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Notes for 2016-11-21

1 References

There is a lot of ground to cover when it comes to Krylov subspace methods,
and we scarcely have time to do justice to the two most popular Krylov
subspace methods (CG for the SPD case and GMRES elsewhere). Apart
from the material in Golub and Van Loan and other standard texts, I highly
recommend two books for a survey of other methods and some practical
details:

1. Templates for the Solution of Linear Systems: Building Blocks for It-
erative Methods by Barrett et al. This is freely available, and includes
what you need to know to get started with various methods.

2. Iterative methods for sparse linear systems by Y. Saad. This is now in
a second edition (available from SIAM), but you can also get the first
edition at Saad’s web page.

3. Iterative methods for solving linear systems by Anne Greenbaum (pub-
lished by SIAM) is a fairly up-to-date treatment of the major iterative
solvers for linear systems, including the whole family of Krylov sub-
space solvers as well as classical stationary iterations and multigrid
methods.

4. Iterative methods for linear and nonlinear equations by C. T. Kelley
is another SIAM book — are you seeing a theme? It covers CG and
GMRES, though not the other Krylov iterations; however, it also covers
nonlinear iterations. It is short and tutorial in nature.

2 GMRES

The generalized minimal residual (GMRES) method of solving linear systems
works with general systems of linear equations. Next to CG, it is probably
the second-most popular of the Krylov subspace iterations.

The GMRES method is so named because it chooses the solution from
a linear subspace that minimizes the (Euclidean) norm of the residual over
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successive Krylov subspaces. In terms of the Arnoldi decompositions
AQy, = Qr+1Hy,
we have that z; = Qry, where
ye = argmin,, || Hyy — [[b]les |

One can solve the Hessenberg least squares problem in O(k?) time, but this is
generally a non-issue. The true cost of GMRES is in saving the basis (which
can use memory very quickly) and in keeping the basis orthogonal.

Unlike the CG method, alas, the GMRES method does not boil down
to a short recurrence through a sequence of clever tricks. Consequently, we
generally cannot afford to run the iteration for many steps before restart.
We usually denote the iteration with periodic restarting every m steps as
GMRES(m). That is, at each step we

1. Start with an initial guess & from previous steps.

2. Form the residual »r = b — Az.

3. Run m steps of GMRES to approximately solve Az = r.
4. Update z := 2 + 2.

The GMRES iteration is generally used with a preconditioner. The com-
mon default is to use preconditioning on the left, i.e. solve

M Ax = M~ 'b;

in this setting, GMRES minimizes not the original residual, but the precon-
ditioned residual. To the extent that the preconditioner reduces the condi-
tion number of the problem overall, the norm of the preconditioned residual
tends to be a better indicator for forward error than the norm of the un-
preconditioned residual. Of course, one can also perform preconditioning on
the right (i.e. changing the unknown), or perform two-sided preconditioning.

The standard GMRES iteration (along with CG and almost every other
Krylov subspace iteration) assumes a single, fixed preconditioner. But what
if we want to try several preconditioners at once, or perhaps to use Gauss-
Southwell or a chaotic relaxation method for preconditioning? Or perhaps we
want to use a variable number of steps of some other iteration to precondition
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something like GMRES? For this purpose, it is useful to consider the flexible
GMRES variant (FGMRES). Though it no longer technically is restricted
to a Krylov subspace generated by a fixed matrix, the FGMRES iteration
looks very similar to the standard GMRES iteration; we build an Arnoldi-like
decomposition with the form

AZm = m—i-l[:[m

and then compute updates as a linear combination of the columns of Z,, by
solving a least squares problem with H,,. But here, each column of Z,, looks
like z; = M jflvj where each M; may be different.

3 Bi-Lanczos

So far, our focus has been on Krylov subspace methods that we can explain
via the Lanczos or Arnoldi decompositions. The Lanczos-based CG has many
attractive properties, but it only works with symmetric and positive definite
matrices. One can apply CG to a system of normal equations — the so-
called CGNE method — but this comes at the cost of squaring the condition
number. There are also methods such as the LSQR iteration that implicitly
work with the normal equations, but use an incrementally-computed version
of the Golub-Kahan bi-diagonalization. The Arnoldi-based GMRES iteration
works for more general classes of problems, and indeed it is the method of
choice; but it comes at a stiff penalty in terms of orthogonalization costs.

Are there alternative methods that use short recurrences (like CG) but are
appropriate for nonsymmetric matrices? There are several, though all have
some drawbacks; the QMR and BiCG iterations may be the most popular.
The key to the behavior of these methods comes from their use of a different
decomposition, the bi-orthogonal Lanczos factorization:

AQj = Q;Ty + Bjt1¢j+1€]
A"Pj = PiT} + j11pjt1€]
PiQ; =1
Here, the bases (); and P; span Krylov subspaces generated by A and A*,

respectively (which means these algorithms require not only a function to
apply A to a vector, but also a function to apply A*). The bases are not
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orthonormal, and indeed may become rather ill-conditioned. They do have
a mutual orthogonality relationship, though, namely P;Q; = I.

Details of the bi-orthogonal Lanczos factorization and related iterative
algorithms can be found in the references. For the present, we satisfy ourseves
with a few observations:

e The GMRES iteration shows monotonic reduction in the precondi-
tioned residual, even with restarting. CG shows monotonic reduction in
the error or residual when measured in appropriate norms. The meth-
ods based on bi-orthogonal Lanczos, however, can show rather erratic
convergence; errors decay in general, but they may exhibit intermediate
local increases. BiCG is generally more erratic than QMR.

e Even in exact arithmetic, the subspace bases formed by bi-Lanczos may
become rather ill-conditioned.

e The bi-orthogonal iterations sometimes show breakdown behavior where
the local approximation problem becomes singular. This can be over-
come using lookahead techniques, though it complicates the algorithm.

The relative simplicity of GMRES — both in theory and in implementation
— perhaps explains its relative popularity. Nonetheless, these other methods
are worth knowing about.

4 Extrapolation and mixing

When we discussed CG, we also briefly discussed nonlinear CG methods
(e.g. Fletcher-Reeves). One can similarly extend Krylov subspace ideas to
accelerate nonlinear equation solving methods; that is, given a fixed point

1teration
2R+ — G@(k)),

we can accelerate the computation of the fixed point by taking an appropri-
ate linear combination of the iterates z(¥). This is a powerful idea; indeed, it
is so powerful that it can be used to compute repulsive fixed points where the
usual iteration would diverge! The techniques usually go under the heading
of extrapolation methods (including Reduced Rank Extrapolation or RRE,
Minimal Polynomial Extrapolation or MPE, and Vector Padé Extrapola-
tion); and acceleration or mizing techniques, the most popular of which is
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the Anderson acceleration method. Applied to the iterates of a stationary
linear system solver, these techniques are all formally equivalent to Krylov
subspace solvers. In particular, RRE is equivalent to GMRES (in exact
arithmetic).

The idea behind extrapolation methods is to exploit systematic patterns
in the convergence of fixed point iteration. For example, suppose the error
iteration gave us (approximately)

where the vectors v/) and the exponents a; were unknown. The hope is that
we can learn the parameters of the error iteration by fitting a model to the
update sequence:

u® = D (k) (k1) (k) Z(O‘j _ 1)U(J')Oé;?_
j=1
If p(2) =co+ 12+ ... + ¢,2™ is a polynomial such that p(a;) = 0 for each
o, then we should satisfy

3 cu) =,
j=1

If we look at enough update steps, we can determine both the coefficient
vectors and the exponents.

With an appropriate model, extrapolation methods can produce rather
astonishing results. Of course, extrapolation methods are subject to issues of
overfitting, and (particularly when the convergence is irregular) may produce
results that are wildly incorrect.

4.1 Communication-Avoiding (CA) Krylov

In highly parallel computing systems, the cost of computing with Krylov sub-
spaces may be dominated not by the matrix-vector products, but by the cost
of computing dot products for the purpose of orthogonalization. Repeatedly
applying matrix-vector products may involves rather local communication
patterns, but dot products involve a global communication. Of course, we
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could (in principle) form a power basis for the Krylov subspace; but this
basis is typically too ill-conditioned for serious work. So what is one to do?

The communication-avoiding Krylov methods use the power of polynomi-
als to thread between the Scylla of synchronization costs and the Charybdis
of catastrophic ill-conditioning. In general, we write Krylov subspace bases
as

Kr(A,b) = span{pj(A)b}g-iBl).

where p;(z) is a degree j polynomial. In the case of the power basis, p;(z) =
27; and in the case of the Lanczos or Arnoldi bases, p;(z) is chosen fully adap-
tively. The communication avoiding approach is to choose p;(z) in advance,
but using information about the spectra to ensure that the vectors p,;(A)b
are not too nearly co-linear.

As with some of the other topics in this section, the big idea behind
communication-avoiding Krylov methods is simple, but there are too many
details to give a full treatment in the time we have allocated. For those inter-
ested in such details, I recommend the 2010 Ph.D. thesis of Mark Hoemmen.


https://www2.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-37.pdf
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