the Jacobi-Davidson method.

3 Restarting

When discussing GMRES, we said that to keep storage under control, we
typically restart after a few steps. The same technique works for solving
eigenvalue problems, but requires more care. In particular, when solving a
linear system, it made sense to restart with a whole new Krylov subspace.
For eigenvalue problems, implicit restarting is the norm.

The earliest versions of implicit restarting followed the strategy:

1. Build an initial Arnoldi decomposition
AQm = QmHm + ﬁQO—O—le;{z‘

2. Do several steps of shifted QR iteration on the projected matrix H,, to
get a new decomposition

AQm = C?mﬁlm + B;n(jm—&-legy
3. “Cut back” to a basis consisting of the first p vectors of Q.

The “filter and cut back” approach of the implicitly restarted Arnoldi method
involves some technical difficulties, but there is good software available (the
ARPACK code of Lehoucq and Sorensen). This is the basis for the eigs
code in MATLAB.

A simpler method was introduced in 2002 by Pete Stewart, the Krylov-
Schur method. The Krylov-Schur approach rests on a more general decom-
position than Arnoldi, a so-called Krylov decomposition

AUy = Uy By, + Upq1byy 1
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if the columns of U, are orthonormal, we call this an orthonormal decompo-
sition. The idea of the Krylov-Schur method is to compute a Schur decompo-
sition of By, then sort the Schur decomposition to move the unwanted Ritz
values to the “end,” where they can be purged by truncating the decomposi-
tion. This approach avoids some of the technical issues in previous implicit
restarting methods that maintained an Arnoldi decomposition throughout.

3.1 Jacobi-Davidson

The Jacobi-Davidson iteration is an alternative subspace-based large-scale
eigenvalue solver that does not use Krylov subspaces. Instead, one builds a
subspace via steps of an inexact Newton iteration on the eigenvalue equation.
Given an approximate eigenpair (0, u) where 6 is the Rayleigh quotient, we
seek a correction s 1 u so that

A(u+s) = Mu + s).

Rewriting this in terms of r = (A — 61)u, we have for any approximate A to
the desired eigenvalue

(A=X)s=—r+(\—0u+ (A= Ns.

Using the desiderata that u*s = 0 and the fact that (/ —uu*)u = 0, we obtain
the correction equation

(I —uu*)(A = N)(I —uu*)s = —r, where s L u.

The method proceeds by at each step solving the correction equation approx-
imately and extending the subspace by a new direction s. One then seeks an
approximate eigenpair from within the subspace.

In addition to a proper choice of subspaces, one needs a method to extract
approximate eigenvectors and eigenvalues. This is particularly important for
approximating interior eigenvalues, as the standard Rayleigh-Ritz approach
may give poor results there. One possible method is to use the refined Ritz
vector, which is obtained by minimizing the residual over all candidate eigen-
vectors associated with an approximate eigenvalue \. The refined Ritz vector
may then be plugged into the Rayleigh quotient to obtain a new eigenvector.
Another method is the harmonic Rayleigh-Ritz approach, which for eigenval-
ues near a target 7 employs the condition

(A—7Dra—@—-7)ta LV
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We again usually use the Rayleigh quotient from the harmonic Ritz vector
rather than the harmonic Ritz value 6.
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